
Chapter 12 Problems: The Statistical Definition of Entropy 
 
 
1. Calculate the number of ways of arranging the energy states and find all the microstates 
consistent with the distribution numbers (2,2,0,0). Find the average energy for the distribution. 
(Assume distinguishable systems.) 
 
 
 
 
 
 
Answer:  There are four total systems, N = 4, and two packets of energy, E = 2. Using Eq. 
12.2.8, the number of ways of arranging the energy states is given as: 
 

 W(2,2,0,0) = 
N!

no! n1! n2!…
 = 

4!
2! 2! 0! 0! = 

4·3·2·1
(2·1)(2·1) = 6 

 

So we should find six microstates: 
 
 
 
 
 
 
 
The average energy using Eq. 12.2.4 is: 
 

 E = 
1
N 

i

 niEi = 
2 (0) + 2 (1) + 0 (2) + 0 (3)

4  = ½  

 

Alternately, we could just use the ensemble values and Eq. 12.1.1: 
 

 E = 
E
N = 

2
4  = ½  

 
 
2. Calculate the number of ways of arranging the energy states and find all the microstates 
consistent with the distribution numbers (2,1,0,1). Find the average energy for the distribution. 
(Assume distinguishable systems.) 
 
 
 
 
 
 
Answer:  There are four total systems, N = 4, and four packets of energy, E = 4. Using Eq. 
12.2.8, the number of ways of arranging the energy states is given as: 
 

 N =4 
E = 2 

E 

  
0 

1 
2 
3 

  

ABcd        AbCd     AbcD   aBCd   aBcD         abCD 
  

  
E 

  
0 

1 
2 
3 

   
  

 
  

   
 
 

  
  
 

E 

 
 

0 
1 
2 
3 

  



 W(2,1,0,1) = 
N!

no! n1! n2!…
 = 

4!
2! 1! 0! 1! = 

4·3·2·1
(2·1)(1)(1)(1) = 12 

 

So we should find 12 microstates: 
 
 
 
 
 
 
 
 
 
 
 
 
The average energy using Eq. 12.2.4 is: 
 

 E = 
1
N 

i

 niEi = 
2 (0) + 1 (1) + 0 (2) + 1 (3)

4  =  

 

Alternately, we could just use the ensemble values and Eq. 12.1.1: 
 

 E = 
E
N = 

4
4  =  

 
 
3.  Given the following microstates: 
 
 
 
 
 

(a). Find the set of distribution numbers. 
(b). Specify the macrostate. 
(c). Find the number of ways of arranging the energy states for the system for the set of 

distribution numbers. Is the given set of microstates complete? 
(d). Find the statistical weight for the macrostate. 
(e). Find the degeneracy for the macrostate. 
(f). Find E and U – U(0). 
(g). Find the probability of occurrence of the first microstate, within the given macrostate. 
(h). Find another macrostate with the same number of systems and the same energy. Which is 

more probable, the given macrostate or the new macrostate? 
(i). What is the most probable distribution and Wmax subject to N = 5 and E = 2? 
(j). What is the equilibrium distribution? 

 
 

 N =4 
E = 4 E 

 
 

0 

1 
2 
3 

  
ABcd        AbCd     AbcD   ABcd   aBCd         aBcD 

  

 
 

  

 
 

 

 
 

 
 
 

   

 

 
 

AbCd        aBCd      abCD   AbcD   aBcD         abCD 

E 

 
 

0 

1 
2 
3 

 

 
 
  

  

  
 

  
 

 

 
 
 

 
 
  

 

 
  

   
   

  
 

 
   

   
  

 
 
   

  
   

  
   

 
 
  

  
   

E 

0 
1 
2 
3 
4 

 
 

  
 



Answers:  (a). The distribution numbers are (3,2,0,0). (b) The macrostate is specified by the set 
of distribution numbers, (3,2,0,0). (c). Using Eq. 12.2.8, the number of ways of arranging the 
energy states is given as: 
 

 W(3,2,0,0) = 
N!

no! n1! n2!…
 = 

5!
3! 2! 0! 0! = 

5·4·3·2·1
(3·2·1)(2·1) = 10 

 

The given ten microstates are complete, since W = 10. (d). The statistical weight is W. (e). The 
degeneracy is also W. (f). The average energy and internal energy using Eq. 12.2.4 are: 
 

 U – U(0) = E = 
1
N 

i

 niEi = 
3 (0) + 2 (1) + 0 (2) + 0 (3)

5  = 2/5  

 

Alternately, we could just use the ensemble values and Eq. 12.1.1: 
 

 U – U(0) = E = 
E
N = 

2
5  = 2/5  

 

(g). Each microstate has an equal a priori probability. The probability of each individual 
microstate within the given macrostate is 1/10. Each microstate appears one-tenth of the time. (h). 
The only other macrostate with the same number of systems and energy is (4,0,1,0): 
 
 
 
 
The new statistical weight is: 
 

 W(4,0,1,0) = 
N!

no! n1! n2!…
 = 

5!
4! 0! 1! 0! = 

5·4·3·2·1
(4·3·2·1)(1)(1)(1) = 5 

 

which is less probable than the original macrostate. (i). The most probable distribution is 
(3,2,0,0) with Wmax = 10, subject to the constraints. (h). The equilibrium distribution is the most 
probable distribution, (3,2,0,0), subject to the given constraints. 
 
