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Chapter 13: Entropy and Applications

Hydrogen is a clean burning fuel that decreasefotta pollution of hydrogen-powered
automobiles. However, hydrogen is a secondary fuelust be produced using other energy
sources. The reaction for the production of hydnogging water as a cheap starting material |s:
H0 (1) - Hz(9) + %2 Q (9)
Calculate the entropy change for the system, sadiogs, and the total for the production of gne
mole of H (g).

Entropy is one of the most useful conceptsweatan use to study chemical processes. In this
chapter we define the entropy change for a promedsarefully develop the relationship
between entropy and spontaneous, irreversible psese We then apply the definition of entropy
to simple processes, phase transitions, and cheraaetions. To determine the entropy change
for chemical reactions, we introduce the Third Laivthermodynamics.

13.1 Entropy and Spontaneous, Irreversible Processe

Definition of Entropy Energy in the form of heat is transferred frommoster body to a colder
body. This transfer of energy corresponds to d&gleor spreading out, of the available energy.
Energy dispersal is a spontaneous process. Thes\@ion is a summary of our experience, and
is a form of the Second Law of thermodynamics. dispersal of energy governs all
spontaneous processes including chemical reactoresgy dispersal is measured by the
entropy change for a process, dS. The definition of theopy change for an infinitesimal
process at temperature T for a closed system is:

dsEd—"}re—V (closed) 13.1.1
This equation shows that transfer of thermal en&rgysystem increases the entropy of the
system. Entropy is an extensive property. The wfientropy are J K. In older texts you may
find the entropy given in cal’k Remember that 1 cal = 4.184 J to convert fronotter units.
In addition, 1 cal K is often called 1 eu, where eu stands for “entnamiy.” To show the utility
of the concept of entropy we need to prove thabpgtalways increases for a spontaneous
process in an isolated system. We begin by takicigser look at the definition of entropy.

Entropy and Temperature Consider the definition of entropy. Why doesiperature occur in
the definition of entropy and why is the temperaturthe denominator of the expression?
Consider, first, a process at constant volume.t€hgerature is a measure of the internal energy
of the system through dU =,€T. A hotter system has higher energy. A hot sydiecomes hot
because of heat transfer to the system, so threggh3.1.1 a hot system must also have higher
entropy. So T, dU, and dS all increase togethee.t€Emperature can be taken as representative
of all three system properties. The temperaturebearonsidered as a measure of the entropy
already present in the system. Consider the foligvanalogy.

Let’'s say you have two friends, one very neat @me very messy. Being a prankster, you want
to play a trick on both friends by throwing an stthky pair of sneakers into both rooms, Figure
13.1.1. When your friends return to their rooms, tleat friend is greatly perturbed, while the
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messy friend doesn’t even know that you playedaalpon them. The neat room is characterized

by a small initial entropy and a low initial tempaire, and the messy room is characterized by a
large initial entropy and a large initial temperatuSo for the same transfer, one pair of sneakers,
the change in entropy for the neat room is biggentthe messy room. The change in entropy for
a given heat transfer is greater for cold initexhperatures:

_ddrey _ ONe pair sneaker% _dgrey _ ONe pair sneakers
AShear = Tiow Tiow dShessy= Thigh Thigh

The effect of the transfer is greater if the transékes place at low temperature.

-

(a) Low temperature: low initial entropy (b) Hitggmperature: high initial entropy

14

Figure 13.1.1: The transfer of one pair of sneak#sa neat room produces a bigger change
in entropy than the same transfer into a messy ré@mmdS = dgJ/T, the transferdqye,, is

the same for both rooms. (a) The neat room is ckeniaed by a low temperature, giving low
initial entropy. (b) The messy room is charactetibg a high temperature, giving high initial
entropy.

Analogies can be useful in understanding newc$pbut it is also important to note any short-
comings. The objects represent energy packets.aiaigy would be improved if the messy
items in the rooms were indistinguishable and &bl@ove from place-to-place.

The definition of the entropy shows that rev@lessheat transfer and entropy changes are
directly related. Thermal energy transfer is goedrby the First Law. How does entropy relate
to the First Law of thermodynamics?

Combined First and Second Laws of Thermodynanfgsntaneous and non-spontaneous
processes conserve energy. So, internal energg aarot sufficient to determine the
spontaneous direction for a process. Energy diapassmeasured by entropy changes
determines the spontaneous direction. How do ermarggervation and energy dispersal
interrelate? Consider heat transfer and PV worlafgeneral closed system. The heat transferred
is dq and the internal energy change is given by th& Eaw of thermodynamics:

dU =dq +dw =dq — R dV (closed, PV work) 13.1.2
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To evaluate the entropy, we need to specify a s#hlerprocess. For a reversible process,
substituting P = B into Eq. 13.1.2 gives:

dU =dqrey+ @Wrey = dQrey — P dV (reversible, closed, PV work) 13.1.3
From the definition of the entropy, Eq. 13.1.1 rraaging to find the reversible heat transfer:

dQrev=T dS (closed) 13.1.4
Substituting Eq. 13.1.4 into Eq. 13.1.3 we find:

du=TdS-PdV (closed, PV work) 13.1.5

This equation combines the First and Second Lawlsesimodynamics and is central to the
theory and applications of thermodynamics. Thisa¢igua is also a good source of understanding
of the meaning of temperature and entropy. Notie¢ the TdS term gives the heat transfer and
the —PdV term gives the work available from a relse process. Both terms have the units of
energy, joules. Each term is the product of amsiie variable with the change in an extensive
variable. The pressure is the force for expansiorkyand by analogy we can consider the
temperature as the force for heat transfer. To dikywyou need a pressure gradient, and to
transfer heat you need a temperature gradientfaldi¢hat temperature is the effective force for
thermal energy transfer agrees with our originaerbations that heat is transferred from a
hotter to a colder body. The combined First ancb8dd.aws of thermodynamics succinctly
combines our knowledge about the flow of energgugh consideration of both energy
conservation and energy dispersal. This combinatromides the key to understanding
spontaneous processes.

Entropy and Spontaneity—The Clausius Inequalifyhe entropy change for a process must be
evaluated using a reversible process. At firs§ tquirement may seem to be very restrictive.
However, entropy is a state function, which is peledent of the path. So as long as we know
the initial and final states for an irreversiblegess, we are free to construct a corresponding
reversible process to evaluate the entropy chartgefact that both internal energy and entropy
are state functions is the reason why Eq. 13.1nbtigestricted to reversible processes only. But,
you may wonder, how doés)/T compare tacye/T? How does the real heat transfer for a
spontaneous process compare to the reversibldéraaater for the comparable process that
matches the initial and final states? This relaiop is the key to predicting the spontaneous
direction for chemical processes. We can calculateentropy change for a process from the
internal energy change by solving Eq. 13.1.5 ferdhtropy:

1 P
ds =T du +T dv (closed, PV work) 13.1.6

For any process, with PV work only, the internatéigyy change is given by Eq. 13.1.2, which
upon substitution into the last equation gives:

P

dg P
ds :7q —%Xt dv+dv (closed, PV work) 13.1.7

Distributing out dV gives:

P — Rx

ds :d_Tq + (T)dv (closed, PV work) 13.1.8
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This equation holds for any closed process withWRvk, whether reversible or irreversible. The
second term involving P..R and V relates the pressure of the system, P etexternal

pressure, &:. In other words, this term shows the relationsifithe system to its surroundings
when expansion work is done. The difference ingues P — B, is the pressure gradient
between the system and the surroundings. This PV li@s an important property; it is always
positive for a spontaneous process. To see thisdansider an adiabatic process so dggt O.
Then assume the pressure of the system is gréatethe external pressure. The pressure
gradient is then positive, P =P> 0. Our experience shows that the system wilbexign a
spontaneous process giving dV > 0. The produdPef Ry)/T and dV is positive. Now,

consider a process with the system pressure lasglie external pressure, P &.PThe system
will contract in a spontaneous process giving d¥. €lowever, the pressure gradient is also
negative, P — £ < 0, so the product of (P =&/T and dV is still positive. In either case, the
entropy increases for these spontaneous adiabategses, dS > 0. On the other hand, if the
system pressure and the external pressure are dugigkessure gradient is zero and the entropy
change is zero, dS = 0, for an adiabatic procedth W@ pressure gradient, the system is at
equilibrium and no process occurs. Remember thagaitibrium process is a reversible
process. For a reversible adiabatic process, maxuwmk, in magnitude, is done on expansion
and dS = 0. For an irreversible, spontaneous atitadsgpansion less work is done than a
reversible process, but then dS > 0.

