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Chapter 13: Entropy and Applications 
 
 
Hydrogen is a clean burning fuel that decreases the local pollution of hydrogen-powered 
automobiles. However, hydrogen is a secondary fuel; it must be produced using other energy 
sources. The reaction for the production of hydrogen using water as a cheap starting material is: 
 H2O (l) → H2 (g) + ½ O2 (g) 
Calculate the entropy change for the system, surroundings, and the total for the production of one 
mole of H2 (g). 
 
 
   Entropy is one of the most useful concepts that we can use to study chemical processes. In this 
chapter we define the entropy change for a process and carefully develop the relationship 
between entropy and spontaneous, irreversible processes. We then apply the definition of entropy 
to simple processes, phase transitions, and chemical reactions. To determine the entropy change 
for chemical reactions, we introduce the Third Law of thermodynamics. 
 
13.1 Entropy and Spontaneous, Irreversible Processes 
 

Definition of Entropy:  Energy in the form of heat is transferred from a hotter body to a colder 
body. This transfer of energy corresponds to dispersal, or spreading out, of the available energy. 
Energy dispersal is a spontaneous process. This observation is a summary of our experience, and 
is a form of the Second Law of thermodynamics. The dispersal of energy governs all 
spontaneous processes including chemical reactions. Energy dispersal is measured by the 
entropy change for a process, dS. The definition of the entropy change for an infinitesimal 
process at temperature T for a closed system is: 
 

 dS ≡ 
đqrev

T        (closed)  13.1.1 
 

This equation shows that transfer of thermal energy to a system increases the entropy of the 
system. Entropy is an extensive property. The units of entropy are J K-1. In older texts you may 
find the entropy given in cal K-1. Remember that 1 cal = 4.184 J to convert from the older units. 
In addition, 1 cal K-1 is often called 1 eu, where eu stands for “entropy unit.” To show the utility 
of the concept of entropy we need to prove that entropy always increases for a spontaneous 
process in an isolated system. We begin by taking a closer look at the definition of entropy. 
 

Entropy and Temperature:   Consider the definition of entropy. Why does temperature occur in 
the definition of entropy and why is the temperature in the denominator of the expression? 
Consider, first, a process at constant volume. The temperature is a measure of the internal energy 
of the system through dU = CvdT. A hotter system has higher energy. A hot system becomes hot 
because of heat transfer to the system, so through Eq. 13.1.1 a hot system must also have higher 
entropy. So T, dU, and dS all increase together. The temperature can be taken as representative 
of all three system properties. The temperature can be considered as a measure of the entropy 
already present in the system. Consider the following analogy. 
   Let’s say you have two friends, one very neat and one very messy. Being a prankster, you want 
to play a trick on both friends by throwing an old stinky pair of sneakers into both rooms, Figure 
13.1.1. When your friends return to their rooms, the neat friend is greatly perturbed, while the 
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messy friend doesn’t even know that you played a prank on them. The neat room is characterized 
by a small initial entropy and a low initial temperature, and the messy room is characterized by a 
large initial entropy and a large initial temperature. So for the same transfer, one pair of sneakers, 
the change in entropy for the neat room is bigger than the messy room. The change in entropy for 
a given heat transfer is greater for cold initial temperatures: 
 

 dSneat = 
đqrev

Tlow
 = 

one pair sneakers
Tlow

   >   dSmessy = 
đqrev

Thigh
 = 

one pair sneakers
Thigh

 
 

The effect of the transfer is greater if the transfer takes place at low temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Low temperature: low initial entropy  (b) High temperature: high initial entropy 
 

Figure 13.1.1: The transfer of one pair of sneakers into a neat room produces a bigger change 
in entropy than the same transfer into a messy room. For dS = dqrev/T, the transfer, đqrev, is 
the same for both rooms. (a) The neat room is characterized by a low temperature, giving low 
initial entropy. (b) The messy room is characterized by a high temperature, giving high initial 
entropy. 

 
 
   Analogies can be useful in understanding new topics, but it is also important to note any short-
comings. The objects represent energy packets. This analogy would be improved if the messy 
items in the rooms were indistinguishable and able to move from place-to-place. 
   The definition of the entropy shows that reversible heat transfer and entropy changes are 
directly related. Thermal energy transfer is governed by the First Law. How does entropy relate 
to the First Law of thermodynamics? 
 

Combined First and Second Laws of Thermodynamics:  Spontaneous and non-spontaneous 
processes conserve energy. So, internal energy alone is not sufficient to determine the 
spontaneous direction for a process. Energy dispersal as measured by entropy changes 
determines the spontaneous direction. How do energy conservation and energy dispersal 
interrelate? Consider heat transfer and PV work for a general closed system. The heat transferred 
is đq and the internal energy change is given by the First Law of thermodynamics: 
 

 dU = đq + đw = đq – Pext dV          (closed, PV work)  13.1.2 

Tech 

Tech 

Pizza 
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To evaluate the entropy, we need to specify a reversible process. For a reversible process, 
substituting P = Pext into Eq. 13.1.2 gives: 
 

 dU = đqrev + đwrev = đqrev – P dV  (reversible, closed, PV work)  13.1.3 
 

From the definition of the entropy, Eq. 13.1.1, rearranging to find the reversible heat transfer: 
 

 đqrev = T dS          (closed)  13.1.4 
 

Substituting Eq. 13.1.4 into Eq. 13.1.3 we find: 
 

 dU = T dS – P dV       (closed, PV work)  13.1.5 
 

This equation combines the First and Second Laws of thermodynamics and is central to the 
theory and applications of thermodynamics. This equation is also a good source of understanding 
of the meaning of temperature and entropy. Notice that the TdS term gives the heat transfer and 
the –PdV term gives the work available from a reversible process. Both terms have the units of 
energy, joules. Each term is the product of an intensive variable with the change in an extensive 
variable. The pressure is the force for expansion work, and by analogy we can consider the 
temperature as the force for heat transfer. To do work, you need a pressure gradient, and to 
transfer heat you need a temperature gradient. The fact that temperature is the effective force for 
thermal energy transfer agrees with our original observations that heat is transferred from a 
hotter to a colder body. The combined First and Second Laws of thermodynamics succinctly 
combines our knowledge about the flow of energy through consideration of both energy 
conservation and energy dispersal. This combination provides the key to understanding 
spontaneous processes. 
 

Entropy and Spontaneity–The Clausius Inequality:   The entropy change for a process must be 
evaluated using a reversible process. At first, this requirement may seem to be very restrictive. 
However, entropy is a state function, which is independent of the path. So as long as we know 
the initial and final states for an irreversible process, we are free to construct a corresponding 
reversible process to evaluate the entropy change. The fact that both internal energy and entropy 
are state functions is the reason why Eq. 13.1.5 is not restricted to reversible processes only. But, 
you may wonder, how does đq/T compare to đqrev/T? How does the real heat transfer for a 
spontaneous process compare to the reversible heat transfer for the comparable process that 
matches the initial and final states? This relationship is the key to predicting the spontaneous 
direction for chemical processes. We can calculate the entropy change for a process from the 
internal energy change by solving Eq. 13.1.5 for the entropy: 
 

 dS = 
1
T dU + 

P
T dV     (closed, PV work)  13.1.6 

 

For any process, with PV work only, the internal energy change is given by Eq. 13.1.2, which 
upon substitution into the last equation gives: 
 

 dS = 
đq
T  – 

Pext

T  dV+ 
P
T dV          (closed, PV work)  13.1.7 

 

Distributing out dV gives: 
 

 dS = 
đq
T  + 







P – Pext

T dV          (closed, PV work)  13.1.8 
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This equation holds for any closed process with PV work, whether reversible or irreversible. The 
second term involving P, Pext, and V relates the pressure of the system, P, to the external 
pressure, Pext. In other words, this term shows the relationship of the system to its surroundings 
when expansion work is done. The difference in pressure, P – Pext, is the pressure gradient 
between the system and the surroundings. This PV term has an important property; it is always 
positive for a spontaneous process. To see this fact, consider an adiabatic process so that đq = 0. 
Then assume the pressure of the system is greater than the external pressure. The pressure 
gradient is then positive, P – Pext > 0. Our experience shows that the system will expand in a 
spontaneous process giving dV > 0. The product of (P – Pext)/T and dV is positive. Now, 
consider a process with the system pressure less than the external pressure, P < Pext. The system 
will contract in a spontaneous process giving dV < 0. However, the pressure gradient is also 
negative, P – Pext < 0, so the product of (P – Pext)/T and dV is still positive. In either case, the 
entropy increases for these spontaneous adiabatic processes, dS > 0. On the other hand, if the 
system pressure and the external pressure are equal, the pressure gradient is zero and the entropy 
change is zero, dS = 0, for an adiabatic process. With no pressure gradient, the system is at 
equilibrium and no process occurs. Remember that an equilibrium process is a reversible 
process. For a reversible adiabatic process, maximal work, in magnitude, is done on expansion 
and dS = 0. For an irreversible, spontaneous adiabatic expansion less work is done than a 
reversible process, but then dS > 0. 
   The second term, involving P, Pext, and dV, in Eq. 13.1.8 is often called the lost work term.1,2 
The PdV portion gives the work done by a reversible process. The PextdV portion gives the actual 
work done by the spontaneous process. The difference, PdV – PextdV, is always positive. The 
difference is the lost work between the reversible and real process. In other words, to “pay” for 
an increase in entropy, some work is lost. 
   Now consider a general process in a closed system. Since the lost work term is always positive 
for an irreversible process, we can then conclude that dS > đq/T, since dropping the lost work 
term from the equality necessarily decreases the right-hand side of the equation. If the process 
under study happens to be a reversible process, đq = đqrev and then dS = đqrev/T. Putting these 
two relationships together we have: 
 

 dS ≥ 
đq
T    > for irreversible process = for reversible process        (closed) 13.1.9 