 
4.  Assume a system has equally spaced energy states with spacing . (a). Find N, E, E, and 
U – U(0) for the distributions (26,14,9,5,3,2,1) and (25,16,8,5,3,2,1). (b). Which distribution is 
the more probable macrostate? (c). Find the difference between the two macrostates in the 
number of ways of arranging the energy states for the system. (d). One of the two is the most 
probable distribution. Which macrostate corresponds to the equilibrium state? 
 
 
Answer:  (a). Both sets of distribution numbers correspond to N = 60 and E = 75 for 
 

 U – U(0) = <E> = 
E
N = 

75 
60  = 1.25  

 

(b). Using Eq. 12.2.8, the number of ways of arranging the energy states is given using a 
calculator or Excel as: 
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 W(26,14,9,5,3,2,1) = 
N!

no! n1! n2!…
 = 

60!
26! 14! 9! 5! 3! 2! 1! = 4.5292x1035 

and W(25,16,8,5,3,2,1) = 
N!

no! n1! n2!…
 = 

60!
25! 16! 8! 5! 3! 2! 1! = 4.4160x1035 

 

The first distribution is the more probable. 
(c). The difference is 1.13x1034. The first distribution is more probable by a very large number of 
microstates. (d). The first macrostate, (26,14,9,5,3,2,1), is the most probable state and 
correspondingly is the equilibrium state. 
 
 
5.  Calculate the residual entropy for a crystalline solid like N=N=O assuming the energy 
difference for the two crystalline alignments is 0.300 kJ mol-1. Assume that the distribution of 
alignments is “frozen in” at the melting point. Assume the melting point is -90.8C. Compare the 
result to Eq. 12.4.10. Why is there a difference? 
 
 
Answer:  The plan is to use S = – R  pi ln pi, Eq. 12.4.14, with a Boltzmann distribution over 
two states at energies o= 0 and 1 = 0.300 kJ mol-1. At the melting point: 
 

 RT = 8.314 J K-1mol-1(273.2 –90.8 K) = 1516. J K-1 mol-1 
 

The lower energy state has a Boltzmann weighting factor of e–o/RT = e0 = 1. The higher energy 
alignment has a Boltzmann weighting factor of: 
 

 e–1/RT = e–300. J mol-1/1516. J K-1 mol-1= 0.8205 
 

The partition function, which is the probability normalization factor, is the sum of the weighting 
factors: 
 

 q = e–o/RT + e–1/RT = 1 + 0.8205 = 1.8205 
 

The corresponding probabilities are: 
 

 p1 = e–1/RT/q = 0.8205/1.8205 = 0.4507 
 po = e–o/RT/q = 1/1.8205 = 0.5493 
 

Finally the entropy, based on Eq. 12.4.14, is: 
 

 S = – R  pi ln pi = – 8.314 J K-1 mol-1 (0.5493 ln 0.5493 + 0.4507 ln 0.4507) 
    = – 8.314 J K-1 mol-1 (-0.6882) = 5.722 J K-1 mol-1 

 

The result using Eq. 12.4.10 is S = – R ln 2 = 5.763 J K-1 mol-1, with w = 2. The difference is that 
Eq. 12.4.10 with w = 2 assumes that the two orientations are equally probable, which is true if 
the difference in alignment energies is less than RT, 1– o =  << RT. In this problem, /RT = 
0.2, which is small enough to give the equal populations result, to within expected experimental 
error. 
 
 
6.  The goal of this problem is to help you become more comfortable with partition functions. 
Consider the residual entropy of N=N=O. Define the lowest energy alignment as having energy 



o and the higher energy alignment at 1. A reasonable way to assess the degree of alignment is 
to calculate the fraction of molecules in the low energy state, fo, and the fraction of the molecules 
in the high energy state, f1: 
 

 fo = 
no

no+ n1
  f1 = 

n1

no+ n1
 

 

where no is the number of molecules in the low energy alignment and n1 is the number of 
molecules in the high energy alignment.1 Of course, fo + f1 = 1. (a). The number of molecules in 
a specific energy state is proportional to the Boltzmann weighting factor, ni  e–i/kT. Use this 
proportionality to find the fractions fo and f1. (b). Alternatively, the probability of finding a 
molecule in a specific energy state, i, is given by Eqs. 12.4.13 (Eq. 8.9.5). Show that your 
answers to part (a) are consistent with Eqs. 12.4.13. 
 
 

Answer:  (a). Given the proportionality ni  e–i/kT, the fractions are: 
 

 fo = 
no

no+ n1
 = 

e–o/kT

e–o/kT + e–1/kT  f1 = 
n1

no+ n1
 = 

e–1/kT

e–o/kT + e–1/kT 

 

(b). The partition function for the two-state system is: 
 

 q = 
i

 e–i/kT = e–o/kT + e–1/kT 

 

Notice that the partition function is the same as the denominators for the fractions in part (a). The 
Boltzmann probabilities using Eqs. 12.4.13 (Eq. 8.9.5) are then: 
 

 po = fo = 
e–o/kT

q  = 
e–o/kT

e–o/kT + e–1/kT 

 

 p1 = f1 = 
e–1/kT

q  = 
e–1/kT

e–o/kT + e–1/kT 

 

as we derived in part (a). The partition function, q, and the denominator of the fractions, no+ n1, 
play the same role; they normalize the probability to give either  pi = 1 or  fi = 1. 
 
 
7.  Calculate the number of ways of arranging 10 distinguishable balls in three boxes with 3 in 
the first box, 5 in the second box, and 2 in the third box. 
 