The second term, involving Peand dV, in Eq. 13.1.8 is often called thst work term??
The PdV portion gives the work done by a reversibtecess. Thed&RdV portion gives the actual
work done by the spontaneous process. The differdtdV — R dV, is always positive. The
difference is the lost work between the reversdrid real process. In other words, to “pay” for
an increase in entropy, some work is lost.

Now consider a general process in a closedsys$ece the lost work term is always positive
for an irreversible process, we can then conclbdedS >dq/T, since dropping the lost work
term from the equality necessarily decreases tie-hand side of the equation. If the process
under study happens to be a reversible prodgssdq., and then dS dq,/T. Putting these
two relationships together we have:

d . . .
d827q > for irreversible process = for reversible s (closed) 13.1.9

This relationship is called th@lausius inequality, after Rudolph Clausius who developed the
concept of entropyi° If you have read Chapter 11, you will also rementbe development of
the Clausius inequality from the perspective ofkyaroduction from thermodynamic cycles. We
began this section by asking howd relates to dqg/T. Substitution of the definitiofithe
entropy on the left-hand side of this last equatjimes for a spontaneous, irreversible process:

d d : :
—EII_@ >?q (irreversible, closed) 13.1.10

This relationship is quite remarkable, becauskais that for any spontaneous process the
reversible heat transfer is always greater thamttgal heat transfer, which is not at all obvious.
However, the real power of the Clausius inequadityeen when Eqgs. 13.1.9 and 13.1.10 are
applied to the specific case of an isolated systma process in an isolated systégr= 0 and

Eq. 13.1.9 reduces to:
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dS=0 > for irreversible process = for reversibleqass (isolated)13.1.11
Putting this important statement into words we finait:

Entropy always increases for a spontaneous pracessisolated system. |

This statement is the most useful form of 8ezond Law of thermodynamicsespecially for
chemical systems. The requirement of an isolatsttsymay seem to be restrictive. However,
many kinds of processes can occur in isolated systancluding chemical reactions. We will
shortly see that the specification of an isolatgstesn is not at all restrictive for closed systems.
Let’s recap our progress. We began by defining\a state function, the entropy. The entropy
was designed to show the dispersal of energy. Hekyewur goal is to find the criterion for the
spontaneous direction for any process, especib#iynical reactions. The Clausius inequality
applied to an isolated system shows that the epigypndeed, a useful criterion. The entropy
always increases for a spontaneous process. Hoyweeereed to remember the restriction of the
Second Law to isolated systems. Thermodynamicyésyapractical science. If a new concept is
useful, we keep it, and if not we discard it. Thagntee that the entropy will always increase
for a spontaneous process in an isolated systartsignpost” for spontaneous change. In
General Chemistry you learned how to calculateetiteopy change for phase transitions and
chemical reactions. Hopefully now you have a deepeéerstanding of why entropy is
important. Let's move on to some examples.

13.2 Applying the Thermodynamic Definition of Entrgpy

Now that we have motivated the thermodynamic dediniof entropy, we need to understand the
formulation and justify the definition by applyiriige concept to a variety of chemical problems.
Thermodynamics is based on the ability of concaptdarify our understanding of physical
processes and to predict the behavior of systemrss, We look for a deeper understanding of the
concept of entropy and its definition.

Entropy and the Ideal Gas for Closed Systeirst’s first consider ideal gas expansions toikee
we can get a feel for entropy changes for simpbegsses. The easiest process to start with is an
isothermal reversible expansion. For an isotheerphnsion of an ideal gas, dH = dU =0 and

dq = —dw. Consider a closed system for a change in voliname V; to V.. For a reversible
isothermal ideal gas expansion, Pex,lBwe, = — PdV, and w, = —nRT In(\4/V,) giving the
reversible heat transfer as:

Orev = NRT Inx—i (isothermal reversible, closed, ideal gas) 13.2.
From the definition of the entropy, Eq. 13.1.1, foconstant temperature process:
:dS :%I dQrev (isothermal reversible, closed) 13.2.2
Entropy is a state function so that integratiorhweéspect to dS gives:

AS =9.r|.ﬂ’ (isothermal reversible, closed) 13.2.3
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We need to use a reversible process to eval\até&q. 13.2.3 is only applicabler isothermal
reversible processes. Substituting Eq. 13.itb Eq. 13.2.3 gives the entropy change for an
isothermal reversible expansion of an ideal gas:

\
AS =nR Inv—2 (isothermal, closed, ideal gas) 13°2.4
1

What happens if the expansion is not reversible@eSentropy is a state function, the change in
entropy is independent of the path. We can choong@ath we like between the same starting
and ending points. For an irreversible isothermxab@sion from Y to V,, we just choose to
evaluate the entropy using an equivalent revergipansion from Yto V.. Therefore, Eq.
13.2.# holds for any isothermal expansion of an ideal gagersible or not.

For more general processes with changes in tetye, using dU dq +dw = dg.., — PdV for
a reversible process and solving for the reverdibbg transfer:

dQgrev = dU + PdV (reversible) 13.2.5

Remember that dU =,@T for all processes for an ideal gas. Therefarbsstuting dU = GdT
into Eq. 13.2.5 holds for all processes for anligea:

dgrev = CAT + PdV (reversible, closed, ideal gas) 13.2.6
The entropy change for any process in an ideaisggisen by dividing the last equation by T:
P
ds :%':%dT T dv (reversible, closed, ideal gas) 13:2.7

We can solve the ideal gas equation of state foséitond term, P/T = nR/V:

R
ds :d—gl.@:%dT +nv dv (reversible, closed, ideal gas) 13:2.8

For a process that has a reversible change in wftom V; to V, and a change in temperature
from Ty to Ty:

T2 V2 nR
AS = % dT+J nv dv (closed, ideal gas) 13.2.9
T1 Vi

Assuming that the heat capacity is constant ovetémperature range gives:
T, V> .
AS =G In.l.—l +nR InV—l (cst. G, closed, ideal gas) 13.27°10

This last equation holds for any process in anligag, reversible or not, since entropy is a state
function. Notice that specifically for an isothelrpaocess, Eq. 13.2.20educes to Eq. 13.2.4

Eq. 13.2.9is handy if you know the change in volume for agess. However, if you are
given the change in pressure instead, you can thookigh the enthalpy, H U+PV, and
substituting in dU =dqre, — PdV:

dH =dU + PdV + VdP €qe,— PdV + PdV + VdP
(closed, reversible, PV work) 231

Cancelling terms and solving fdge..:



491

dgrev=dH - VdP (closed, reversible, P\ky013.2.12

For an ideal gas, dH =,@T holds for any process in a closed system anstisution into the
last equation gives:

dgrev = G, dT — VdP (closed, reversible, PV work, idgas) 13.2.13

Dividing by T gives the entropy change and usirgitieal gas equation of state for V/T = nR/P
gives:

ds = ngT_%? dP (closed, PV work, ideal gas) 18342

Once again, this last equation holds for irreveeséimd reversible processes, since entropy is a
state function. All we need to specify is the @itaind final states for the system. Integrating Eq.
13.2.14 gives the analogous expression to Eq. 13.2.9

T2 P> .
AS =G InT—l— nR InEl (cst. G closed, PV work, ideal gas) 13.2°15
Either Eq. 13.2.100r 13.2.18 may be used for any closed process for an ideivgéh PV-

work only.

Example 13.2.1:

Calculate the change in entropy for one mole obbaatomic ideal gas for a process that doubles
(a) the temperature at constant V, (b) the volubhmastant T, (c) the temperature at constant P,
and (d) the pressure at constant T.