 

This relationship is called the Clausius inequality, after Rudolph Clausius who developed the 
concept of entropy.3-5 If you have read Chapter 11, you will also remember the development of 
the Clausius inequality from the perspective of work production from thermodynamic cycles. We 
began this section by asking how dqrev/T relates to dq/T. Substitution of the definition of the 
entropy on the left-hand side of this last equation gives for a spontaneous, irreversible process: 
 

 
đqrev

T  > 
đq
T        (irreversible, closed) 13.1.10 

 

This relationship is quite remarkable, because it shows that for any spontaneous process the 
reversible heat transfer is always greater than the actual heat transfer, which is not at all obvious. 
However, the real power of the Clausius inequality is seen when Eqs. 13.1.9 and 13.1.10 are 
applied to the specific case of an isolated system. For a process in an isolated system đq = 0 and 
Eq. 13.1.9 reduces to: 
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 dS ≥ 0  > for irreversible process = for reversible process       (isolated) 13.1.11 
 

Putting this important statement into words we find that: 
 

Entropy always increases for a spontaneous process in an isolated system. 
 

This statement is the most useful form of the Second Law of thermodynamics, especially for 
chemical systems. The requirement of an isolated system may seem to be restrictive. However, 
many kinds of processes can occur in isolated systems, including chemical reactions. We will 
shortly see that the specification of an isolated system is not at all restrictive for closed systems. 
   Let’s recap our progress. We began by defining a new state function, the entropy. The entropy 
was designed to show the dispersal of energy. However, our goal is to find the criterion for the 
spontaneous direction for any process, especially chemical reactions. The Clausius inequality 
applied to an isolated system shows that the entropy is, indeed, a useful criterion. The entropy 
always increases for a spontaneous process. However, we need to remember the restriction of the 
Second Law to isolated systems. Thermodynamics is a very practical science. If a new concept is 
useful, we keep it, and if not we discard it. The guarantee that the entropy will always increase 
for a spontaneous process in an isolated system is a “signpost” for spontaneous change. In 
General Chemistry you learned how to calculate the entropy change for phase transitions and 
chemical reactions. Hopefully now you have a deeper understanding of why entropy is 
important. Let’s move on to some examples. 
 
13.2 Applying the Thermodynamic Definition of Entropy 
 

Now that we have motivated the thermodynamic definition of entropy, we need to understand the 
formulation and justify the definition by applying the concept to a variety of chemical problems. 
Thermodynamics is based on the ability of concepts to clarify our understanding of physical 
processes and to predict the behavior of systems. First, we look for a deeper understanding of the 
concept of entropy and its definition. 
 

Entropy and the Ideal Gas for Closed Systems:  Let’s first consider ideal gas expansions to see if 
we can get a feel for entropy changes for simple processes. The easiest process to start with is an 
isothermal reversible expansion. For an isothermal expansion of an ideal gas, dH = dU = 0 and 
đq = – đw. Consider a closed system for a change in volume from V1 to V2. For a reversible 
isothermal ideal gas expansion, P = Pext, đwrev = – PdV, and wrev = –nRT ln(V2/V1) giving the 
reversible heat transfer as: 
 

 qrev = nRT ln 
V2

V1
   (isothermal reversible, closed, ideal gas) 13.2.1° 

 

From the definition of the entropy, Eq. 13.1.1, for a constant temperature process: 
 

 ⌡⌠S1

S2
dS = 

1
T ∫ đqrev        (isothermal reversible, closed) 13.2.2 

 

Entropy is a state function so that integration with respect to dS gives: 
 

 ∆S = 
qrev

T          (isothermal reversible, closed) 13.2.3 
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We need to use a reversible process to evaluate ∆S. Eq. 13.2.3 is only applicable for isothermal 
reversible processes. Substituting Eq. 13.2.1° into Eq. 13.2.3 gives the entropy change for an 
isothermal reversible expansion of an ideal gas: 
 

 ∆S = nR ln 
V2

V1
     (isothermal, closed, ideal gas)  13.2.4° 

 

What happens if the expansion is not reversible? Since entropy is a state function, the change in 
entropy is independent of the path. We can choose any path we like between the same starting 
and ending points. For an irreversible isothermal expansion from V1 to V2, we just choose to 
evaluate the entropy using an equivalent reversible expansion from V1 to V2. Therefore, Eq. 
13.2.4° holds for any isothermal expansion of an ideal gas, reversible or not. 
   For more general processes with changes in temperature, using dU = đq + đw = đqrev – PdV for 
a reversible process and solving for the reversible heat transfer: 
 

 đqrev = dU + PdV      (reversible)  13.2.5 
 

Remember that dU = CvdT for all processes for an ideal gas. Therefore, substituting dU = CvdT 
into Eq. 13.2.5 holds for all processes for an ideal gas: 
 

 đqrev = CvdT + PdV     (reversible, closed, ideal gas) 13.2.6° 
 

The entropy change for any process in an ideal gas is given by dividing the last equation by T: 
 

 dS = 
đqrev

T  = 
Cv

T  dT + 
P
T dV    (reversible, closed, ideal gas) 13.2.7° 

 

We can solve the ideal gas equation of state for the second term, P/T = nR/V: 
 

 dS = 
đqrev

T  = 
Cv

T  dT + 
nR
V  dV    (reversible, closed, ideal gas) 13.2.8° 

 

For a process that has a reversible change in volume from V1 to V2 and a change in temperature 
from T1 to T2: 
 

 ∆S = 
⌡

⌠

T1

T2

 
Cv

T  dT + 
⌡

⌠

V1

V2

 
nR
V  dV     (closed, ideal gas) 13.2.9° 

 

Assuming that the heat capacity is constant over the temperature range gives: 
 

 ∆S = Cv ln 
T2

T1
 + nR ln 

V2

V1
    (cst. Cv, closed, ideal gas)    13.2.10° 

 

This last equation holds for any process in an ideal gas, reversible or not, since entropy is a state 
function. Notice that specifically for an isothermal process, Eq. 13.2.10° reduces to Eq. 13.2.4°. 
   Eq. 13.2.9° is handy if you know the change in volume for a process. However, if you are 
given the change in pressure instead, you can work through the enthalpy, H ≡ U+PV, and 
substituting in dU = đqrev – PdV: 
 

 dH = dU + PdV + VdP = đqrev – PdV + PdV + VdP 
                 (closed, reversible, PV work)  13.2.11 
 

Cancelling terms and solving for đqrev: 
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 đqrev = dH – VdP              (closed, reversible, PV work)  13.2.12 
 

For an ideal gas, dH = CpdT holds for any process in a closed system and substitution into the 
last equation gives: 
 

 đqrev = Cp dT – VdP       (closed, reversible, PV work, ideal gas)   13.2.13° 
 

Dividing by T gives the entropy change and using the ideal gas equation of state for V/T = nR/P 
gives: 
 

 dS = Cp 
dT
T

 – 
nR
P

 dP              (closed, PV work, ideal gas)   13.2.14° 
 

Once again, this last equation holds for irreversible and reversible processes, since entropy is a 
state function. All we need to specify is the initial and final states for the system. Integrating Eq. 
13.2.14° gives the analogous expression to Eq. 13.2.9°: 
 

 ∆S = Cp ln 
T2

T1
 – nR ln 

P2

P1
           (cst. Cp, closed, PV work, ideal gas)   13.2.15° 

 

Either Eq. 13.2.10° or 13.2.15° may be used for any closed process for an ideal gas, with PV-
work only. 
 
 
             

Example 13.2.1: 
Calculate the change in entropy for one mole of a monatomic ideal gas for a process that doubles 
(a) the temperature at constant V, (b) the volume at constant T, (c) the temperature at constant P, 
and (d) the pressure at constant T. 
 
 
Answer:  For one mole ideal monatomic gas: 

 Cv = 
3
2 nR = 12.5 J K-1, and Cp = Cv + nR = 20.8 J K-1. 

Using Eq. 13.2.10°: 
 (a) double T at cst.V,   ∆S = (12.5 J K-1) ln 2 = 8.6 J K-1 
 (b) double V at cst. T ,   ∆S = (8.314 J K-1) ln 2 = 5.8 J K-1 
 

Using Eq. 13.2.15°: 
 (c) double T at cst. P ,   ∆S = (20.8 J K-1) ln 2 = 14.4 J K-1 
 (d) double P at cst. T ,   ∆S = –(8.314 J K-1) ln 2 = –5.8 J K-1 
 

Notice that entropy changes are typically in the J K-1 range, while internal energies and 
enthalpies are often in the kJ range. Therefore, we almost always report entropies in J K-1 and 
internal energy and enthalpies in kJ. Notice also that doubling the temperature or doubling the 
volume has about the same effect on the entropy. Doubling the pressure has a negative change in 
entropy because the system volume correspondingly decreases by a factor of two. 
             