 
Answer:  The statistical weight is given by Eq. 12.2.8 with the distribution numbers (3,5,2): 
 

 W = 
N!

no! n1! n2!…
 = 

10!
3! 5! 2! = 2520 

 
 



8.  (a). Calculate the number of ways of arranging 3 distinguishable balls among 3 boxes with 2 
balls in the first box, 1 ball in the second box, and 0 balls in the third box. (b). Calculate the 
number of ways of arranging the energy states of the system with 3 molecules given that 2 
molecules are in the first energy level, 1 molecule is in the second energy level, and 0 molecules 
are in the third energy level. Draw the arrangements. 
 
Answer: (a) The number of ways of arranging 3 distinguishable balls among 3 boxes with 2 balls 
in the first box, 1 ball in the second box, and 0 balls in the third box is given by Eq. 12.2.8 with 
the distribution numbers (2,1,0): 
 

 W = 
N!

no! n1! n2!…
 = 

3!
2! 1! 0! = 3 

 
 
 
 
(b). The statistical weight is the same as in part (a): 
 
 
 
 
 
 
 
9.  Find the set of distribution numbers that maximizes the number of arrangements for 3 balls in 
3 boxes. 
 
 
Answer:  The statistical weight is given by Eq. 12.2.8 with n1 balls in box 1, n2 balls in box 2, 
and n3 balls in box 3: 
 

 W  =  
3!

n1! n2! n3!
 

 

Notice that permuting the same set of distribution numbers among the boxes gives the same 
statistical weight. That is W(3,0,0) = W(0,3,0) = W(0,0,3), so we only need to look for unique 
sets of (n1,n2,n3). The possibilities are: 
 

 W(3,0,0) = 
3!

3! 0! 0! = 1 W(2,1,0) = 
3!

2! 1! 0! = 3 W(1,1,1) = 
3!

1! 1! 1! = 6 
 

Wmax results for (1,1,1). The distribution with equal occupancies is called the uniform 
distribution. The distribution with the maximum number of ways of arrangement is always the 
uniform distribution in the absence of any constraints. The Boltzmann distribution arises because 
of the constraint on the total energy of the ensemble. 
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10.  (a). Starting with N!  (N/e)N show that  ln N!  N ln N – N. (b). Starting with 
N!  2N (N/e)N show that  ln N! = N ln N – N + ½ ln 2N. (c) Compare the exact value of 
 ln N! and the two approximations for the largest number your calculator can use. 
 
 
Answer:  (a). Taking the log of  N!  (N/e)N: 
 

 ln N!  ln((N/e)N) = N ln(N/e) = N ln N + N ln(1/e) = N ln N – N ln e 
 

since ln(1/x) = – ln(x). For the last term, ln(x) and ex are inverse functions and ln(e1) = 1. 
 

 ln N!  N ln N – N        (Eq. 12.4.2) 
 

(b). Taking the log of  N! = 2N (N/e)N: 
 
 ln N!  ln((N/e)N) + ln 2N 
 
Using the result for ln((N/e)N) from part (a) simplifies the first term and noting that x = x½: 
 
 ln N!  N ln N – N + ln (2N)½ 
 ln N!  N ln N – N + ½ ln 2N      (Eq. 12.9.12) 
 
(c). The following values were calculated for N = 69: 
 

 69! = 1.71122x1098 with the exact ln N! = 226.1905 
 

The approximations give: 
 

 ln N!  N ln N – N + ½ ln 2N = 226.1893 for a negligible error 
and ln N!  N ln N – N = 223.1533  for a 1.34% error from the exact value. 
 
 
11. Show that the percent error using Sterling’s approximation for ln(N!) decreases with 
increasing N. (Excel has a larger range for valid N than most calculators.) 
 
Answer:  Excel maintains 15 significant figures for N! up to N = 170. The following spreadsheet 
was set-up using Eqs. 12.4.2 and 12.9.12 as approximations for ln N!. The percent error is the 
error using ln N!  N ln N – N compared to the exact value to 15 significant figures. 
 

N N! ln N! exact N ln N - N + (ln 2N)/2 N ln N - N % error 
30 2.65253E+32 74.6582 74.6555 72.0359 3.51 
69 1.71122E+98 226.1905 226.1893 223.1533 1.34 
80 7.15695E+118 273.6731 273.6721 270.5621 1.14 
90 1.48572E+138 318.1526 318.1517 314.9829 1.00 

100 9.33262E+157 363.7394 363.7385 360.5170 0.89 
150 5.71338E+262 605.0201 605.0196 601.5953 0.57 
170 7.25742E+306 706.5731 706.5726 703.0857 0.49 

 
The thermodynamic limit is for very large numbers of systems, where N  1023. Sterling’s 
approximation introduces negligible error for such large numbers. 



 
 
12.  In Problem 4 the most probable distribution was determined, choosing from 
(26,14,9,5,3,2,1) and (25,16,8,5,3,2,1). Verify that the most probable distribution is a Boltzmann 
distribution. 
 
 
Answer:  The first distribution is the most probable distribution, (26,14,9,5,3,2,1). You can verify 
that the first macrostate corresponds to a Boltzmann distribution, as closely as possible given the 
small number of systems, by plotting ln pi versus Ei as in Example 12.4.2: 
 

 

Ei/ ni pi ln pi 
0 26 0.4333 -0.8363 
1 14 0.2333 -1.4553 
2 9 0.15 -1.8971 
3 5 0.0833 -2.4849 
4 3 0.05 -2.9957 
5 2 0.0333 -3.401 
6 1 0.0167 -4.0943 
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R² = 0.9973
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13.  The fundamental vibration frequency for I2 is 214.50 cm-1. Assume the vibrational states are 
equally spaced with spacing 214.50 cm-1. Iodine vapor is held in an oven at elevated temperature. 
The relative occupations of the vibrational states were found to be 1.000 : 0.467 : 0.222 : 0.100. 
Calculate the temperature. 
 