Answer For one mole ideal monatomic gas:
C\,:gnR:12.5J K, and G=C,+nR=20.8J K.

Using Eqg. 13.2.10
(a) double T atcst.V,AS = (125JK)In2=86J K
(b) double V atcst. T AS=(8.314J#)In2=58J K

Using Eqg. 13.2.15
(c) double Tatcst. P AS = (20.8JK)In2=14.4J K
(d) double P atcst. TAS=—(8.314JK) In2=-58JK

Notice that entropy changes are typically in t&“Jrange, while internal energies and
enthalpies are often in the kJ range. Thereforealm®st always report entropies in 3 Knd
internal energy and enthalpies in kJ. Notice dtst tloubling the temperature or doubling the
volume has about the same effect on the entropyblDw the pressure has a negative change in
entropy because the system volume correspondiregisedses by a factor of two.

Temperature as an Integrating Factowe are now in a position to learn more about the
definition of entropy by using an ideal gas as aetolet’s revisit the isothermal expansion of
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an ideal gas problem from Section 9.4, Figure 9\8/& showed that enthalpy was a state
function for the two paths specified. Path 1 isngle step isothermal reversible process. Path 2
is a two-step process, the first step at constamtdthe second step at constant V. Figure 9.3.1 is
repeated below as Figure 13.2.2. Assume that hefis $or path 2 are done reversibly.

A
plVr¥ Vo, Py, T,

Path 1

VZ! P2

> v

Figure 13.2.2: An isothermal process from ¥, to V,, P, can be done by two different
paths. Path 1 is an isothermal reversible pro@ssPath 2 is a constant pressure step
followed by a constant volume step.

While AU andAH are state functions, the heat transferred is gagiendent. To show the path
dependence, consider path 1. The heat transfénifoisothermal reversible path is given by Eq.
13.2.T, gev = NRTIN(V2/V,). For path 2, assume the intermediate statetegterature T The
heat transfer for step 1 is then given by Eq. 3.2t constant pressure:P

dQrev1= CGdT + B dV (cst. P, reversible, closed, ideal gas) 13.2.168

and integrating from the initial temperature The intermediate temperatureaBsuming a
constant heat capacity:

Oev1=C (Ti-=-T)+R (V2— V1) (cst. P& C,, reversible, closed, ideal gas) 13.2.17

The second step is at constant volume, so Eq.6GE3&duces to:

dQrev2= G, dT (cst. V, reversible, closed, ideal gas) 13.2.18
and integrating from the intermediate temperataeklio the initial temperature gives:

Gev2= G (T=T) (cst. V& C,, reversible, ideal gas) 13.2719
The total heat transferred for path 2 is the sumbfe two steps from Eqgs. 13.21ahd 19:

Gev=C (Ti-T)+RAV+C, (T-T) (cst. G, reversible, ideal gas) 13.2°20
The temperature dependent terms cancel giving:

Grev = PAV (ideal gas) 13.2.21

Comparing Eq. 13.2°1for the isothermal process to Eq. 13.2.8ows the heat transferred is
different for the two paths, even though both paitesreversible. As we have mentioned many
times,AU andAH are independent of the path, while heat and warksfer are path dependent.
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Now consider the entrophange for the two paths. If entropy is a statetion,AS should be
the same for both paths, even though the heatférandiffer. For isothermal reversible path 1
the entropy change, using Eq. 13°2i4AS = nR In (\4/V31). For path 2, we need to calculate the
entropy change for each step and then add. Fdir¢hstep from Eq. 13.2.20

T; \ .
AS, =G, In? +nR Inv—i (cst. P & ( closed, ideal gas) 13.222

For the second step at constant volume, applyind8@.10 from T, to back to the original
temperature T, gives:

AS, =C, In%i (cst. V & G, reversible, closed) 13.2.23
The total change in entropy for path 2 is the s@ith® last two equations:

AS =AS+AS, = C, In% +nR Inx—j +C, In%i (cst. G, closed, ideal gas) 13.2724
The temperature dependent terms cancel to give:

V :
AS =nR Inv—i (closed, ideal gas) 13.2°25

This equation is the same result as for isothepatd 1, showing that entropy is independent of
the path. The trick lies in the division dde, by T in Eq. 13.2.3 and 13.2.7The temperature is
called anintegrating factor. Even thougtiq.e, is a path functiondq../T is a state function,
independent of the path. The definition of d&gr/T is then seen to be necessary to make the
entropy a state function. The advantage, of coisgbat we no longer need to know the details
of the actual path of a process. The equationsatbaterive hold for irreversible as well as
reversible paths, even though we need a revergdileto actually evaluate the entropy change.

The original definition of entropy by Rudolf Qisius was based on a careful analysis of the
Carnot cycle (see Chapter 11) with the additioralization that 1/T served as an integrating
factor for heat transfér’ The role of 1/T as an integrating factor playeitical role in the
foundations of thermodynamics.

General System at Constant Volume or PressWvbat about changes in entropy for real gases,
liquids, and solids? For a constant volume prot@sany system, not just ideal gases, dU =
C.,dT and Eqg. 13.2.5 becomes:

dgrev = CdT (cst. V, closed) 13.2.26

The entropy change is then:

ds =d—"}@ - % dT (cst. V, closed) 13.2.27

For a change in temperature fromt® To:

T2
AS = % dT (cst. V, closed) 13.2.28

T1

Assuming that the heat capacity is constant ovetémperature range gives:
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T
AS =G In T—i (cst. V & G, closed) 13.2.29

which is the same as we derived for an ideal gasratant volume, as expected. For a constant
pressure process for any system, dH,éTCand Eq. 13.2.12 reduces to:

dQrev = G, dT (cst. P, closed) 13.2.30
The entropy change is then:
ds :dq?rev - ETE dT (cst. P, closed) 13.2.31

Integrating at constant pressure gives:

Cp
AS = T dT (cst. P, closed) 13.2.32
This integral is very important for determining thiesolute entropies for substances, and is often
evaluated numerically using experimental heat déipa@s a function of temperature. We will

return to this equation when we discuss the Thad bbof thermodynamics. However, integrating
assuming a constant heat capacity:

T
AS=Gln T—i (cst. P & G, closed) 13.2.33

which is the same as we derived for an ideal gaa finstant pressure process.

Example 13.2.2

Heat capacities have strong temperature dependenieege changes in temperature. Evaluate
the change in entropy for a change in temperatora f; to T, at constant pressure for a
substance that has a heat capacity givendsy £+ bT + ct.

Answer From Eq. 13.2.33, substituting the heat capaoifyression:
T2 dT T2 dT T2 a
As=f CoT = f (@+bT+chH 7 = f G+b+cT] dT
T1 T1 T1

The power series coefficients are rigorously terapge independent and so factor out in front of
the integrals. Integrating term-by-term:

_ T2 T2 CroT2
AS—a[In1ITl + b[11Tl + 2[T |Tl
T C
AS = a '”T_i +b(B=T) +3 (T - T7) (cst. P, closed) 13.2.34
Notice that the leading term is the same as wermdddor the case of a constant heat capacity

(In other words, if b = ¢ = 0, a 5,C The remaining two terms can be thought of asré&ion
terms” for the temperature dependence of the legeaity.
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13.3 Entropy Changes for Phase Transitions

At the Equilibrium Phase Transition Temperaturd phase transition at the equilibrium phase
transition temperature is a reversible processekamples, melting ice at the normal melting
point and boiling water at the normal boiling paame reversible at 1 atm. Phase transitions are
also isothermal processes, as long as the two plaasen contact. To show the reversibility,
consider the solid to liquid phase transition:

H,O (s) - H20 (D) (reversible at 273.15 K) 13.3.1

At 273.15 K if a small amount of heat is addedh® $ystem, some of the ice melts. If the same
small amount of heat is then transferred back bthiesystem, some ice freezes and the system
returns to it original state. Another way to see ttéwversibility is to note that at 273.15 K and 1
atm the ice and liquid water are in equilibriumeS8ifically, if ice and water are held in a well-
insulated container, the net amounts of ice an@msay constant, since the system is at
equilibrium. We are usually interested in phasedii#ons at constant pressure. The
corresponding heat transfer is the enthalpy chémghe procesd)H, at the equilibrium phase
transition temperature. Then using the definitiberdropy from Eq. 13.2.3 for these isothermal
reversible processes gives the entropy changédopliase transitiody,S, as:

AyH
Ty

where T, is the equilibrium phase transition temperaturéhatconstant pressure of interest. Eq.
13.3.2 holds for melting, vaporization, and sublima (any first-order phase transition). For
melting transitions, the terms melting and fusio® synonymousqsS =AwsH/Tmelt = AmerS =
DmeitH/ Tmer. FOr vaporizationAyapS =AvapH/Th.