 
 
Temperature as an Integrating Factor:  We are now in a position to learn more about the 
definition of entropy by using an ideal gas as a model. Let’s revisit the isothermal expansion of 
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an ideal gas problem from Section 9.4, Figure 9.3.1. We showed that enthalpy was a state 
function for the two paths specified. Path 1 is a single step isothermal reversible process. Path 2 
is a two-step process, the first step at constant P and the second step at constant V. Figure 9.3.1 is 
repeated below as Figure 13.2.2. Assume that both steps for path 2 are done reversibly. 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.2.2: An isothermal process from V1, P1 to V2, P2 can be done by two different 
paths. Path 1 is an isothermal reversible process, and Path 2 is a constant pressure step 
followed by a constant volume step. 

 
 
While ∆U and ∆H are state functions, the heat transferred is path dependent. To show the path 
dependence, consider path 1. The heat transfer for this isothermal reversible path is given by Eq. 
13.2.1°, qrev = nRT ln(V2/V1). For path 2, assume the intermediate state is at temperature Ti. The 
heat transfer for step 1 is then given by Eq. 13.2.6° at constant pressure P1: 
 

 đqrev,1 = CvdT + P1 dV      (cst. P, reversible, closed, ideal gas)        13.2.16° 
 

and integrating from the initial temperature T to the intermediate temperature Ti assuming a 
constant heat capacity: 
 

 qrev,1 = Cv (Ti – T) + P1 (V2 – V1)   (cst. P &  Cv, reversible, closed, ideal gas)  13.2.17° 
 

The second step is at constant volume, so Eq. 13.2.6° reduces to: 
 

 đqrev,2 = Cv dT    (cst. V, reversible, closed, ideal gas)          13.2.18° 
 

and integrating from the intermediate temperature back to the initial temperature gives: 
 

 qrev,2 =  Cv (T – Ti)    (cst. V &  Cv, reversible, ideal gas)   13.2.19° 
 

The total heat transferred for path 2 is the sum for the two steps from Eqs. 13.2.17° and 19°: 
 

 qrev = Cv (Ti – T) + P1∆V + Cv (T – Ti)       (cst. Cv, reversible, ideal gas)    13.2.20° 
 

The temperature dependent terms cancel giving: 
 

 qrev = P1∆V       (ideal gas)          13.2.21° 
 

Comparing Eq. 13.2.1° for the isothermal process to Eq. 13.2.21° shows the heat transferred is 
different for the two paths, even though both paths are reversible. As we have mentioned many 
times, ∆U and ∆H are independent of the path, while heat and work transfer are path dependent. 

P 

V 

V1, P1 

V2,P2 

V2, P1, Ti 

Path 1 

Path 2 

i 
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   Now consider the entropy change for the two paths. If entropy is a state function, ∆S should be 
the same for both paths, even though the heat transfers differ. For isothermal reversible path 1 
the entropy change, using Eq. 13.2.4°, is ∆S = nR ln (V2/V1). For path 2, we need to calculate the 
entropy change for each step and then add. For the first step from Eq. 13.2.10°: 
 

 ∆S1 = Cv ln 
Ti

T  + nR ln 
V2

V1
        (cst. P & Cv, closed, ideal gas)    13.2.22° 

 

For the second step at constant volume, applying Eq. 13.2.10° from Ti to back to the original 
temperature T, gives: 
 

 ∆S2 = Cv ln 
T
Ti

        (cst. V & Cv, reversible, closed) 13.2.23 
 

The total change in entropy for path 2 is the sum of the last two equations: 
 

 ∆S = ∆S1+∆S2 = Cv ln 
Ti

T + nR ln 
V2

V1
 + Cv ln 

T
Ti

 (cst. Cv, closed, ideal gas)    13.2.24° 
 

The temperature dependent terms cancel to give: 
 

 ∆S = nR ln 
V2

V1
       (closed, ideal gas)    13.2.25° 

 

This equation is the same result as for isothermal path 1, showing that entropy is independent of 
the path. The trick lies in the division of đqrev by T in Eq. 13.2.3 and 13.2.7°. The temperature is 
called an integrating factor. Even though đqrev is a path function, đqrev/T is a state function, 
independent of the path. The definition of dS = đqrev/T is then seen to be necessary to make the 
entropy a state function. The advantage, of course, is that we no longer need to know the details 
of the actual path of a process. The equations that we derive hold for irreversible as well as 
reversible paths, even though we need a reversible path to actually evaluate the entropy change. 
   The original definition of entropy by Rudolf Clausius was based on a careful analysis of the 
Carnot cycle (see Chapter 11) with the additional realization that 1/T served as an integrating 
factor for heat transfer.6,7 The role of 1/T as an integrating factor played a critical role in the 
foundations of thermodynamics. 
 

General System at Constant Volume or Pressure:  What about changes in entropy for real gases, 
liquids, and solids? For a constant volume process for any system, not just ideal gases, dU = 
CvdT and Eq. 13.2.5 becomes: 
 

 đqrev = CvdT       (cst. V, closed) 13.2.26 
 

The entropy change is then: 
 

 dS = 
đqrev

T  = 
Cv

T  dT       (cst. V, closed) 13.2.27 
 

For a change in temperature from T1 to T2: 
 

 ∆S = 
⌡

⌠

T1

T2

 
Cv

T  dT      (cst. V, closed) 13.2.28 

 

Assuming that the heat capacity is constant over the temperature range gives: 
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 ∆S = Cv ln 
T2

T1
         (cst. V & Cv, closed) 13.2.29 

 

which is the same as we derived for an ideal gas at constant volume, as expected. For a constant 
pressure process for any system, dH = CpdT and Eq. 13.2.12 reduces to: 
 

 đqrev = Cp dT       (cst. P, closed)  13.2.30 
 

The entropy change is then: 
 

 dS = 
đqrev

T  = 
Cp

T  dT       (cst. P, closed)  13.2.31 
 

Integrating at constant pressure gives: 
 

 ∆S = 
⌡

⌠Cp

T  dT       (cst. P, closed)  13.2.32 
 

This integral is very important for determining the absolute entropies for substances, and is often 
evaluated numerically using experimental heat capacities as a function of temperature. We will 
return to this equation when we discuss the Third Law of thermodynamics. However, integrating 
assuming a constant heat capacity: 
 

 ∆S = Cp ln 
T2

T1
      (cst. P & Cp, closed)  13.2.33 

 

which is the same as we derived for an ideal gas for a constant pressure process. 
 
 
              

Example 13.2.2 
Heat capacities have strong temperature dependence for large changes in temperature. Evaluate 
the change in entropy for a change in temperature from T1 to T2 at constant pressure for a 
substance that has a heat capacity given by Cp = a + bT + cT2. 
 
 

Answer:  From Eq. 13.2.33, substituting the heat capacity expression: 
 

 ∆S = 
⌡

⌠

T1

T2

Cp 
dT
T   =  

⌡

⌠

T1

T2

(a + bT + cT2) 
dT
T   =  

⌡

⌠

T1

T2







a

T + b + cT  dT 

 

The power series coefficients are rigorously temperature independent and so factor out in front of 
the integrals. Integrating term-by-term: 
 

 ∆S = a [ ln T|T2

T1
  +  b [ T|T2

T1
  +  

c
2 [ T2|T2

T1
 

 ∆S =  a ln 
T2

T1
  + b (T2 – T1) + 

c
2 (T2

2 – T1
2)   (cst. P, closed)  13.2.34 

 

Notice that the leading term is the same as we obtained for the case of a constant heat capacity 
(In other words, if b = c = 0, a = Cp). The remaining two terms can be thought of as “correction 
terms” for the temperature dependence of the heat capacity. 
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13.3 Entropy Changes for Phase Transitions 
 

At the Equilibrium Phase Transition Temperature:   A phase transition at the equilibrium phase 
transition temperature is a reversible process. For examples, melting ice at the normal melting 
point and boiling water at the normal boiling point are reversible at 1 atm. Phase transitions are 
also isothermal processes, as long as the two phases are in contact. To show the reversibility, 
consider the solid to liquid phase transition: 
 

 H2O (s) →← H2O (l)     (reversible at 273.15 K) 13.3.1 
 

At 273.15 K if a small amount of heat is added to the system, some of the ice melts. If the same 
small amount of heat is then transferred back out of the system, some ice freezes and the system 
returns to it original state. Another way to see the reversibility is to note that at 273.15 K and 1 
atm the ice and liquid water are in equilibrium. Specifically, if ice and water are held in a well-
insulated container, the net amounts of ice and water stay constant, since the system is at 
equilibrium. We are usually interested in phase transitions at constant pressure. The 
corresponding heat transfer is the enthalpy change for the process, ∆trH, at the equilibrium phase 
transition temperature. Then using the definition of entropy from Eq. 13.2.3 for these isothermal 
reversible processes gives the entropy change for the phase transition, ∆trS, as: 
 

 ∆trS = 
∆trH
Ttr

    (reversible phase transition at cst. Ttr & P) 13.3.2 
 

where Ttr is the equilibrium phase transition temperature at the constant pressure of interest. Eq. 
13.3.2 holds for melting, vaporization, and sublimation (any first-order phase transition). For 
melting transitions, the terms melting and fusion are synonymous: ∆fusS = ∆fusH/Tmelt = ∆meltS = 
∆meltH/Tmelt. For vaporization: ∆vapS = ∆vapH/Tb.  
 