 
Answer:  Following Example 12.4.2, the spacing between the energy states is given by: 
 

  = E = 
hc
  = h c ~o NA        1 

   = 6.626x10-34 J s(2.998x108m s-1)(214.5 cm-1)(100 cm/1 m)(6.022x1023 mol-1) 
   =  2.566 kJ mol-1 

 

The relative populations of the states, ri, is determined by dividing the probability by the 
population of the i = 0 state; so the probability of the ith state is determined by: 
 

 ri = 
pi

po
  giving  pi = ri po       2 

 

The sum of the pi is given by normalization:  pi = 1. The sum of the ri values is: 
 

  ri = 
 pi

po
 = 

1
po

  giving po = 
1
ri

       3 
 



Substitution of this last value for po into Eq. 2 gives: 
 

 pi = 
ri

ri
           4 

 

Using Eq. 4 the probabilities are calculated and the data are plotted as in Example 12.4.2: 
 

 

i Ei (kJ mol-1) Rel. pop. pi ln pi 
0 0.000 1 0.559 -0.582 
1 2.566 0.467 0.261 -1.343 
2 5.132 0.222 0.124 -2.087 
3 7.698 0.1 0.056 -2.884 

 
slope -0.2982 -0.5762 intercept 
± 0.0030 0.0143 ± 
r2 0.9998 0.0171 s(y) 
F 10059.0807 2.0000 df 
ssregression 2.9272 0.0006 ssresidual 
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 slope = –1/RT = -0.2982 kJ-1 mol 
 RT = 3.353 kJ mol-1 

 

 T = 
3.353 kJ mol-1

8.314x10-3 kJ K-1 mol-1 = 403. K  4. K 

The relative populations for vibrational states can be easily determined by the intensity of 
vibrational transitions that start from states higher than  = 0. These bands are called hot bands. 
 
 
14. Is the following system at thermal equilibrium? Give the approximate temperature, assuming 
the unit of energy, , is 10.0 cm-1. 
 
 
 
 
 
 
 
 
 
Answer:  The plan is to make a plot using Eq. 12.4.29 to check for linearity, similar to Example 
12.4.2. There are 20 systems for this problem. The value for  in kJ mol-1 is given by: 
 

  = E = 
hc
  = h c ~o NA        1 

   = 6.626x10-34 J s(2.998x108m s-1)(10.0 cm-1)(100 cm/1 m)(6.022x1023 mol-1) 
   =  0.1196 kJ mol-1 

 

The plot using Eq. 12.4.29 with units in kJ mol-1 is: 
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state i Ei (kJ mol-1) ni pi ln pi 
0 0.000 11 0.550 -0.598 
1 0.239 4 0.200 -1.609 
2 0.718 3 0.150 -1.897 
3 1.436 2 0.100 -2.303 

 
 slope = –1/RT = -1.015 kJ-1 mol 
 RT  0.985 kJ mol-1 

 

 T  
0.985 kJ mol-1

8.314x10-3 kJ K-1 mol-1  120 K 
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The plot is not linear so the system is not at equilibrium. Since the system is not at equilibrium, 
an effective temperature cannot be determined. However, using the slope of the fit curve, a rough 
measure of the temperature for the equivalent Boltzmann distribution is 120 K with a large error. 
   The energy states in this problem are further apart as the energy increases. The energy states 
are said to “diverge” instead of being equally spaced. Translational and rotational energy states 
diverge. However, rotational energy states have a degeneracy of (2J+1), where J is the index for 
the energy state. The energy states in this problem then energetically equivalent to rotational 
levels but are non-degenerate. 
 
 
15.  The conformational entropy for butane was determined in Example 12.4.3 using the gauche-
anti-energy difference from molecular mechanics. Use a molecular orbital calculation to estimate 
the energy difference and determine the corresponding conformational entropy. How sensitive is 
the conformational entropy to the value of the energy difference? Your instructor will assign a 
molecular orbital method from the following list depending on the resources available: AM1, 
PM3, HF 3-21G(*), HF 6-31G*, B3LYP/6-31G*, MP2/6-311G*//HF 6-31G* (single point 
energy at MP2/6-311G* for the geometry calculation at 6-31G*). 
 
 
Answer:  The energies are given below in the energy units normally associated with the 
calculation method: 
 

State units Egauche Eanti E 
MMFF kcal mol-1 -4.2554 -5.0348 0.7794 
AM1 kcal mol-1 -30.4195 -31.1262 0.7067 
PM3 kcal mol-1 -28.5375 -29.0632 0.5257 
HF 3-21G(*) Hartrees -156.431 -156.432 0.001223 
HF 6-31G* Hartrees -157.297 -157.298 0.001514 
B3LYP 6-31G* Hartrees -158.457 -158.458 0.001388 
MP2 6-311G* Hartrees -157.885 -157.886 0.000999 

 
The difference in energy was converted to kJ mol-1 and the entropy calculated following 
Example 12.4.3: 
 
 
 



State E  gauche q pgauche panti S 
   (kJ mol-1) e-E/RT          (J K-1 mol-1) 
MMFF 3.26101 0.26839 1.53677 0.174643 0.65072 7.39 
AM1 2.956833 0.30342 1.60684 0.18883 0.6223 7.69 
PM3 2.199529 0.41182 1.82363 0.225822 0.54836 8.33 
HF 3-21G(*) 3.210987 0.27386 1.54771 0.176943 0.64612 7.44 
HF 6-31G* 3.974744 0.20125 1.40250 0.143493 0.71301 6.64 
B3LYP 6-31G* 3.643406 0.23003 1.46005 0.157546 0.68491 7.00 
MP2 6-311G* 2.622087 0.34728 1.69456 0.204939 0.59012 7.99 