DS = (reversible phase transition at cst.&P) 13.3.2

Example 13.3.1
Calculate the change in entropy for the soliddaill phase transition for water. The enthalpy of
fusion is 6.00 kJ mdlat 273.15 K.

Answer Using Eq. 13.3.2 at the normal phase transigomperature:

S _DyH  6.00x168J mot*
U2 = Toer ~ 273.15K

=22.0 J K molt

Entropies are almost always given in 3 #nits rather than kJ 'K

Table 13.3.1 gives some typical results for theagyt of fusion and vaporization. The entropy
changes are all positive since the transitionalmendothermic, which agrees with the notion
that entropy changes measure the extent of enésggrdal. Liquids are less localized than
solids and gases are less localized than liquiddc&lthat the entropy of fusion increases with
molecular size. This increase is caused by incteedermolecular forces. For example, Van der
Waals forces scale with the volume of the moledNl#ice also that the entropy of fusion for
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each substance is smaller than the entropy of \zgimm. This observation leads to the
conclusion that the structure of a liquid is clo®ea solid than it is to a gas. Liquids are very
“solid-like” with extensive short-range order.

Notice, however, that the entropy of fusionvi@ter is larger than that for,Ceven though ©
has a larger molar mass. Why is the entropy obfusor water greater than,®The large value
of the entropy of vaporization of water is morekstig. To further explore the unique behavior
of water, Table 13.3.2 lists the entropy of vapatin for molecules with a large range of sizes.

Table 13.3.1: Entropy of Fusion versus Entropy apbtizatiofi
AS (A K'molY)  AS (3 K'mol?)

He 6.0 19.9
Oz 8.17 75.63
H.O 22.0 108.95
CeHe 38.0 87.19

Table 13.3.2: Entropy of Vaporization versus Size
AvaS (I mofK™) a4 (g mol')

H,S 87.9 33.08
Benzene gHg 87.19 78.08
Cyclohexane  85.1 84.16
Toluene GHyg 87.30 92.14
CCl, 85.8 153.82
HF 66.94 20.0
HCI 78.32 36.5
HBr 84.64 80.9
HI 87.19 127.9
NH, 97.40 17.00
H,O 108.95 18.02
PH; 78.20 32.0
H.S 87.9 33.08

The first group of molecules shows that the entrofpyaporization is remarkably constant for a
wide range of liquids, with an average value néa88 K' mol* (10.5 R). This generalization is
calledTrouton’s Rule. The next group of hydrogen halides shows that serall molecules like
HF and also @(Table 13.3.1) and can be exceptions to TroutBule, giving small entropies of
vaporization. The next group of second and thindggebinary hydrides shows that water and to
a lesser extent ammonia are also exceptions, witsually large entropies of vaporization,
especially in respect to their small size. Thedarglue for water was historically the first solid
evidence for the unusual hydrogen bonding abilitwater. Liquids with strong intermolecular
hydrogen bonding are callegsociatediquids. Trouton’s Rule holds for non-associated liquids.

Irreversible Phase TransitionsAt 1 atm, above the normal melting point, icersjaneously
melts. Below the normal melting point, liquid wasgrontaneously freezes. Eq. 13.3.2 only holds
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if the phase transition is reversible. How do wiewate the change in entropy for an irreversible
phase transition? Entropy is a state function,rémpy changes are independent of the path. We
construct a thermodynamic cycle that has the sdfeetas the irreversible process, but by a
series of reversible processes. Consider the irsiéble freezing of ice at <&. Let the normal
melting point be T, where Eq. 13.2.3 holds for the change in entrapy.T, be the temperature

of the irreversible process.

AgH
DuSr =7,
T.=0C H,O (s) N H,0 (1)
G [ Gy
T2 T1
I as
T,=-5C HO (s) - H.0 (1) 13.3.3

We first start with solid ice at °&, T,, and heat it up to the normal melting point, We then

allow the ice to melt reversibly at &nd then cool the liquid water back down to The initial

and final points are the same, so the entropy ah&orghe three step process is equivalent to the
irreversible process abT

T, solid Ty lig
NSt = —"T— dT +AySr + —% dT 13.3.4
T2 T1

Assuming constant heat capacities for this narempterature range:

T T
DySr, = GO InT—; + DSt + G InT—i (cstR Cys)  13.35

Combining the two log terms using In(T>) = —In(T,/T):

, . T
DStz = BSti + (G = G Inp (cstR Cyjs)  13.36

soli

Defining the difference in heat capacities ag{€ G>°") = A,C, gives the final result:

T
DStz = DSty + BuCp INT> (cstR Cys)  13.3.7

Notice if we think of the phase transition as arotoal reaction, theh,C, corresponds to the
heat capacities of the products minus the reacgtasts the normal custom for expressing
thermodynamic changes for chemical reactions. Tiseme difference at this fundamental level
between phase transitions and chemical reactiays; E.3.4-13.3.7 apply to all chemical
reactions and phase transitions (first-order).

We commented in Chapter 8 that it is easy anohaatic to convert a thermodynamic formula
for a simple system to a chemical reaction by tnsgthel, for every extensive term, which is
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general patterfll 8. Starting with Eq. 13.2.33S = (§ - §) = G In(T2/T1) or equivalently
S, =S + G In(T2/Ty), inserting the\, for every term gives Eq. 13.3.7.

13.4 Absolute Entropies and the Third Law of Thermaynamics

The entropy of a substance is a variable like R T. As long as we have a suitable reference
point, as we do for absolute temperature at 0 R7A3-15C, we can calculate the absolute
entropy of a substance at any temperature. In etbeis, we are not restricted to calculating
only changes in S as we are for the thermodynaotenpials AU andAH. The reference point

for the entropy is established by the Third Lavthermodynamics:

| The absolute entropy of a pure, perfect cryseliinbstance is zero at absolute zero.

This assignment is reasonable, since at absoluetlzere is no quenchable energy so there is no
energy to disperse. No quenchable energy meanaltimablecules are in their lowest energy
states. The Third Law is like all laws; it is a suary of our communal experience. As such it
cannot be proven. We can however, use the coneppatedly in a variety of circumstances to
verify that the law agrees with our experienceeAftecades of agreement, we accept the law as
a statement of the underlying form of nature.

Once we setos 0 at 0 K we can calculate the entropy of a sulcstah any temperature. We
use Eqg. 13.2.32 for each phase and take into ateoyrphase transitions using Eq. 13.3.2. For
example, for a substance that is a gas at the taope of interest, T:

Tmelthsolid AqsH Th Cpliq

_ DeH (TG
S _S)+JO T dT+TmeIt + T dT + T, +JTb T aT 13.4.1

Tmelt

where Teit IS the equilibrium melting point of the substantgis the equilibrium boiling point
of the substance at the pressure of interest, ggdSSince the temperature ranges for the
integrals are so large, the heat capacities avagtunctions of temperature and the integrals
must be evaluated numerically. A plot gf Cversus T is constructed for the determination of
the integrals. A plot of the heat capacity datadenzene is given in Figure 13.4.1a and fgifC
in Figure 13.4.1b. The value of each integral esdahea under the curve for each phase.
Alternatively, the heat capacity data can be fippdaver series expansions and the resulting
expressions integrated analytically (see the homiewmblems). Entropies calculated from Eq.
13.4.1 with $= 0 are often called Third Law entropies or absokntropies. There are extensive
tabulations of absolute entropies in many refereoegces and in the Appendix Data Secfion.
Many substances have solid-state phase tramsjtso the solid-phase portion of the integration
in Eq. 13.4.1 is split above and below the phaaesition temperature. The entropy change for
the phase transition is also added in:

Tmett C solid Tc C xtal 1 AH Tmelt C xtal 2
f —p.l.— dT s replaced by DT dr + .tl.' + —p.l.— dr 13.4.2
0 0 ¢ Te

where T is the solid phase transition temperature agiti' €and G**'? are the heat capacities
for the difference crystalline forms below and abdlve phase transition, respectively. Solid-
state phase transitions often result from a chamggystal structure or a sudden change in the
motions of the molecules.
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Figure 13.4.1: (a) &for benzene as a function of temperature. (b)érteopy change of
each phase is the area under the plot,6F €ersus T. The change in entropy for any phase
transitions must also be added in.