 
              

Example 13.3.1 
Calculate the change in entropy for the solid to liquid phase transition for water. The enthalpy of 
fusion is 6.00 kJ mol-1 at 273.15 K. 
 
 
Answer:  Using Eq. 13.3.2 at the normal phase transition temperature: 
 

 ∆fusS = 
∆fusH
Tmelt

 = 
6.00x103J mol-1

273.15 K  = 22.0 J K-1 mol-1 
 

Entropies are almost always given in J K-1 units rather than kJ K-1. 
              

 
 
Table 13.3.1 gives some typical results for the entropy of fusion and vaporization. The entropy 
changes are all positive since the transitions are all endothermic, which agrees with the notion 
that entropy changes measure the extent of energy dispersal. Liquids are less localized than 
solids and gases are less localized than liquids. Notice that the entropy of fusion increases with 
molecular size. This increase is caused by increased intermolecular forces. For example, Van der 
Waals forces scale with the volume of the molecule. Notice also that the entropy of fusion for 
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each substance is smaller than the entropy of vaporization. This observation leads to the 
conclusion that the structure of a liquid is closer to a solid than it is to a gas. Liquids are very 
“solid-like” with extensive short-range order. 
   Notice, however, that the entropy of fusion for water is larger than that for O2, even though O2 
has a larger molar mass. Why is the entropy of fusion for water greater than O2? The large value 
of the entropy of vaporization of water is more striking. To further explore the unique behavior 
of water, Table 13.3.2 lists the entropy of vaporization for molecules with a large range of sizes. 
 
 

Table 13.3.1: Entropy of Fusion versus Entropy of Vaporization8 
 ∆fS (J K-1 mol-1) ∆vapS (J K-1 mol-1) 
He 6.0 19.9 
O2 8.17 75.63 
H2O 22.0 108.95 
C6H6 38.0 87.19 

 
 

Table 13.3.2: Entropy of Vaporization versus Size8 
 ∆vapS (J mol-1K-1) M (g mol-1) 
H2S 87.9 33.08 
Benzene C6H6 87.19 78.08 
Cyclohexane 85.1 84.16 
Toluene C7H9 87.30 92.14 
CCl4 85.8 153.82 
   

HF 66.94 20.0 
HCl 78.32 36.5 
HBr 84.64 80.9 
HI 87.19 127.9 
   

NH3 97.40 17.00 
H2O 108.95 18.02 
PH3 78.20 32.0 
H2S 87.9 33.08 

 
 

The first group of molecules shows that the entropy of vaporization is remarkably constant for a 
wide range of liquids, with an average value near 87.3 J K-1 mol-1 (10.5 R). This generalization is 
called Trouton’s Rule. The next group of hydrogen halides shows that very small molecules like 
HF and also O2 (Table 13.3.1) and can be exceptions to Trouton’s Rule, giving small entropies of 
vaporization. The next group of second and third period binary hydrides shows that water and to 
a lesser extent ammonia are also exceptions, with unusually large entropies of vaporization, 
especially in respect to their small size. The large value for water was historically the first solid 
evidence for the unusual hydrogen bonding ability of water. Liquids with strong intermolecular 
hydrogen bonding are called associated liquids. Trouton’s Rule holds for non-associated liquids. 
 

Irreversible Phase Transitions:  At 1 atm, above the normal melting point, ice spontaneously 
melts. Below the normal melting point, liquid water spontaneously freezes. Eq. 13.3.2 only holds 
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if the phase transition is reversible. How do we calculate the change in entropy for an irreversible 
phase transition? Entropy is a state function, so entropy changes are independent of the path. We 
construct a thermodynamic cycle that has the same effect as the irreversible process, but by a 
series of reversible processes. Consider the irreversible freezing of ice at -5°C. Let the normal 
melting point be T1, where Eq. 13.2.3 holds for the change in entropy. Let T2 be the temperature 
of the irreversible process. 
 

       ∆trST1 = 
∆trH
T1

 

 T1 = 0°C  H2O (s) →
←  H2O (l) 

 

 
   ∆S =

⌡⌠T2

T1 Cp
solid

/T dT   ∆S =
⌡⌠T1

T2 Cp
liq

/T dT 

 

      ∆trST2 

 T2 = -5°C  H2O (s)     →  H2O (l)    13.3.3 
 
 
We first start with solid ice at -5°C, T2, and heat it up to the normal melting point, T1. We then 
allow the ice to melt reversibly at T1 and then cool the liquid water back down to T2. The initial 
and final points are the same, so the entropy change for the three step process is equivalent to the 
irreversible process at T2: 
 

 ∆trST2 = 
⌡

⌠

T2

T1

 
Cp

solid

T  dT + ∆trST1 + 
⌡

⌠

T1

T2

 
Cp

liq

T  dT      13.3.4 

 

Assuming constant heat capacities for this narrow temperature range: 
 

 ∆trST2 = Cp
solid ln 

T1

T2
  + ∆trST1 + Cp

liq ln 
T2

T1
        (cst P & Cp’s ) 13.3.5 

 

Combining the two log terms using  ln(T1/T2) = –ln(T2/T1): 
 

 ∆trST2 = ∆trST1 + (Cp
liq – Cp

solid) ln 
T2

T1
         (cst P & Cp’s ) 13.3.6 

 

Defining the difference in heat capacities as (Cp
liq – Cp

solid) ≡ ∆trCp gives the final result: 
 

 ∆trST2 = ∆trST1 + ∆trCp ln 
T2

T1
          (cst P & Cp’s ) 13.3.7 

 

Notice if we think of the phase transition as a chemical reaction, then ∆trCp corresponds to the 
heat capacities of the products minus the reactants, as is the normal custom for expressing 
thermodynamic changes for chemical reactions. There is no difference at this fundamental level 
between phase transitions and chemical reactions; Eqs. 13.3.4-13.3.7 apply to all chemical 
reactions and phase transitions (first-order). 
   We commented in Chapter 8 that it is easy and automatic to convert a thermodynamic formula 
for a simple system to a chemical reaction by inserting the ∆r for every extensive term, which is 
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general pattern ℘℘℘℘8. Starting with Eq. 13.2.33, ∆S = (S2 – S1) = Cp ln(T2/T1) or equivalently 
S2 = S1 + Cp ln(T2/T1), inserting the ∆r for every term gives Eq. 13.3.7. 
 
13.4 Absolute Entropies and the Third Law of Thermodynamics 
 

The entropy of a substance is a variable like P, V, and T. As long as we have a suitable reference 
point, as we do for absolute temperature at 0 K = -273.15°C, we can calculate the absolute 
entropy of a substance at any temperature. In other words, we are not restricted to calculating 
only changes in S as we are for the thermodynamic potentials, ∆U and ∆H. The reference point 
for the entropy is established by the Third Law of thermodynamics: 
 

 The absolute entropy of a pure, perfect crystalline substance is zero at absolute zero. 
 

This assignment is reasonable, since at absolute zero there is no quenchable energy so there is no 
energy to disperse. No quenchable energy means that all molecules are in their lowest energy 
states. The Third Law is like all laws; it is a summary of our communal experience. As such it 
cannot be proven. We can however, use the concept repeatedly in a variety of circumstances to 
verify that the law agrees with our experience. After decades of agreement, we accept the law as 
a statement of the underlying form of nature. 
   Once we set So ≡ 0 at 0 K we can calculate the entropy of a substance at any temperature. We 
use Eq. 13.2.32 for each phase and take into account any phase transitions using Eq. 13.3.2. For 
example, for a substance that is a gas at the temperature of interest, T: 
 

 ST  = So + 
⌡

⌠

0

TmeltCp
solid

T  dT + 
∆fusH
Tmelt

 + 
⌡

⌠

Tmelt

Tb Cp
liq

T  dT + 
∆vapH

Tb
 + 
⌡

⌠

Tb

T Cp
gas

T  dT  13.4.1 

 

where Tmelt is the equilibrium melting point of the substance, Tb is the equilibrium boiling point 
of the substance at the pressure of interest, and So ≡ 0. Since the temperature ranges for the 
integrals are so large, the heat capacities are strong functions of temperature and the integrals 
must be evaluated numerically. A plot of Cp/T versus T is constructed for the determination of 
the integrals. A plot of the heat capacity data for benzene is given in Figure 13.4.1a and for Cp/T 
in Figure 13.4.1b. The value of each integral is the area under the curve for each phase. 
Alternatively, the heat capacity data can be fit to power series expansions and the resulting 
expressions integrated analytically (see the homework problems). Entropies calculated from Eq. 
13.4.1 with So = 0 are often called Third Law entropies or absolute entropies. There are extensive 
tabulations of absolute entropies in many reference sources and in the Appendix Data Section.7 

   Many substances have solid-state phase transitions, so the solid-phase portion of the integration 
in Eq. 13.4.1 is split above and below the phase transition temperature. The entropy change for 
the phase transition is also added in: 
 

 
⌡

⌠

0

Tmelt

 
Cp

solid

T  dT    is replaced by     
⌡

⌠

0

Tc

 
Cp

xtal 1

T  dT + 
∆trH
Tc

 + 
⌡

⌠

Tc

Tmelt

 
Cp

xtal 2

T  dT  13.4.2 

 

where Tc is the solid phase transition temperature and Cp
xtal 1 and Cp

xtal 2 are the heat capacities 
for the difference crystalline forms below and above the phase transition, respectively. Solid-
state phase transitions often result from a change in crystal structure or a sudden change in the 
motions of the molecules. 
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 (a)         (b) 
 

Figure 13.4.1:  (a) Cp for benzene as a function of temperature. (b) The entropy change of 
each phase is the area under the plot of Cp/T versus T. The change in entropy for any phase 
transitions must also be added in. 