 
The MP2/6-311G* calculation was a single point energy based on the HF 6-31G* optimized 
geometry. It is interesting to note that, at least for this simple compound, molecular mechanics 
represents the torsional interaction as well as lower level quantum mechanical calculations. The 
torsional entropy is moderately sensitive to the level of the calculation. The experimental value is 
0.67 kcal mol-1 or 2.8 kJ mol-1.2 

 
 
16. Determine the conformational entropy for 1,2-dichlorobutane. Your instructor will assign a 
molecular mechanics or molecular orbital method from the following list depending on the 
resources available: MMFF, PM3, HF 3-21G(*), HF 6-31G*, B3LYP/6-31G*, MP2/6-
311G*//HF 6-31G* (single point energy at MP2/6-311G* for the geometry calculation at 
6-31G*) 
 
 
Answer:  The energies are given below in the energy units normally associated with the 
calculation method: 
 

State units Egauche Eanti E 
MMFF kcal mol-1 6.2564 5.0273 1.2291 
PM3 kcal mol-1 -24.0718 -24.6829 0.6111 
HF 3-21G(*) Hartrees -992.435 -992.438 0.002923 
HF 6-31G* Hartrees -997.028 -997.031 0.003047 
B3LYP 6-31G* Hartrees -999.016 -999.019 0.002713 
MP2 6-311G* Hartrees -997.646 -997.648 0.002430 

 
The difference in energy was converted to kJ mol-1 and the entropy calculated following 
Example 12.4.3 and Eq. 12.4.11: 
 

State E gauche q pgauche panti S 

 (kJ mol-1) e-E/RT    (J K-1mol-1) 
MMFF 5.142554 0.12565 1.25130 0.10042 0.79917 5.33 
PM3 2.556842 0.35654 1.71308 0.20813 0.58374 8.04 
HF 3-21G(*) 7.674337 0.04526 1.09051 0.04150 0.91700 2.86 
HF 6-31G* 7.999899 0.03969 1.07937 0.03677 0.92646 2.61 
B3LYP 6-31G* 7.121931 0.05655 1.11310 0.05080 0.89839 3.32 
MP2 6-311G* 6.379177 0.07630 1.15261 0.06620 0.86760 4.01 

 
The results are surprisingly dependent on the method. The experimental E is 1.08 kcal mol-1 or 
4.52 kJ mol-1.2%%WJH 



 
 
17.  The process of folding a protein to produce the active conformation restricts torsions along 
the polypeptide backbone and side chain torsions for amino acids that are buried in the interior of 
the protein. Calculate the conformational entropy of the side chain of the amino acid valine at 
298.2 K. Use molecular mechanics with the MMFF force field in the gas phase for the zwitter-
ionic form to determine the low energy side chain conformations and the corresponding energies. 
 
 
Answer:  The calculation of the entropy parallels Example 12.4.3. The low energy conformations 
for zwitter-ionic valine in the gas phase using the MMFF94x force field are -3.0881, -5.3433, 
-4.4024 kcal mol-1 at -51.8, 57.6, -168.7 respectively. The dihedral angle was measured from 
the carbonyl carbon to the side chain methine-hydrogen, O=C–C–C–H. Using the lowest energy 
conformer as the reference, the energies in kJ mol-1 in increasing order are then: 0, 3.937, 9.436 
kJ mol-1. 
   The Boltzmann weighting factor for the lowest energy conformer is 1, since e0 = 1. The 
Boltzmann weighting factors for the higher energy conformers are: 
 

 e-2/RT = e-9.436x103J/(8.314 J K-1 mol-1 298.2 K) = 0.0222 

 e-1/RT = e-3.937x103J/(8.314 J K-1 mol-1 298.2 K) = 0.2043 
 

The partition function, Eq. 12.4.13 (Eq. 8.9.7), is the normalization for the probability 
distribution: 
 

 q = 
i

 e–i/kT = 1 + 0.2043 + 0.0222 = 1.2265 

The probabilities for each state are then: 
 

 p2 = e-2/RT/q = 0.0222/1.2265 = 0.0181 

 p1 = e-1/RT/q = 0.2043/1.2265 = 0.1666 

 p0 = e-o/RT/q = 1/q = 1/1.2265 = 0.8153 
 

The molar conformational entropy as given by Eq. 12.4.14: 
 

 S =  – R 
i

  pi ln pi     (molecular probabilities) 

 S = – 8.314 J K-1 mol-1 [0.8153 ln(0.8153) + 0.1666 ln(0.1666) + 0.0181 ln(0.0181)] 
    = – 8.314 J K-1 mol-1 [-0.1665 + (-0.2986) + (-0.0726)] 
    = 4.47 J K-1 mol-1 
 

When the side chain is bound in a restricted environment, most of this entropy is lost. Notice that 
the highest energy conformer plays a minor role in the overall entropy, because the state is not 
easily accessible at 298.2 K. In other words, at room temperature RT = 2.48 kJ mol-1 and the 
highest energy conformer is at 9.44 kJ mol-1. If the energy differences were very small the 
conformational entropy would have been S = R ln 3 = 9.13 J K-1 mol-1. Torsional conformational 
isomers are often called rotomeric states. The side chain of valine has three rotomeric states. 
 