Debye Extrapolation One experimental difficulty with the calculatiofthe solid-phase heat
capacity integral is that the lowest experimergaiperature for many substances is near liquid
helium temperature. Because the integrand,idi@ded by T, the low temperature region is
important. The lowest experimental temperaturebfmzene is 3.79 K with fowest=

0.051463 J K mol™. Considering the lattice vibration normal modesaifds, Peter Debye
suggested the low temperature heat capacity alsshould be in the form:

C,=AT® 13.4.3
The value of A is calculated from the lowest aVa#datemperature; solving for A:

Cpjowest_ 0.051463 J K mol*
T (3.79 Ky’

lowest

A= =9.4532x1¢ J K* mol* (cst. P) 13.4.4

The integral up to this temperature is then:

Tlowest C solid TIowesA T3 A T A C
f _Flr_ dr :J ? dt ZE [ T3|0|f;2VeSt: 5 Tlsc,)west: %t (cst. P) 13.4.5
0 0

For benzene this integral is AT.{3 = Gyjowes3 = 0.01715 J Kmor™.

Absolute EntropiesA list of typical absolute entropies is givenTiable 13.4.1. What
generalizations about the entropies of compoundsveaextract from this data? The series
methane-acetylene-ethylene-ethane-propane shotwsrtiapies tend to increase with the
number of atoms. The results of an approximate abmode analysis are shown for comparison
in Table 13.4.2 to see the relative contributiohganslation, rotation, and vibrations to the
overall entropy. The change from acetylene to ethylis primarily due to the fact that acetylene
is a linear molecule and ethylene is not. Therefetleylene has one more rotational degree of
freedom. The increase from ethylene to ethanelerge part caused by the increase in the
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number of low frequency vibrational normal modethdfie has an unhindered torsion, giving
ethane the highest absolute entropy of thé@ydrocarbons. Propane has two low frequency
torsional modes and a low frequency bending mote.Ssialler value of the absolute entropy of
cyclopropane compared to propane again shows tluemte of low frequency vibrations.
Cyclopropane has no freely-rotating C—C bonds. &meghas higher entropy than benzene again
primarily because propane has low frequency toaigibrations. The benzene examples for
different phases remind us that gases have higtteapges than liquids, and liquids have higher
entropies than solids, which is in large part cdusetheA,S for the corresponding phase
change. Example 10.3.1 applies these factors tortpertant problem of protein folding.

Table 13.4.1: Absolute Entropies for Some Orgamim@ounds at 298.15 §°)

Formula Name S2,20¢ (J K' mol?)
CHs (9) methane 186.16

C.H2 (9) acetylene 200.94

CoH4 (9) ethylene 219.56

CoHs (9) ethane 229.49

CsHs (9) cyclopropane 237.4

CsHs (9) propane 270.3

CeHs (9) benzene (g) 269.2

CeHs (1) benzene (1) 173.3

Table 13.4.2: Contributions to the Entropy for Sd@rganic Compounds at 298.2 K.
Normal mode vibrations less than 500 tare listed. Torsions are listeditalics and
bending vibrations are listed in normal font.

Name Entropy Contributions (J'nol)* Normal modes
translation rotation vibration total v < 500 cnt

methane 143.3 42.8 0.4 186.6

acetylene 149.4 45.4 2.7 1975

ethylene 150.3 66.4 2.4 219.1

ethane 151.2 68.1 10.9 230.3 204

cyclopropane 155.4 75.8 4.8 236.0

propane 156.0 89.0 32.8 277.779,190414

benzene (g) 163.1 86.7 19.1 268.9 JFFl

* Approximations at theemi empiricahM1 level.

Does the Third Law Really W&kThe Third Law assigns the absolute entropykabdany

pure perfect crystalline substance a value of azewanatter how simple or complex. The
absolute entropy of perfect crystalline helium gedect crystalline DNA are both zero. Do
these assignments agree with the available expetaingata? There have been many tests of the
Third Law. We will discuss just one, the solid-stphase transition of rhombic elemental sulfur
to monoclinic sulfur. At the equilibrium phase ts#tron temperature, 368.5 K, at 1 bar pressure:

S (rhombic) —» S (monoclinic) AyH° = 401.7 I mot  (at 368.5 K) 13.4.6

The entropy change for the phase transition of thioto monoclinic sulfur at 368.5 K is:
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AeS® = AgHOITy = 1.09£0.01 J K! morl* (reversible at 368.5 K)  13.4.7

If the Third Law is correct, the absolute entrofpylimmbic and monoclinic sulfur should both

be zero at absolute zero, even though the entrdies at higher temperatures. Therefore, the
entropy for the phase transition should be zefdbkat Eq. 13.3.4 shows the relationship between
the entropy change for a phase transition at tfferént temperatures. Settingdt O Kand T

= 368.5 K, we can calculate the entropy changésalate zero using Eqg. 13.3.4. Eq. 13.3.4
applied to this solid-state phase transition gives:

368.5 K dT K dT
DrSok = J CprhombT +DySgess K+ JO Cpmono? 13.4.8
0K 368.5 K
Integrating the experimental heat capacity datasjiv°
368.5 K h de 1 1
f Cpr om T = 36.86+ 0.2 J K- mofl 13.4.9
0K
and CpmonoT =-37.82+ 0.4 J K- mol 13.4.10
368.5 K

Substitution of Eqgs. 13.4.7, 13.4.9, and 13.4.10 kfg. 13.4.8 gives:
DSy = 36.86 + 1.09 —37.82 Jkmol' = 0.15+ 0.65 J K mol? 13.4.11

This result is zero to within experimental uncertgal The absolute entropies of both rhombic
and monoclinic sulfur are zero at 0 K. All knowrpeximental tests, based on phase transitions
and chemical reactions, have shown the same rfesyltire, perfect crystalline substances.

Residual EntropiesNot all substances produce perfect crystallineses at absolute zero. This
randomness results from rapid cooling that lockssihbstance into a metastable state. At very
cold temperatures the reorganization kinetics arg slow. This locked-in randomness results in
aresidual entropy at 0 K. Two examples of systems showing residnabgies are CO and

N»O. Both are linear molecules with small dipole matsehat show only weak tendencies for
orientational alignment in the solid, Figure 13.4.2

cCs0O &0 &0 C=0 GO CC &0 O©=C =0

Ccs0O &GO &0 =0 GO 0O (CC ©=C =0

Ccs0O &GO &0 =0 GC GO0 CC &0 C=C
perfect crystal orientational randomness

Figure 13.4.2: The residual entropy for CO is tsuit of orientational randomness.

We showed in Chapter 12 that the residual entropuch cases can be approximated by:
S=RInw 13.4.12

where w is the number of energetically equivaleaysvthat the molecules can be arranged in the
solid lattice. For €0 and N=N=0O, w = 2, and the residual entropy isaxiately S = (8.314
Jmol* K1) In 2 =5.76 J K mol™. The experimental residual entropy for CO is 4Kk7“Jmol™.
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13.5 Entropy Changes for the Surroundings

Chemical processes don’t usually take place iratsm. Chemical processes usually exchange
energy with their surroundings. When a system axgés energy with its surroundings, the
entropy of the system changes and the entropyeo$uiroundings also change, Figure 13.5.1.

surroundings surroundings
Tsurr Tsum Psurr
—
dq = d0surr dq = A
(a) Constant T and V (b) Constant T and P

Figure 13.5.1: The system and surroundings takgether are specified as an isolated
composite.