 
 

Debye Extrapolation:  One experimental difficulty with the calculation of the solid-phase heat 
capacity integral is that the lowest experimental temperature for many substances is near liquid 
helium temperature. Because the integrand is Cp divided by T, the low temperature region is 
important. The lowest experimental temperature for benzene is 3.79 K with Cp,lowest = 
0.051463 J K-1 mol-1. Considering the lattice vibration normal modes of solids, Peter Debye 
suggested the low temperature heat capacity of solids should be in the form: 
 

 Cp = AT3          13.4.3 
 

The value of A is calculated from the lowest available temperature; solving for A: 
 

 A = 
Cp,lowest

T3
lowest

 = 
0.051463 J K-1 mol-1

(3.79 K)3  = 9.4532x10-4 J K-4 mol-1        (cst. P) 13.4.4 

 

The integral up to this temperature is then: 
 

 
⌡

⌠

0

Tlowest

 
Cp

solid

T  dT = 
⌡

⌠

0

TlowestA T3

T  dT = 
A
3 [ T3|Tlowest

0 K  = 
A
3 T3

lowest = 
Cp,lowest

3         (cst. P) 13.4.5 

 

For benzene this integral is AT3
lowest/3 = Cp,lowest/3 = 0.01715 J K-1 mol-1. 

 

Absolute Entropies:  A list of typical absolute entropies is given in Table 13.4.1. What 
generalizations about the entropies of compounds can we extract from this data? The series 
methane-acetylene-ethylene-ethane-propane shows that entropies tend to increase with the 
number of atoms. The results of an approximate normal mode analysis are shown for comparison 
in Table 13.4.2 to see the relative contributions of translation, rotation, and vibrations to the 
overall entropy. The change from acetylene to ethylene is primarily due to the fact that acetylene 
is a linear molecule and ethylene is not. Therefore, ethylene has one more rotational degree of 
freedom. The increase from ethylene to ethane is in large part caused by the increase in the 
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number of low frequency vibrational normal modes. Ethane has an unhindered torsion, giving 
ethane the highest absolute entropy of the C2 hydrocarbons. Propane has two low frequency 
torsional modes and a low frequency bending mode. The smaller value of the absolute entropy of 
cyclopropane compared to propane again shows the influence of low frequency vibrations. 
Cyclopropane has no freely-rotating C–C bonds. Propane has higher entropy than benzene again 
primarily because propane has low frequency torsional vibrations. The benzene examples for 
different phases remind us that gases have higher entropies than liquids, and liquids have higher 
entropies than solids, which is in large part caused by the ∆trS for the corresponding phase 
change. Example 10.3.1 applies these factors to the important problem of protein folding. 
 
 

Table 13.4.1: Absolute Entropies for Some Organic Compounds at 298.15 K.(DS) 

 

Formula Name S°m,298 (J K-l mol-1) 
CH4 (g) methane 186.16 
C2H2 (g) acetylene 200.94 
C2H4 (g) ethylene 219.56 
C2H6 (g) ethane 229.49 
C3H6 (g) cyclopropane 237.4 
C3H8 (g) propane 270.3 
C6H6 (g) benzene (g) 269.2 
C6H6 (1) benzene (l) 173.3 

 
Table 13.4.2: Contributions to the Entropy for Some Organic Compounds at 298.2 K. 
Normal mode vibrations less than 500 cm-1 are listed. Torsions are listed in italics and 
bending vibrations are listed in normal font. 

 

Name Entropy Contributions  (J K-l mol-1)* Normal modes 

 translation rotation vibration total ν~ < 500 cm-1 
methane 143.3 42.8 0.4 186.6  
acetylene 149.4 45.4 2.7 197.5  
ethylene 150.3 66.4 2.4 219.1  
ethane 151.2 68.1 10.9 230.3 204 
cyclopropane 155.4 75.8 4.8 236.0  
propane 156.0 89.0 32.8 277.7 79, 190, 414 
benzene (g) 163.1 86.7 19.1 268.9 371, 371 

* Approximations at the semi empirical AM1 level. 
 
 

Does the Third Law Really Work?  The Third Law assigns the absolute entropy at 0 K of any 
pure perfect crystalline substance a value of zero, no matter how simple or complex. The 
absolute entropy of perfect crystalline helium and perfect crystalline DNA are both zero. Do 
these assignments agree with the available experimental data? There have been many tests of the 
Third Law. We will discuss just one, the solid-state phase transition of rhombic elemental sulfur 
to monoclinic sulfur. At the equilibrium phase transition temperature, 368.5 K, at 1 bar pressure: 
 

 S8 (rhombic)  →  S8 (monoclinic)  ∆trH° = 401.7 J mol-1     (at 368.5 K) 13.4.6 
 

The entropy change for the phase transition of rhombic to monoclinic sulfur at 368.5 K is: 



  501 

 

 ∆trS° = ∆trH°/Ttr  = 1.09 ±0.01 J K-1 mol-1      (reversible at 368.5 K) 13.4.7 
 

If the Third Law is correct, the absolute entropy of rhombic and monoclinic sulfur should both 
be zero at absolute zero, even though the entropies differ at higher temperatures. Therefore, the 
entropy for the phase transition should be zero at 0 K. Eq. 13.3.4 shows the relationship between 
the entropy change for a phase transition at two different temperatures. Setting T2 at 0 K and T1 
= 368.5 K, we can calculate the entropy change at absolute zero using Eq. 13.3.4. Eq. 13.3.4 
applied to this solid-state phase transition gives: 
 

∆trS0 K = 
⌡

⌠

0 K

368.5 K

Cp
rhomb 

dT
T  + ∆trS368.5 K + 

⌡

⌠

368.5 K

0 K

Cp
mono 

dT
T      13.4.8 

 

Integrating the experimental heat capacity data gives:9,10 

 

 
⌡

⌠

0 K

368.5 K

Cp
rhomb 

dT
T  = 36.86 ± 0.2 J K-1 mol-1      13.4.9 

 

and  
⌡

⌠

368.5 K

0 K

Cp
mono 

dT
T  = -37.82 ± 0.4 J K-1 mol-1      13.4.10 

 

Substitution of Eqs. 13.4.7, 13.4.9, and 13.4.10 into Eq. 13.4.8 gives: 
 

 ∆trS0 K = 36.86 + 1.09 –37.82 J K-1 mol-1  =  0.15 ± 0.65 J K-1 mol-1   13.4.11 
 

This result is zero to within experimental uncertainty. The absolute entropies of both rhombic 
and monoclinic sulfur are zero at 0 K. All known experimental tests, based on phase transitions 
and chemical reactions, have shown the same result for pure, perfect crystalline substances. 
 

Residual Entropies:  Not all substances produce perfect crystalline phases at absolute zero. This 
randomness results from rapid cooling that locks the substance into a metastable state. At very 
cold temperatures the reorganization kinetics are very slow. This locked-in randomness results in 
a residual entropy at 0 K. Two examples of systems showing residual entropies are CO and 
N2O. Both are linear molecules with small dipole moments that show only weak tendencies for 
orientational alignment in the solid, Figure 13.4.2. 
 
 

 C≡O C≡O C≡O C≡O    C≡O O≡C C≡O O≡C C≡O 
 C≡O C≡O C≡O C≡O    C≡O C≡O O≡C O≡C C≡O 
 C≡O C≡O C≡O C≡O    O≡C C≡O O≡C C≡O O≡C 
 

  perfect crystal      orientational randomness 
 

Figure 13.4.2: The residual entropy for CO is the result of orientational randomness. 
 
 

We showed in Chapter 12 that the residual entropy in such cases can be approximated by: 
 

 So = R ln w          13.4.12 
 

where w is the number of energetically equivalent ways that the molecules can be arranged in the 
solid lattice. For C≡O and N=N=O, w = 2, and the residual entropy is approximately So = (8.314 
J mol-1 K-1) ln 2 = 5.76 J K-1 mol-1. The experimental residual entropy for CO is 4.7 J K-1 mol-1. 
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13.5 Entropy Changes for the Surroundings 
 

Chemical processes don’t usually take place in isolation. Chemical processes usually exchange 
energy with their surroundings. When a system exchanges energy with its surroundings, the 
entropy of the system changes and the entropy of the surroundings also change, Figure 13.5.1.  
 