 



18. Assume that the gauche-energy states for a 1,2-disubstituted ethane, X–CH2–CH2–Y, are at 
energy  above the anti-state. The anti-state is set at the reference state. Show that the 
conformational entropy for the C–C bond in disubstituted ethane compounds is given by: 
 

 S = – 
R

(1 + 2 e-/RT)
 










ln






1

1 + 2 e-/RT
 + 2 e-/RT ln









e-/RT

1 + 2 e-/RT
 

 
 
Answer:  The Boltzmann weighting factor for the anti-conformer is 1, since we chose a reference 
energy of zero for the anti-conformer and e0 = 1. The Boltzmann weighting factor for the 
gauche-conformer with the given energy of  is: 
 

 e-Egauche/RT = e-/RT 
 

The partition function is the normalization for the probability distribution: 
 

 q = 
i

 e–Ei/kT = 1 + 2 e-/RT 

The probabilities for each gauche and anti-energy state are then: 
 

 p(gauche) = 
e-Egauche/RT

q  = e-/RT/(1 + 2 e-/RT) 

 p(anti) = 
e-Eanti/RT

q  = 1/q = 1/(1 + 2 e-/RT) 
 

The conformational entropy as given by Eq. 12.4.9 is for a sum over all the energies for a 
system. The entropy is given using Eq. 12.4.11: 
 

 S = – R 
i

 pi ln pi = – R [panti ln panti + pgauche ln pgauche + pgauche ln pgauche] 

 S = – 
R

(1 + 2 e-/RT)
 




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



ln
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
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1 + 2 e-/RT
 + 2 e-/RT ln









e-/RT

1 + 2 e-/RT
 

 
 
19.  Show that the maximum conformational entropy for freely rotating sp3 hybridized bonds is 
given by S = R ln 3. In other words, assume that the energy differences between the three 
conformational states is much less than RT. You also need to assume that the three 
conformations are distinguishable, as in the central butane dihedral or the side chain of valine but 
not –CH3 torsions. 
 
 
Answer:  Assign the lowest energy conformer as the reference state with o = 0. Then the 
remaining conformers have energies 1 and 2. Assume that 1 << RT and 2 << RT. The 
Boltzmann weighting factor for each level is then essentially equivalent, e–i/RT  1. The partition 
function is then  e–i/RT = 3. Then the probability for finding each conformational state is equal, 



po = p1 = p2 = 1/3. There is no conformational biasing, because the energy differences are small 
compared to the available thermal kinetic energy. The conformational entropy, using Eq. 
12.4.14, is: 
 

 S =  – R 
i

  pi ln pi = – R [1/3 ln 1/3 + 1/3 ln 1/3 + 1/3 ln 1/3] = – R ln 1/3 = R ln 3 

In general, the maximum conformational entropy is given by S = R ln w, where w is the number 
of distinguishable conformational states. (See the previous problem for more information about 
distinguishability.) 
 
 
20.  Calculate the conformational entropy for the C(sp3)–C(sp2) bond torsion leading to the 
phenyl ring in the side chain of the amino acid phenylalanine. Use molecular mechanics with the 
MMFF force field for gas phase energies. To obtain values that are appropriate for protein 
folding studies, build a protein in the alpha-helical form with 11 residues: five alanines followed 
by phenylalanine followed by five alanines. Acetylate the N-terminus and amidate the C-
terminus to help stabilize the alpha-helix. Once the lowest energy structure is found, fix (or 
freeze) all of the atoms except those in the phenyl side chain. Then determine the low energy 
conformers as you rotate around the C–C(sp3)–Cring(sp2)–Cring dihedral. You will find four low 
energy conformers. However, the conformers are in two equivalent pairs. The conformers in 
each pair differ by rotation of the phenyl ring by 180. The phenyl ring is symmetrical with 
respect to rotation by 180, so the conformational states that differ by 180 are indistinguishable. 
The counting of states for calculation of the entropy is over distinguishable states. To correct for 
symmetry, then, calculate the entropy by summing over only the two unique, distinguishable 
states. The structure and the required dihedral is illustrated below, Figure P12.1. 
 

 
 

Figure P12.1: An alpha-helical 11-mer with phenylalanine in the center. The required 
dihedral is depicted with the angle of -48.0, giving the lowest energy conformer. The dotted 
lines show the hydrogen-bonding pattern. The distortions in the hydrogen-bonding pattern 
are caused by the shortness of the peptide. Your model may differ in the conformations of the 
terminal residues. 



 
 
Answer:  The calculation of the entropy parallels Example 12.4.3. The low energy conformations 
in the gas phase using the MMFF94x force field are 3.3441 and 6.2248 kcal mol-1 at -48.0 and 
7.2 respectively. The dihedral angle was measured from the alpha-carbon to the side chain beta-
carbon to the ring sp2-C, and finishing with another ring-carbon: C–C(sp3)–Cring(sp2)–Cring. The 
dihedral for the methylene, -carbon and the alpha-carbon for this structure was 163. Using the 
lowest energy conformer as the reference, the relative energy of the higher energy conformer is 
12.05 kJ mol-1. 
   The Boltzmann weighting factor for the lowest energy conformer is 1, since e0 = 1. The 
Boltzmann weighting factor for the higher energy conformer is: 
 

 e-1/RT = e-12.05x103J/(8.314 J K-1 mol-1 298.2 K) = 0.00774 

 