The Second Law only applies to isolated systemsvayer, we can take the system and
surroundings together as a composite. If the coitgissisolated, the Second Law holds.

The entropy change of the surroundings is easgltulate. The surroundings are assumed to
be large in extent so that the surroundings aat@mstant temperature reservoir, at temperature
Tsur All transfers of energy to the surroundings a&wersible. This reversibility results because
the temperature of the surroundings is unchangddkiransfers of energy are essentially
infinitesimal from the perspective of the surrourgsi. Therefore all transfers of energy leave the
surroundings in an equilibrium state. As a consege@dsur = dgrev.sure T he reversibility of the
thermal transfer for the surroundings is true foy process in the system, reversible or
irreversible. If we assume that the composite ef¢yistem and surroundings is isolated,
dq = -dqsurm Wheredq is the thermal energy transfer of the system fallew the convention
that all changes for the system are listed witlsoiniscript, but changes for the surroundings are
always given with the “surr” subscript. The entrabyange for the surroundings is then given as:

dSsurr=—q—d sr _ —d9 13.5.1
TSUI’I’ TSUIT

For an isothermal process, if the system is helbmmtact with the surroundings and the
surroundings act as a constant temperature resettveitemperature of the system is equal to the
temperature of the surroundings, T I Then, the entropy change for the surroundings is:

dSun= Ceur _ = d9 (isothermal) 13.5.2
Tsurr T

If the process for the system occurs at constdonhwe, then the heat transfer at constant volume
is the internal energy changt, = dU and then:

dOeyr  —dU
dSur=— " =—— (cst. BV)  13.5.3
TSUI’I’ T
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If the process for the system occurs at constagsoire, then the heat transfer at constant
pressure is the enthalpy chandg, = dH and then:

— dH
d%urr=d7qw =—dT (cst. BP)  135.4
surr
The total entropy change for a process must indheeystem and the surroundings:
dSet = dS + dSun 13.5.5

In many respects, the entropy change for the sndiogs is just as important as the entropy
change for the system. If the system and surrogsd@mcompass the whole of the universe, then
dSot = dSiniv- We often use § and Qniv interchangeably. However, Eq. 13.5.5 holds as ifvall
composite of the system and surroundings is a guadilof the universe and is isolated. The
interrelationship of the system and its surrounsgliisgparticularly important for chemical
reactions.

13.6 Entropy Changes for Chemical Reactions

Once the absolute entropy for a substance is knibvenguite straightforward to calculate
entropy changes for chemical reactions; see gepattrnl] 8. As usual
AS = [Zproducts] — Ereactants] and in terms of the stoichiometric dokits:

AS =D Vi § (cst. ®P) 13.6.1

where $is the molar absolute entropy for each reactadtpaioduct. Extensive tabulations of
absolute entropies are available in standard nedersource$your General Chemistry text, and
in the data section at the back of this text.

The temperature dependence of the entropy chfangbemical reactions is given by Eq.
13.3.4 and 13.3.7 with the change in the heat ¢gpfac the reaction given by:

ACy =2 v Gy (cst. RP)  13.6.2

where G; is the molar heat capacity for each reactant aodyzt.

Example 13.6.1:

Hydrogen is a clean burning fuel that decreasefotta pollution of hydrogen-powered

automobiles. However, hydrogen is a secondary fuelust be produced using other energy

sources. The reaction for the production of hydnogging water as a cheap starting material is:
H20 (I) - H2 (9) + %2 Q (9)

Calculate the entropy change for the system, sadiogs, and the total for the production of one

mole of K (g) under standard conditions and 298.15 K.

Answer Using the data section, the standard entropeegigen as:

H,O (1) - Ho(g) + %0Q(9)
S 208 69.92 130.574 205.029 J'nor?

NS = [Zproducts] — Ereactants]
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AS =[1(130.574 J K mol™) + % (205.029 J K mol™)] —[1 (69.92 J K mol™)]
= 163.168 J Kmol*

The entropy change for the formation of one molelpis quite favorable. As is often the case,
the reaction entropy is dominated by the changaimber of moles of gases. Notice that the
reaction is the reverse of the standard formagactron for water)\H°® = -AH°(H0) =

285.830 kJ meat. The enthalpy change for the production efi$iquite endothermic. At constant
pressure and temperature the entropy change fautiheundings is:

_—AH -285.830 kJ mat (1000 J/1 kJ) )
ASun=. "= 208.15 K = -958.679 J K mol

which is unfavorable from the perspective of the@undings. The total change in entropy is:
ASiot = AS +ASqy = 163.168 J K + (-958.679 J K) = -795.511 J Kmol™

We can treat the combined system and surroundsmg®kated. The Second Law holds and the
production of H is not spontaneous. Of course the reverse ofe@etion, the combustion of,H
is quite spontaneous, which is why id such a good fuel. The primary fuel for the spsleuttle
was liquid H.

13.7 Entropy Changes for the System and Surroundirggand the Total Entropy Change

The previous example illustrates why it is impottenkeep track of the entropy change for the
system and the surroundings. The last example ovas ¢hemical reaction. How do the entropy
changes for the system and surroundings interatgtermine the overall total entropy change
for the other types of processes that we discussttls chapter? We specify the composite of
the system and the surroundings as isolated, witaddes important restrictions on the entropy
changes based on the Clausius inequality, Eq.1113. Epecifically, Eq. 13.5.5 applies to the
composite and dg=dS + d§,x= 0. In outline:

» For any reversiblprocesses, q 54 and from the Clausius inequaliyS,; = 0, giving:
ASgyr = -AS (reversible, isolated) 13.7.1

For reversible processes the entropy changesdaytstem and surroundings cancel.

* For any spontaneoysocessAS: = AS +ASgyr> 0.

» For.ideal gase%qgs. 13.1.6, 13.2.20and 13.2.15hold for any process, reversible or
irreversible, since entropy is a state function.

» For any adiabatiprocess, reversible or irreversible, g = 0, givi¥®y,r= 0.

» For_adiabatic reversibjgrocesses,g = 0, givingAS = 0 and\Sg,r = 0.

Example 13.7.1:Isothermal Reversible Expansion for an Ideal Gas

The volume of one mole of an ideal gas changes fr@@ L to 2.00 L in an isothermal
reversible expansion. Calculate the change in pyptob the system, the surroundings, and the
total entropy change.
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Answer For an isothermal expansion of an ideal gasTE,rand also Eq. 13.224jives:
AS =nR In(\M/V1) =1mol (8.314 JKmo)In2=576 JK
ASsur=-AS =-5.76 J K
ASiot =AS +ASqur=0

Note also thaAU = AH = O for this example.

Example 13.7.2:Isothermal Irreversible Expansion of an Ideal Gas

The volume of one mole of an ideal gas changes ft@@ L to 2.00 L in an isothermal
expansion against a constant external pressur®0fhr. The temperature is 298.2 K. Calculate
the change in entropy of the system, the surrogsdiand the total entropy change.

Answer For an isothermal expansion of an ideal gasTE,z The entropy change for the
system is the same as a reversible expansion, 3241 since entropy is a state function:

AS =nR In(\/V1) =1mol (8.314 JKmol)In2=576 JK¥
For the surroundings we use Eq. 13.5.2:

_Osur _—(Q
ASun =7 =TT

SinceAU = 0 for an isothermal process in an ideal gas:
q=-w = RyAV = 1.00x10 Pa (2.00 L — 1.00 L)(1 #1000 L) = 100. J

_—q__-100.J_
ASsur =77 = =595 5 k= "0-335J (S

ASt =AS +AS,, = 5.43 I K

The expansion is spontaneous. Note alsoAblat AH = 0O for this example.