 
 
 
 
 
 
 
 
 

 (a) Constant T and V   (b) Constant T and P 
 

Figure 13.5.1: The system and surroundings taken together are specified as an isolated 
composite. 

 
 

The Second Law only applies to isolated systems. However, we can take the system and 
surroundings together as a composite. If the composite is isolated, the Second Law holds. 
   The entropy change of the surroundings is easy to calculate. The surroundings are assumed to 
be large in extent so that the surroundings act as a constant temperature reservoir, at temperature 
Tsurr. All transfers of energy to the surroundings are reversible. This reversibility results because 
the temperature of the surroundings is unchanged and all transfers of energy are essentially 
infinitesimal from the perspective of the surroundings. Therefore all transfers of energy leave the 
surroundings in an equilibrium state. As a consequence, đqsurr = đqrev,surr. The reversibility of the 
thermal transfer for the surroundings is true for any process in the system, reversible or 
irreversible. If we assume that the composite of the system and surroundings is isolated, 
đq = –đqsurr, where đq is the thermal energy transfer of the system. We follow the convention 
that all changes for the system are listed without subscript, but changes for the surroundings are 
always given with the “surr” subscript. The entropy change for the surroundings is then given as: 
 

 dSsurr = 
đqsurr

Tsurr
  = 

– đq
  Tsurr

         13.5.1 
 

For an isothermal process, if the system is held in contact with the surroundings and the 
surroundings act as a constant temperature reservoir, the temperature of the system is equal to the 
temperature of the surroundings, T = Tsurr. Then, the entropy change for the surroundings is: 
 

 dSsurr = 
đqsurr

Tsurr
 = 

– đq
  T         (isothermal) 13.5.2 

 

If the process for the system occurs at constant volume, then the heat transfer at constant volume 
is the internal energy change, đqv = dU and then: 
 

 dSsurr = 
đqsurr

Tsurr
 = 

– dU
  T         (cst. T&V) 13.5.3 

surroundings 

Tsurr, Psurr 

 

surroundings 

   Tsurr 

system 
  T, V system 

  T, P đq = -đqsurr 
đq = –đqsurr 
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If the process for the system occurs at constant pressure, then the heat transfer at constant 
pressure is the enthalpy change, đqp = dH and then: 
 

 dSsurr = 
đqsurr

Tsurr
 = 

– dH
  T         (cst. T&P) 13.5.4 

 

The total entropy change for a process must include the system and the surroundings: 
 

 dStot = dS + dSsurr         13.5.5 
 

In many respects, the entropy change for the surroundings is just as important as the entropy 
change for the system. If the system and surroundings encompass the whole of the universe, then 
dStot = dSuniv. We often use Stot and Suniv interchangeably. However, Eq. 13.5.5 holds as well if a 
composite of the system and surroundings is a small part of the universe and is isolated. The 
interrelationship of the system and its surroundings is particularly important for chemical 
reactions. 
 
13.6 Entropy Changes for Chemical Reactions 
 

Once the absolute entropy for a substance is known, it is quite straightforward to calculate 
entropy changes for chemical reactions; see general pattern ℘℘℘℘8. As usual 
∆rS = [Σproducts] – [Σreactants] and in terms of the stoichiometric coefficients: 
 

 ∆rS  = ∑ νi Si        (cst. T&P) 13.6.1 
 

where Si is the molar absolute entropy for each reactant and product. Extensive tabulations of 
absolute entropies are available in standard reference sources,7 your General Chemistry text, and 
in the data section at the back of this text. 
   The temperature dependence of the entropy change for chemical reactions is given by Eq. 
13.3.4 and 13.3.7 with the change in the heat capacity for the reaction given by: 
 

 ∆rCp = ∑ νi Cpi       (cst. T&P) 13.6.2 
 

where Cpi is the molar heat capacity for each reactant and product. 
 
 
              

Example 13.6.1: 
Hydrogen is a clean burning fuel that decreases the local pollution of hydrogen-powered 
automobiles. However, hydrogen is a secondary fuel; it must be produced using other energy 
sources. The reaction for the production of hydrogen using water as a cheap starting material is: 
 H2O (l) → H2 (g) + ½ O2 (g) 
Calculate the entropy change for the system, surroundings, and the total for the production of one 
mole of H2 (g) under standard conditions and 298.15 K. 
 
 
Answer:  Using the data section, the standard entropies are given as: 
  H2O (l)   →  H2 (g)      +  ½ O2 (g) 
    S°i ,298 69.92   130.574 205.029 J K-1 mol-1 
 

 ∆rS = [Σproducts] – [Σreactants] 
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 ∆rS = [1 (130.574 J K-1 mol-1) + ½ (205.029 J K-1 mol-1)] – [1 (69.92 J K-1 mol-1)] 
       = 163.168 J K-1 mol-1 

 

The entropy change for the formation of one mole of H2 is quite favorable. As is often the case, 
the reaction entropy is dominated by the change in number of moles of gases. Notice that the 
reaction is the reverse of the standard formation reaction for water, ∆rH° = –∆fH°(H2O) = 
285.830 kJ mol-1. The enthalpy change for the production of H2 is quite endothermic. At constant 
pressure and temperature the entropy change for the surroundings is: 
 

 ∆Ssurr = 
–∆rH
Tsurr

 = 
-285.830 kJ mol-1 (1000 J/1 kJ)

298.15 K  = -958.679 J K-1 mol-1 
 

which is unfavorable from the perspective of the surroundings. The total change in entropy is: 
 

 ∆Stot = ∆S + ∆Ssurr = 163.168 J K-1 + (-958.679 J K-1) = -795.511 J K-1 mol-1 
 

We can treat the combined system and surroundings as isolated. The Second Law holds and the 
production of H2 is not spontaneous. Of course the reverse of the reaction, the combustion of H2 
is quite spontaneous, which is why H2 is such a good fuel. The primary fuel for the space shuttle 
was liquid H2. 
              

 
 

13.7 Entropy Changes for the System and Surroundings and the Total Entropy Change 
 

The previous example illustrates why it is important to keep track of the entropy change for the 
system and the surroundings. The last example was for a chemical reaction. How do the entropy 
changes for the system and surroundings interact to determine the overall total entropy change 
for the other types of processes that we discussed in this chapter? We specify the composite of 
the system and the surroundings as isolated, which places important restrictions on the entropy 
changes based on the Clausius inequality, Eq. 13.1.11. Specifically, Eq. 13.5.5 applies to the 
composite and dStot = dS + dSsurr ≥ 0. In outline: 
 

•  For any reversible processes, q = qrev, and from the Clausius inequality, ∆Stot = 0, giving: 
 

 ∆Ssurr = –∆S       (reversible, isolated) 13.7.1 
 

For reversible processes the entropy changes for the system and surroundings cancel. 
•  For any spontaneous process, ∆Stot = ∆S + ∆Ssurr > 0. 
•  For ideal gases, Eqs. 13.1.6, 13.2.10°, and 13.2.15° hold for any process, reversible or 
irreversible, since entropy is a state function. 
•  For any adiabatic process, reversible or irreversible, q = 0, giving ∆Ssurr = 0. 
•  For adiabatic reversible processes, qrev = 0, giving ∆S = 0 and ∆Ssurr = 0. 

 
 
              

Example 13.7.1: Isothermal Reversible Expansion for an Ideal Gas 
The volume of one mole of an ideal gas changes from 1.00 L to 2.00 L in an isothermal 
reversible expansion. Calculate the change in entropy of the system, the surroundings, and the 
total entropy change. 
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Answer:  For an isothermal expansion of an ideal gas T = Tsurr and also Eq. 13.2.4° gives: 
 ∆S = nR ln(V2/V1) = 1 mol (8.314 J K-1 mol-1) ln 2 = 5.76 J K-1 
 ∆Ssurr = –∆S = -5.76 J K-1 

 ∆Stot = ∆S + ∆Ssurr = 0 
 

Note also that ∆U = ∆H = 0 for this example. 
 
              

Example 13.7.2: Isothermal Irreversible Expansion of an Ideal Gas 
The volume of one mole of an ideal gas changes from 1.00 L to 2.00 L in an isothermal 
expansion against a constant external pressure of 1.00 bar. The temperature is 298.2 K. Calculate 
the change in entropy of the system, the surroundings, and the total entropy change. 
 
 

Answer:  For an isothermal expansion of an ideal gas T = Tsurr. The entropy change for the 
system is the same as a reversible expansion, Eq. 13.2.4°, since entropy is a state function: 
 

 ∆S = nR ln(V2/V1) = 1 mol (8.314 J K-1 mol-1) ln 2 = 5.76 J K-1 
 

For the surroundings we use Eq. 13.5.2: 

 ∆Ssurr = 
qsurr

Tsurr
 = 

–q
  T 

Since ∆U = 0 for an isothermal process in an ideal gas: 
 q = –w = Pext ∆V = 1.00x105 Pa (2.00 L – 1.00 L)(1 m3/1000 L) = 100. J 

 ∆Ssurr  = 
–q
  T = = 

–100. J
298.2 K = -0.335 J K-1 

 ∆Stot = ∆S + ∆Ssurr = 5.43 J K-1 
 

The expansion is spontaneous. Note also that ∆U = ∆H = 0 for this example. 
 