The partition function, Eq. 12.4.13 (Eq. 8.9.7), is the normalization for the probability 
distribution: 
 

 q = 
i

 e–i/kT = 1 + 0.00774 = 1.0077 

The probabilities for each state are then: 
 

 p1 = e-1/RT/q = 0.00774/1.0077 = 7.68x10-3 

 p0 = e-o/RT/q = 1/q = 1/1.0077 = 0.9924 
 

The molar conformational entropy as given by Eq. 12.4.14: 
 

 S =  – R 
i

  pi ln pi     (molecular probabilities) 

 S = – 8.314 J K-1 mol-1 [0.9924 ln(0.9924) + 7.68x10-3 ln(7.68x10-3)] 
    = – 8.314 J K-1 mol-1 [(-7.57x10-3) + (-0.037)] 
    = 0.37 J K-1 mol-1 
 

The conformational entropy is quite small. Burying phenylalanine side chains in the interior of 
proteins has favorable energetic and solvation entropic effects with little conformational entropy 
penalty. Notice that the higher energy conformer plays a minor role in the overall entropy, 
because the state is not easily accessible at 298.2 K. In other words, at room temperature RT = 
2.48 kJ mol-1 and the higher energy conformer is at 12.05 kJ mol-1. If the energy differences were 
very small the conformational entropy would have been S = R ln 2 = 5.76 J K-1 mol-1. Torsional 
conformational isomers are often called rotomeric states. The side chain of phenylalanine has 
four rotomeric states, but only two distinguishable states. 
   Your results may have been rather different for this problem. Reliable estimates of the 
conformational entropy of amino acid side chains is a difficult computational problem and very 
sensitive to the details of the computation and the computational method. 
 
 
21.  The Boltzmann distribution is often derived directly by maximizing W instead of 
maximizing the entropy using Eq. 12.4.9. In this problem, we derive the Boltzmann distribution 



in several steps directly from the statistical weights. (a) Starting with Eq. 12.4.1, show that 
without constraints: 

 d(lnW) =  



∂lnW

∂ni
 dni 

 

(b). Add in the constraints to give: 
 

 0 = 






lnW

ni
 dni +   dni –   Ei dni 

 

(c). Show that the constrained maximization results in 
 

 






lnW

ni
 +  –  Ei = 0  

 

(d). Note that the summation variable in Eq. 12.4.5 is an arbitrary index. We can also write: 
 

 ln W = N ln N – 
j

 nj ln nj 

Show that the derivative of ln W with respect to ni while holding all the other distribution 
numbers constant gives just one term, which is: 
 

 



∂lnW

∂ni
 = – (ln ni + 1)  – ln ni 

 

(e). Substitute this last result into the result from part (c) and solve for ni to find: 
 

 ni = e – Ei = e
 e–Ei 

 

(f). Use normalization to find the Boltzmann distribution: 
 

 
ni

N = 
e–Ei

Q  

 
 
Answer:  (a). Maximizing the entropy is equivalent to maximizing ln W. The statistical weights 
are: 

 W = 
N!

no! n1! n2!...
        1 

 

The total number of systems in the ensemble and the total ensemble energy is: 
 

 N = 
i

 ni E = 
i

 ni Ei       2 

where the sum is over all energy states, i. The logarithm of the statistical weights is, Eq. 12.4.1: 
 

 ln W = ln N! –  ln ni!       3 
 

The number of systems in each state is changed by dni to find the maximum in ln W. The total 
differential of ln W is: 
 



 d(lnW) =  



∂lnW

∂ni
 dni       4 

 

(b). However, since the ensemble is isolated, we can’t change the number of systems in the 
ensemble nor the total energy. The constraints are: 
 

 Constraints: dN = dno + dn1 + dn2 + dn3 + ... =  dni  = 0   5 

 dE = Eo dno + E1 dn1 + E2 dn2 + E3 dn3 + ... =  Ei dni = 0   6 
 

Any constant multiple of these constraints will also give zero: 
 

  dni  = 0 and   Ei dni = 0      7 
 

where  and  are undetermined multipliers. Adding in the constraints and setting the result 
equal to zero to find the maximum gives: 
 

 0 = 






lnW

ni
 dni +   dni –   Ei dni     8 

 

(c). Now the ni's can be treated as independent! Combining sums and distributing out the factor 
of dni gives: 
 

 0 =  














lnW

ni
 +  –  Ei  dni      9 

 

The only way for this sum to always give zero for any changes in the dni is for each term in the 
sum to give zero: 
 

 






lnW

ni
 +  –  Ei = 0        10 

 

(d). We can now substitute in Eq. 3 into this last equation. Using Sterling’s formula, ln x! = 
x ln x – x, for the factorials gives: 
 

 ln W = N ln N – N – 
j

 (nj ln nj – nj)      11 

 

Notice that the last term in the sum gives the total number of systems in the ensemble,  nj = N 
giving Eq. 12.4.5: 
 

 ln W = N ln N – 
j

 nj ln nj       12 

 

The derivative of this last equation with respect to ni while holding all the other occupation 
numbers constant only results in the single term: 
 

 






lnW

ni
 = – 









ni 
ln ni

ni
 + ln ni        13 

 

since all the other derivatives are zero. Taking the derivative of ln ni gives: 
 

 






lnW

ni
 = – 



ni 

1
ni

 + ln ni        14 



 



∂lnW

∂ni
 = – (ln ni + 1)  – ln ni      15 

 

The final approximation is valid since we work in the thermodynamic limit were all the 
occupation numbers are very large. 
 