Example 13.7.3:Adiabatic Irreversible Expansion of an Ideal Gas

The volume of one mole of an ideal gas changes fr@@ L to 2.00 L in an adiabatic expansion
against a constant external pressure of 1.00 Iharifitial temperature is 298.2 K. The gas is
diatomic. Calculate the change in entropy of treteay, the surroundings, and the total entropy
change.

Answer The temperature aneblume change for an adiabatic expansion, so 8§.1G must
be used. However, the change in temperature nrasbg calculated froddU = w, Eq. 9.8.23

C (T2—T) =Rt (V2— V1) (9.8.23)
For a diatomic gas, G 5/2 nR and:

5/2 (1 mol)(8.314 J mdIK™) (T, — 298.2 K) = — 1.00xP0Pa (2.00 L — 1.00 L)(1 #1000 L)
20.785 J (T—298.2 K) = -100. J

Solving for T, gives 293.4 K. The entropy change is then:

T Vv
AS =G, '”T_i +nR |nv—j = (1 mol)(8.314 I mAIKY[5/2 In(293.4/298.2) + In 2]
=3.19JK
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The change in entropy for the system is smallen #eample 13.7.2 because the temperature
drops. Since q = 0, thek5s,r = 0 andAS,; = AS; the system must have a positive change in
entropy to have a spontaneous process, since mobedion is available from the surroundings.
Note thatAU = C, AT = -100 J and\H = G, AT = -140 J for this example.

Table 13.7.1 summarizes the change in entropyhfosystem and the surroundings for ideal gas
expansions. Avoid the temptation to memorize thekdionships. Rather, this summary is given
to help you make sure that you understand the tymdgiprinciples. Try not to refer to this table
when you are doing the homework problems.

Table 13.7.1: Entropy changes of the System anb&uodings for Ideal Gas Expansions.

System Diagram Surroundings
Isothermal reversible ASqyr=—-AS

T = Tsurr Peit = P
Tan =T

_ Vo
AS = nR InV—1 P T

Isothermal irreversible = —w

T = Tsurr Ry = cst ASoyr = _Pe>§lI_AV

_ Vo
AS = nR InV—1

Adiabatic reversible
AS =Gy E+ R I Ve
=G nTl n nVl
=0

ASsyr=0

Adiabatic irreversible ¥ P, = cst ASqyr=0
Pext = CSt
Vo U

_ T2 Vs
AS—C\/InT1+nRInV1 o
G (T=T1) =—Pex(V2—-V1) ' dq =0

Constant P = & =AH _ GAT

I Pet =P = -
AS — q) |n L i * ASSUI’I’ TSUI’I’ TSUI’I’
) e

Tl # Tsurr
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13.8 Summary — Looking Ahead

Entropy is a state function and therefore indejgat of the path of the process. Only the initial
and final states need be specified. However, toagiee that entropy is a state function the
entropy is calculated using a reversible path dditeon, in the definition of entropy, the factor
of 1/T is a necessary integrating factor to ensluaé entropy is a state function. Entropy always
increases for a spontaneous process in an isdgsteim. We treat the system and the
surroundings as an isolated composite, so thataweapply the Second Law. The entropy
change of the surroundings is just as importath@£ntropy change of the system; neither
indicates spontaneity alone. The entropy chandkeo$urroundings is easy to calculate and is
independent of whether the process for the systeeviersible or irreversibl&Ss,r = — o/ Tsurr.

All transfers of energy to the surroundings aresrsible, because the surroundings remain at
equilibrium. The Second Law clearly delineatesititerrelationship of the system to the
surroundings. Composite systems are discussecefurttsec. 14.3.

The preceding examples illustrate that theemigtimate relationship among q, &5, AU,

AH, andAS;,,» However, according to the Second Law, it is a8y, that determines the
spontaneity for a process. Our next goal is tdedlae internal energy, enthalpy, and entropy
changes for chemical reactions to the spontanéityeoreaction.

Chapter Summary
1. Energy dispersal is a spontaneous process.
2. Energy dispersal is measured by the entropyg:dflaisz—q@

3. Entropy is an extensive state function. Theagtichange for a process must be evaluated
using a reversible process that has the samdl iatchfinal state as the real process.

4. For a closed system with PV work the combinedtfind Second Laws give:
du=TdS-PdVv

P
5. For a closed system with PV work: d%du +=dV
P
6. For a closed system with PV work: d% ( ext)dv

7. The Clausius inequality is: dSFq > for irreversible process = for reversibleqass

8. For an isolated system: &9 > for irreversible process = for reversiptecess
9. Entropy always increases for a spontaneous gsanean isolated system.

rev

10. For an isothermal reversible process in a diegstemAS = T
V
11. For an isothermal expansion of an ideal ¢gs8:= nR I 2
. . T \Y
12. For any process in a closed system for an gksabnd constant,A\S = G, In T_i + nRInV—j

. : T P.
13. For any process in a closed system for an gesiand constant,AS = G InT—i— nR In;i
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14. Temperature is thetegrating factor for reversible heat transfer.
T
15. For any closed system at constant vquhSa:—-f : CV/T dT
T1
1
16. For any closed system at constant presafies f ? Cp/-r dT
T1

. . AgH
17. For a reversible phase transition at constam@ind PA;S = 'It'rt
r

18. Assuming constant heat capacities, the changetropy with temperature for phase
. . . T .
transitions and chemical reactionsAsSr, = ASr; + ACp In T_i , WithACp =2 vi Gy .

19. The absolute entropy of a pure, perfect crigséasubstance is zero at absolute zeyE &
20. For a closed system at constant pressure, aggmm solid-state phase transitions::

Trett C, SOl AnH T, C. Ao H T c 988
- o DfusTT D va Lo
Sr—S>+f0 T AT+ o+ T dT+7, +LDT dT

21. The Debye approximation for the low temperaheat capacity of a solid is,& A T,

22. All transfers of energy to the surroundingsraxeersible.

. d —d
23. The entropy change for the surroundings ggrds_r&u”z_r—q
surr surr

Tmelt

24. For an isothermal constant volume procesghmsystem in contact with the surroundings

: . —duU
acting as a constant temperature I’eSGI‘VOH{jrrdS_T

25. For an isothermal constant pressure procesthdsystem in contact with the surroundings

. ) dos —dH
acting as a constant temperature reservoig;GST “”:—T
surr

26. For a chemical reaction or phase transitiaroastant T and PAS = v; §
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Problems: Entropy and Applications

1. Egs. 13.2.10and 13.2.15apply for all processes for an ideal gas. Showttietwo
expressions are equivalent.

2. Eq. 13.2.10applies for all processes for an ideal gas, assyiaiconstant heat capacity.
However, for an adiabatic reversible procéss = 0. Does Eq. 13.2.1@ive AS = 0 for an
adiabatic reversible process?

3. Calculate the change in entropy for 1.00 moleleél gas that is expanded against a constant
external pressure of 1.00 atm from an initial pres®f 10.0 atm to a final pressure of 1.00 atm.
During this process the temperature also drops 260 °C to 0.00 °C. The heat capacitygds C
=7/2 nR.

4. For a closed system we know th&t = g + w,AU = ey + Winax and that a reversible process
does maximum work on expansion and minimum workamtraction. Use these statements to
derive the Clausius inequality.

5. In the section onTemperature as an Integrating Factave derived Eq. 13.2.28using

Eq. 13.2.10. Repeat the derivation of the entropy change &bin @, Eq. 13.2.28 However, this
time start from the heat transfers directly, Eqg2116 and 13.2.18 find dS and d$. Then do
the integrals. Note when path specific informai®eliminated.

6. Given the total differential for the functiornxzyf):
_y
dz =X dx — dy

Show that dz is not an exact differential. Thegnéging factor for dz is (1/x). Define a new
differential as df = dz/x. Show that df is exact.other words, df is a state function.