              

Example 13.7.3: Adiabatic Irreversible Expansion of an Ideal Gas 
The volume of one mole of an ideal gas changes from 1.00 L to 2.00 L in an adiabatic expansion 
against a constant external pressure of 1.00 bar. The initial temperature is 298.2 K. The gas is 
diatomic. Calculate the change in entropy of the system, the surroundings, and the total entropy 
change. 
 
 

Answer:  The temperature and volume change for an adiabatic expansion, so Eq. 13.2.10° must 
be used. However, the change in temperature must first be calculated from ∆U = w, Eq. 9.8.23°: 
 

 Cv (T2 – T1) = –Pext (V2 – V1)      (9.8.23°) 
 

For a diatomic gas, Cv = 5/2 nR and: 
 

   5/2 (1 mol)(8.314 J mol-1 K-1) (T2 – 298.2 K) = – 1.00x105 Pa (2.00 L – 1.00 L)(1 m3/1000 L) 
   20.785 J (T2 – 298.2 K) = -100. J 
 

Solving for T2 gives 293.4 K. The entropy change is then: 
 

 ∆S = Cv ln 
T2

T1
  + nR ln 

V2

V1
 = (1 mol)(8.314 J mol-1 K-1)[5/2  ln(293.4/298.2) + ln 2] 

       = 3.19 J K-1 



506 
 
 

The change in entropy for the system is smaller than Example 13.7.2 because the temperature 
drops. Since q = 0, then ∆Ssurr = 0 and ∆Stot = ∆S; the system must have a positive change in 
entropy to have a spontaneous process, since no contribution is available from the surroundings. 
Note that ∆U = Cv ∆T = -100 J and ∆H = Cp ∆T = -140 J for this example. 
              

 
 
Table 13.7.1 summarizes the change in entropy for the system and the surroundings for ideal gas 
expansions. Avoid the temptation to memorize these relationships. Rather, this summary is given 
to help you make sure that you understand the underlying principles. Try not to refer to this table 
when you are doing the homework problems. 
 
 

Table 13.7.1: Entropy changes of the System and Surroundings for Ideal Gas Expansions. 
 

System Diagram Surroundings 
Isothermal reversible 
    T = Tsurr 

    ∆S = nR ln 
V2

V1
 

 

 

 ∆Ssurr = − ∆S 

Isothermal irreversible 
    T = Tsurr          Pext = cst 

    ∆S = nR ln 
V2

V1
 

 
 

 q = –w 

∆Ssurr = −
Pext∆V

T  

Adiabatic reversible 

    ∆S = Cv ln 
T2

T1
 + nR ln 

V2

V1
 

          = 0 
 

 

 ∆Ssurr = 0 

Adiabatic irreversible 
    Pext = cst 

    ∆S = Cv ln 
T2

T1
 + nR ln 

V2

V1
 

    Cv (T2–T1) = – Pext(V2–V1) 
 

 ∆Ssurr = 0 

Constant P = Pext 

    ∆S = Cp ln 
T2

T1
 

    T1 ≠ Tsurr 

 

 ∆Ssurr =   
–∆H
Tsurr

 = – 
Cp∆T
Tsurr

 

 
 
 

Pext = cst 

P, T 

Tsurr = T 

đq 

P, T đq =0 

Pext = cst 

P, T 
Tsurr = T 

đq 

Pext = P 

P, T đq =0 

Pext = P 

P, T 
đq 

Pext = P 
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13.8 Summary – Looking Ahead 
 

   Entropy is a state function and therefore independent of the path of the process. Only the initial 
and final states need be specified. However, to guarantee that entropy is a state function the 
entropy is calculated using a reversible path. In addition, in the definition of entropy, the factor 
of 1/T is a necessary integrating factor to ensure that entropy is a state function. Entropy always 
increases for a spontaneous process in an isolated system. We treat the system and the 
surroundings as an isolated composite, so that we can apply the Second Law. The entropy 
change of the surroundings is just as important as the entropy change of the system; neither 
indicates spontaneity alone. The entropy change of the surroundings is easy to calculate and is 
independent of whether the process for the system is reversible or irreversible, ∆Ssurr = – q/Tsurr. 

All transfers of energy to the surroundings are reversible, because the surroundings remain at 
equilibrium. The Second Law clearly delineates the interrelationship of the system to the 
surroundings. Composite systems are discussed further in Sec. 14.3. 
   The preceding examples illustrate that there is an intimate relationship among q, w, ∆S, ∆U, 
∆H, and ∆Ssurr. However, according to the Second Law, it is only ∆Stot that determines the 
spontaneity for a process. Our next goal is to relate the internal energy, enthalpy, and entropy 
changes for chemical reactions to the spontaneity of the reaction. 
 
 
 

Chapter Summary 
 

1. Energy dispersal is a spontaneous process. 

2. Energy dispersal is measured by the entropy change: dS ≡ 
đqrev

T  

3. Entropy is an extensive state function. The entropy change for a process must be evaluated 
using a reversible process that has the same initial and final state as the real process. 

4. For a closed system with PV work the combined First and Second Laws give: 
  dU = T dS – P dV 

5. For a closed system with PV work: dS = 
1
T dU + 

P
T dV 

6. For a closed system with PV work: dS = 
đq
T  + 







P – Pext

T dV 

7. The Clausius inequality is: dS ≥ 
đq
T  > for irreversible process     = for reversible process 

8. For an isolated system: dS ≥ 0  > for irreversible process     = for reversible process 
9. Entropy always increases for a spontaneous process in an isolated system. 

10. For an isothermal reversible process in a closed system: ∆S = 
qrev

T  

11. For an isothermal expansion of an ideal gas:  ∆S = nR ln 
V2

V1
 

12. For any process in a closed system for an ideal gas and constant Cv: ∆S = Cv ln 
T2

T1
 + nR ln 

V2

V1
 

13. For any process in a closed system for an ideal gas and constant Cp: ∆S = Cp ln 
T2

T1
 – nR ln 

P2

P1
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14. Temperature is the integrating factor for reversible heat transfer. 

15. For any closed system at constant volume: ∆S = ⌡⌠T1

T2
 Cv/T dT 

16. For any closed system at constant pressure: ∆S = ⌡⌠T1

T2
 Cp/T dT 

17. For a reversible phase transition at constant Ttr and P: ∆trS = 
∆trH
Ttr

 

18. Assuming constant heat capacities, the change in entropy with temperature for phase 

transitions and chemical reactions is: ∆rST2 = ∆rST1 + ∆rCp ln 
T2

T1
 , with ∆rCp = ∑ νi Cpi . 

19. The absolute entropy of a pure, perfect crystalline substance is zero at absolute zero: So ≡ 0 
20. For a closed system at constant pressure, assuming no solid-state phase transitions:: 

  ST = So + 
⌡

⌠

0

Tmelt

 
Cp

solid

T  dT + 
∆fusH
Tmelt

 + 
⌡

⌠

Tmelt

Tb Cp
liq

T  dT + 
∆vapH

Tb
 + 
⌡

⌠

Tb

T Cp
gas

T  dT 

21. The Debye approximation for the low temperature heat capacity of a solid is Cp = A T3 . 

22. All transfers of energy to the surroundings are reversible. 

23. The entropy change for the surroundings is dSsurr = 
dqsurr

Tsurr
 = 

–đq
  Tsurr

 

24. For an isothermal constant volume process, for the system in contact with the surroundings 

acting as a constant temperature reservoir: dSsurr = 
–dU
  T  

25. For an isothermal constant pressure process, for the system in contact with the surroundings 

acting as a constant temperature reservoir: dSsurr = 
dqsurr

Tsurr
 = 

–dH
  T  

26. For a chemical reaction or phase transition at constant T and P:  ∆rS = ∑ νi Si 
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Problems: Entropy and Applications 
 

1. Eqs. 13.2.10° and 13.2.15° apply for all processes for an ideal gas. Show that the two 
expressions are equivalent. 
 

2. Eq. 13.2.10° applies for all processes for an ideal gas, assuming a constant heat capacity. 
However, for an adiabatic reversible process, ∆S = 0. Does Eq. 13.2.10° give ∆S = 0 for an 
adiabatic reversible process? 
 

3. Calculate the change in entropy for 1.00 mole of ideal gas that is expanded against a constant 
external pressure of 1.00 atm from an initial pressure of 10.0 atm to a final pressure of 1.00 atm. 
During this process the temperature also drops from 25.00 ºC to 0.00 ºC. The heat capacity is Cp 
= 7/2 nR. 
 

4. For a closed system we know that ∆U = q + w, ∆U = qrev + wmax, and that a reversible process 
does maximum work on expansion and minimum work on contraction. Use these statements to 
derive the Clausius inequality. 
 

5. In the section on “Temperature as an Integrating Factor” we derived Eq. 13.2.28° using 
Eq. 13.2.10°. Repeat the derivation of the entropy change for path 2, Eq. 13.2.28°. However, this 
time start from the heat transfers directly, Eqs. 13.2.16° and 13.2.18°, find dS1 and dS2. Then do 
the integrals. Note when path specific information is eliminated. 
 

6.  Given the total differential for the function z(x,y): 

 dz = 
y
x dx – dy 

Show that dz is not an exact differential. The integrating factor for dz is (1/x). Define a new 
differential as df = dz/x. Show that df is exact. In other words, df is a state function. 
 