7. The lowest temperature heat capacity measurefmebénzene is 3.79 K,
where G = 0.051463 J K mol™. The heat capacity data for crystalline and liduétizene in
Figure 13.4.1 can be fit to power series expansiBasause of the complex shape of the curve,
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this fitting is best done over three temperaturgges. The breaks between the ranges are
arbitrary and are simply chosen to get a gooafihe overall curve. There are no solid-state
phase transitions. The enthalpy of fusion for barze 10.59 kJ mdlat the normal melting
point of 278.6 K. Calculate the absolute entropperfizene at 298.2 K.

Table Problem 7: Approximate Heat Capacity foridahd Liquid Benzene

solid G (J K mal)

3.79-20K G=0.10321 T + 0.02431°T

20 -84 K G =-16.5375 + 1.3854 T — 0.00770 T
84 -278.6 K G =38.2869 + 0.01075 T + 1.097x10?
liquid

2786 -300K ©=81.228+0.1794T

8. Calculate the absolute entropy of methylammonghioride at 298.15 K. There are three
crystalline forms. For the low temperat(t-dorm, the heat capacity is 0.4209 3 Kol at

12.04 K. The enthalpy of the equilibrium solid-stghase transition from tifteto y-form is
1.7790 kJ mot at 220.4 K. The enthalpy of the equilibrium sadigte phase transition from the
yto a-form is 2.8183 kJ mdiat 264.5 K. All values are at standard state. iitegrals of G/T,

in J K! mol?, for the three phases dre:

220.4K CB 264.5K Cy 298.15K Ca
J —TQ dT = 93.412 f —TQ dT = 15.439 f —T‘l dT =10.690 J K mol*
12.04K 220.4K 264.5K

9. One mole of an ideal gas undergoes an isotheewuatsible compression from an initial
pressure of 1.00 bar to a final pressure of 10&00®alculate the change in entropy of the
system, the surroundings, and the total entroppgha

10. One mole of an ideal gas undergoes an isothezrpainsion against a constant external
pressure of 1.00 bar. In this process the systees €800.0 J of work from an initial volume of
1.00 L, that is w = -900.0 J. The temperature 8.2%. Calculate the change in entropy of the
system, the surroundings, and the total entropypgha

11 The volume of one mole of an ideal gas changes .00 L to 2.00 L in an adiabatic
reversible expansion. The initial temperature i8.2%K. The gas is diatomic. Calculate the
change in entropy of the system, the surroundiaigd,the total entropy change.

12 The pressure of one mole of an ideal gas draps 0.0 bar to 1.00 bar in an adiabatic
expansion against a constant external pressur®0far. The initial temperature is 298.2 K.
Assume the gas is diatomic. Calculate the changetiopy of the system, the surroundings, and
the total entropy change.

13. The pressure inside an inflated balloon fillethwielium is 112.0 kPa. Assume the gas
expands from the opening in the balloon in an atialexpansion. In other words, assume the
gas expands quickly and we measure the final temyner of the gas before any thermal energy
can be transferred from the surroundings. Theaini@mperature is 298.2 K. The atmospheric
pressure is 101.3 kPa. Calculate the entropy chahtlpe system and the surroundings and the
entropy change of the universe.
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14. One mole of an ideal gas at 298.2 K triples d@ime in an isothermal irreversible expansion
against B; = 0. Calculate the changes in entropy of the systke surroundings, and the total
entropy change.

15. Calculate the molar entropy change for the plasesition of water to water vapor at room
temperature, 298.15 K, and one atmosphere presdueaifference in heat capacity on
vaporization if\yCp = -41.9 J K molt. The standard enthalpy of vaporization of water at
373.15 Kis 40.7 kJ mat.

16. Consider the reaction: pyruvic acidacetaldehyde + C(g)

(which is catalyzed by the enzyme pyruvate decaylage.) Calculaté,S° for this reaction for
the system and the surroundings at 298.2 K. Theegah the table below are at 298.2 K.

substance  AH° (kJ molt) S°(J K" mol™)

acetaldehyde -192.8 160.4
CGO; -393.5; 213.7¢
pyruvic acid -584.5 179.5

17. The chemical reaction that corresponds to thieadpy of formation of urea, (NHLCO, is:
C (graph)+ 2 H, (g, 1 bar)+ N (g, 1bar) - (NH2).CO(s) AH° = -333.1 kJ mot
Using the data in the appendix, calculate the r@a&ntropy, at standard state and at 298.15 K.

18.(a). The enzyme urease catalyzes the hydrolysisea to ammonia and carbon dioxide:
(NH)2.CO (s) + HO () - 2 NHs (g, 1 bar) + CQ(g, 1bar)

Using the data in the appendix, calculate the r@aenthalpy, at standard state and at 298.15 K.
(b). Consider the reaction as an isothermal proceaxlosed system in thermal contact with the
surroundings acting as a constant temperaturevaseCalculate the change in entropy for the
surroundings and the total entropy change at 298.1See Chapter 8 Problem 2b).

19. The aging of marine aerosols produces NalH8@ud condensation nuclei, CCN. The
distribution of CCN determines the formation anflietivity of clouds, which play an important
role in determining the albedo of the atmosphesze Ghapter 8 Problem 3). (a). Using the data
in the appendix, calculate the entropy changehersyystem and for the surroundings for the
following reactions separately and in sum, undandgard conditions and at 298.15 K.

H,S (g, 1ban)+ 2 G (g, 1bar) » SG; (g, 1bar)+ HyO (g, 1bar)
SG; (g, 1 bar)+ HO () » H2SO4 ()
NaCl(s) + H,SOs () - HClI (g, 1bar)+ N& (ac) + HSQ (ao)

(b). Combine the three reactions to show the olvpratess. Use the single combined reaction to
calculate the overall reaction enthalpy. Compatté te result in part (a).

20. Use normal mode analysis to decide whether pmpai2-methylpropane has a higher
absolute entropy. You can use any convenient nonmodle analysis program based on
molecular mechanics or molecular orbital theory.
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21. Use normal mode analysis to decide whether cgsiahe or benzene has a higher absolute
entropy. You can use any convenient normal modb/sisgprogram based on molecular
mechanics or molecular orbital theory.

22. Give an example for each of the following typépmcesses. Choose your examples from
ideal gas expansions or compressions or phasatinasof pure substances. Specify the
difference in the variable, P or T, that is respolesfor the spontaneous or non-spontaneous
direction of the process:

(a). a spontaneous adiabatic and isothermal process

(b). a spontaneous isothermal process with a deetieantropy for the system,

(c). a non-spontaneous isothermal process witihenease in entropy for the system,

(d). a spontaneous adiabatic process that decrdastsmperature of the system.

23. The Clausius inequality relates the entropy glearof the system and surroundings.
Consider an isothermal process in a closed systehermal contact with the surroundings
acting as a constant temperature reservoir. Us€ltgsius inequality, Eq. 13.1.9, to show that
dS > —-dg,r for a spontaneous process.

24. Determine if the following statements are trli¢atse. If the statement is false, describe the
changes that are required to make the statementitpossible. Assume that the system and
surroundings are an isolated composite. (Hint:elufethe following statements are true.)

(a). The heat transfer for the system is equalagmtude and opposite in sign to the heat
transfer for the surroundingdq = —dgsury)-

(b). The entropy change of the system is equalagmitude and opposite in sign to the
entropy change of the surroundings (dS = g S

(c). For a spontaneous process, the magnitudeeadritropy change of the system is never
greater than the magnitude of the entropy changieec$urroundings.

(d). Heat transfer to a system at low temperatiresga larger change in the entropy of the
system than the transfer of the same amount ofdidagh temperature.

(e). Spontaneous processes always result in dapdrenergy to the surroundings.

(. The entropy of every system is zero at abgohgtro.

(9). For a given heat transfer, the entropy charidke surroundings is independent of the
details of the process for the system.

(h). One mole of xenon gas at 1 bar and 298.2rHixed with another mole of xenon gas at 1
bar and 298.2 K. The total entropy change of threlined systems is positive for the process.

25. Heat capacities are often approximated by a peeees: G=a+bT +c T2 fora, b, andc
constants. Find the change in enthalpy and entobpysubstance for a constant pressure process
with a temperature change from® T..

26. Calculate the residual entropy at 0 K for NOuasisig random NO and ON orientations.
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