7. The lowest temperature heat capacity measurement for benzene is 3.79 K,  
where Cp = 0.051463 J K-1 mol-1. The heat capacity data for crystalline and liquid benzene in 
Figure 13.4.1 can be fit to power series expansions. Because of the complex shape of the curve, 
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this fitting is best done over three temperature ranges. The breaks between the ranges are 
arbitrary and are simply chosen to get a good fit to the overall curve. There are no solid-state 
phase transitions. The enthalpy of fusion for benzene is 10.59 kJ mol-1 at the normal melting 
point of 278.6 K. Calculate the absolute entropy of benzene at 298.2 K. 
 

 Table Problem 7: Approximate Heat Capacity for Solid and Liquid Benzene 
solid Cp (J K-1 mol-1) 
3.79 – 20 K Cp = 0.10321 T + 0.02431 T2 

20 – 84 K Cp = – 16.5375 + 1.3854 T – 0.00770 T2 
84 -278.6 K Cp = 38.2869 + 0.01075 T + 1.097x10-3 T2 
liquid  
278.6 – 300 K Cp = 81.228 + 0.1794 T  

 

8.  Calculate the absolute entropy of methylammonium chloride at 298.15 K. There are three 
crystalline forms. For the low temperature β-form, the heat capacity is 0.4209 J K-1 mol-1 at 
12.04 K. The enthalpy of the equilibrium solid-state phase transition from the β to γ-form is 
1.7790 kJ mol-1 at 220.4 K. The enthalpy of the equilibrium solid-state phase transition from the 
γ to α-form is 2.8183 kJ mol-1 at 264.5 K. All values are at standard state. The integrals of Cp/T, 
in J K-1 mol-1, for the three phases are:1 
 

   
⌡

⌠

12.04 K

220.4 K

 
Cp

β

T  dT = 93.412   
⌡

⌠

220.4 K

264.5 K

 
Cp

γ

T  dT = 15.439 
⌡

⌠

264.5 K

298.15 K

 
Cp

α

T  dT = 10.690 J K-1 mol-1 

 

9. One mole of an ideal gas undergoes an isothermal reversible compression from an initial 
pressure of 1.00 bar to a final pressure of 10.00 bar. Calculate the change in entropy of the 
system, the surroundings, and the total entropy change. 
 

10. One mole of an ideal gas undergoes an isothermal expansion against a constant external 
pressure of 1.00 bar. In this process the system does 900.0 J of work from an initial volume of 
1.00 L, that is w = -900.0 J. The temperature is 298.2 K. Calculate the change in entropy of the 
system, the surroundings, and the total entropy change. 
 

11. The volume of one mole of an ideal gas changes from 1.00 L to 2.00 L in an adiabatic 
reversible expansion. The initial temperature is 298.2 K. The gas is diatomic. Calculate the 
change in entropy of the system, the surroundings, and the total entropy change. 
 

12. The pressure of one mole of an ideal gas drops from 10.0 bar to 1.00 bar in an adiabatic 
expansion against a constant external pressure of 1.00 bar. The initial temperature is 298.2 K. 
Assume the gas is diatomic. Calculate the change in entropy of the system, the surroundings, and 
the total entropy change. 
 

13. The pressure inside an inflated balloon filled with helium is 112.0 kPa. Assume the gas 
expands from the opening in the balloon in an adiabatic expansion. In other words, assume the 
gas expands quickly and we measure the final temperature of the gas before any thermal energy 
can be transferred from the surroundings. The initial temperature is 298.2 K. The atmospheric 
pressure is 101.3 kPa. Calculate the entropy change of the system and the surroundings and the 
entropy change of the universe. 
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14. One mole of an ideal gas at 298.2 K triples its volume in an isothermal irreversible expansion 
against Pext = 0. Calculate the changes in entropy of the system, the surroundings, and the total 
entropy change. 
 

15. Calculate the molar entropy change for the phase transition of water to water vapor at room 
temperature, 298.15 K, and one atmosphere pressure. The difference in heat capacity on 
vaporization is ∆trCp = -41.9 J K-1 mol-1. The standard enthalpy of vaporization of water at 
373.15 K is 40.7 kJ mol-1. 
 

16. Consider the reaction:       pyruvic acid → acetaldehyde +  CO2 (g) 
 

(which is catalyzed by the enzyme pyruvate decarboxylase.) Calculate ∆rS° for this reaction for 
the system and the surroundings at 298.2 K. The values in the table below are at 298.2 K. 

 

substance ∆fH° (kJ mol-1) S°(J K-1 mol-1) 
acetaldehyde -192.8 160.4 
CO2 -393.51 213.74 
pyruvic acid -584.5 179.5 

 

17. The chemical reaction that corresponds to the enthalpy of formation of urea, (NH2)2CO, is: 
 

 C (graph) + 2 H2 (g, 1 bar) + N2 (g, 1bar) → (NH2)2CO (s)      ∆fH° = -333.1 kJ mol-1 

 

Using the data in the appendix, calculate the reaction entropy, at standard state and at 298.15 K. 
 

18.(a).  The enzyme urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide: 
 

 (NH2)2CO (s) + H2O (l)  →  2 NH3 (g, 1 bar) + CO2 (g, 1bar) 
 

Using the data in the appendix, calculate the reaction enthalpy, at standard state and at 298.15 K. 
(b). Consider the reaction as an isothermal process in a closed system in thermal contact with the 
surroundings acting as a constant temperature reservoir. Calculate the change in entropy for the 
surroundings and the total entropy change at 298.15 K. (See Chapter 8 Problem 2b). 
 

19. The aging of marine aerosols produces NaHSO4 cloud condensation nuclei, CCN. The 
distribution of CCN determines the formation and reflectivity of clouds, which play an important 
role in determining the albedo of the atmosphere (see Chapter 8 Problem 3). (a). Using the data 
in the appendix, calculate the entropy change for the system and for the surroundings for the 
following reactions separately and in sum, under standard conditions and at 298.15 K. 
 

  H2S (g, 1bar) + 2 O2 (g, 1bar) → SO3 (g, 1bar) + H2O (g, 1bar) 

  SO3 (g, 1 bar) + H2O (l) → H2SO4 (l) 
  NaCl (s) + H2SO4 (l) → HCl (g, 1bar) + Na+ (ao) + HSO–

4 (ao) 
 

(b). Combine the three reactions to show the overall process. Use the single combined reaction to 
calculate the overall reaction enthalpy. Compare with the result in part (a). 
 

20. Use normal mode analysis to decide whether propane or 2-methylpropane has a higher 
absolute entropy. You can use any convenient normal mode analysis program based on 
molecular mechanics or molecular orbital theory. 
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21. Use normal mode analysis to decide whether cyclohexane or benzene has a higher absolute 
entropy. You can use any convenient normal mode analysis program based on molecular 
mechanics or molecular orbital theory. 
 

22. Give an example for each of the following types of processes. Choose your examples from 
ideal gas expansions or compressions or phase transitions of pure substances. Specify the 
difference in the variable, P or T, that is responsible for the spontaneous or non-spontaneous 
direction of the process: 

(a). a spontaneous adiabatic and isothermal process, 
(b). a spontaneous isothermal process with a decrease in entropy for the system, 
(c). a non-spontaneous isothermal process with an increase in entropy for the system, 
(d). a spontaneous adiabatic process that decreases the temperature of the system. 

 

23.  The Clausius inequality relates the entropy changes of the system and surroundings. 
Consider an isothermal process in a closed system in thermal contact with the surroundings 
acting as a constant temperature reservoir. Use the Clausius inequality, Eq. 13.1.9, to show that 
dS > –dSsurr for a spontaneous process. 
 

24.  Determine if the following statements are true of false. If the statement is false, describe the 
changes that are required to make the statement true, if possible. Assume that the system and 
surroundings are an isolated composite. (Hint: three of the following statements are true.) 

(a). The heat transfer for the system is equal in magnitude and opposite in sign to the heat 
transfer for the surroundings (đq = – đqsurr). 
(b). The entropy change of the system is equal in magnitude and opposite in sign to the 
entropy change of the surroundings (dS = – dSsurr). 
(c). For a spontaneous process, the magnitude of the entropy change of the system is never 
greater than the magnitude of the entropy change of the surroundings. 
(d). Heat transfer to a system at low temperature gives a larger change in the entropy of the 
system than the transfer of the same amount of heat at high temperature. 
(e). Spontaneous processes always result in dispersal of energy to the surroundings. 
(f). The entropy of every system is zero at absolute zero. 
(g). For a given heat transfer, the entropy change of the surroundings is independent of the 
details of the process for the system. 
(h). One mole of xenon gas at 1 bar and 298.2 K is mixed with another mole of xenon gas at 1 
bar and 298.2 K. The total entropy change of the combined systems is positive for the process. 

 

25. Heat capacities are often approximated by a power series: Cp = a + b T + c T–2, for a, b, and c 
constants. Find the change in enthalpy and entropy of a substance for a constant pressure process 
with a temperature change from T1 to T2. 
 

26. Calculate the residual entropy at 0 K for NO, assuming random NO and ON orientations. 
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