(e). The derivation from this point parallels Eqs. 12.4.7-12.4.14. Substituting this last equation 
for the derivative into Eq. 10 gives: 
 

 – ln ni +  –  Ei = 0        16 
 

Solving for the ln ni: 
 

 ln ni =  –  Ei        17 
 

and exponentiating both sides of the last equation results in the occupation number for the i th 
state for the most probable distribution: 
 

 ni = e – Ei = e
 e–Ei       18 

 

(f). We can solve for the normalization by substituting Eq. 18 into Eq. 2 to give: 
 

 N = 
i

 ni= 
i

 e e–Ei = e 
i

e–Ei      19 

 

Solving for the normalization constant gives: 
 

 e = 
N


i

e–Ei
         20 

 

The sum in the denominator is defined as the partition function, Q: 
 

 Q= 
i

 e–Ei         21 

 

which upon substitution into Eq. 20 gives the final result for the occupation numbers in the most 
probable distribution: 
 

 ni = 
N
Q e–Ei         22 

 
where ni is the number of systems in energy state Ei. The probability of occurrence of a system in 
energy state Ei is then obtained by dividing by the number of systems in the ensemble, to give 
the ensemble average: 
 

 
ni

N = 
e–Ei

Q          23 
 

which is probability of finding a system in energy state Ei. 
 
 



f 

x y 

maximum without 
constraint 

f 

x y 

maximum subject to 
constraint 

constraint on y 

 

22.  Consider the bowl shaped function, f(x,y) = 1 – x2 – y2. Maximize the function subject to the 
constraint y = 0.5 using the Lagrange method of undetermined multipliers. 
 
 
Answer:  The function and the constraint are shown in Figure P.1: 
 

 f(x,y) = 1 – x2 – y2        1 
 
 
 
 
 
 
 
 
 
 
 
 

Figure P.1: Constrained maximization of f(x,y) = 1 – x2 – y2. 
 
 
The total differential is: 
 

 df = – 2 x dx – 2 y dy = 0     (maximum) 2 
 

The unconstrained maximum for this function is calculated by setting df equal to 0, giving x = 0 
and y = 0 for the maximum, fmax = 1. The constraint is given as: 
 
 y = 0.5  or    c = y – 0.5 = 0    (constraint) 3 
 
as shown in Figure P.1. As x and y are changed to find the maximum, the differential of the 
constraint gives: 
 

 dc = dy = 0       (constraint) 4 
 

This equation can be multiplied by a constant, , and still give zero; the constant is the Lagrange 
multiplier: 
 

 ( dy) = 0       (constraint) 5 
 

Adding Eqs. 1 and 4 still gives zero: 
 

 – 2 x dx – 2 y dy + ( dy) = 0     (constrained) 6 
 

or collecting terms in dx and dy: 
 

 – 2 x dx + (– 2 y + ) dy = 0     (constrained) 7 
 

We can now treat dx and dy as independent of each other. The only way for Eq. 6 to always 
equal zero is if the coefficients of dx and dy are both always equal to zero: 
 



 (– 2 x) = 0 
 (– 2 y + ) = 0       (constrained) 8 
 

The first equation gives x = 0. The constraint requires y = 0.5. The maximum in our function 
occurs when x = 0 and y = 0.5. The value of f at the constrained maximum is then obtained from 
Eq. 1: 
 

 f(0,½) = 1 – (0)2 – (0.5)2 = 0.75     (constrained) 9 
 

as shown in the figure. This problem is really just a one dimensional problem since y is 
constrained to a constant value. We didn’t need to use Lagrange multipliers. However, the 
problem gives us a simple opportunity to explore the meaning of the Lagrange multiplier. The 
Lagrange multiplier, , is used for the constraint on the value of y. Solving Eq. 8 gives  = 2y, 
which is just –(f/y)x. Looking back to the derivation of the Boltzmann distribution,  is the 
Lagrange multiplier used to constrain the total energy of the ensemble, which also constrains the 
average energy of a system in the ensemble. Similarly to this problem,  = (1/k)(S/U)V = 
(1/k)(S/E)V, using Eq. 12.5.20. The Lagrange multiplier is proportional to the slope of the 
function that is being maximized with respect to changes in the corresponding constraint. 
 
 
23.  A scientific instrument company produces two different widgets. Let the number of widgets 
produced by the factory per day of the two different widgets be n1 and n2, respectively. The profit 
obtained by selling type-one widgets, P1, and type-two widgets, P2, is given as: 
 

 P1 = 40 n1 – n1
2   P2 = 20 n2 – 0.5 n2

2 

 

The negative terms in the profit equations result because as the production increases, the cost of 
labor increases (extra people need to be hired) and the marketing costs increase. The factory can 
make at most 25 widgets per day. Find the optimal level of production for the two widgets to 
maximize the overall profit. Compare the constrained result to the unconstrained result assuming 
the factory can produce any number of widgets per day. 
 
 
Answer:  This problem follows the Lagrange Multipliers example in Addendum 12.7. The total 
profit is given by P = P1 + P2. The total differential of the profit, as the production rates are 
varied, is: 
 

 dP = 






P

n1 n2

 dn1 + 






P

n2 n1
 dn2 

 

 dP = (40 – 2 n1) dn1 + (20 – n2) dn2       1 
 

Setting dP = 0 gives the optimum result with no production constraint. If dn1 and dn2 can vary 
freely, then the only way we can guarantee that dP = 0 is if both coefficients are equal to zero: 
 

 (40 – 2 n1) = 0  and  (20 – n2) = 0   (unconstrained) 2 
 

Solving for the production gives n1 = 20 and n2 = 20, which exceeds the maximum production 
possible by the factory. The production constraint is given by n1+ n2 = 25, or subtracting the 
constant from both sides of the equation to give the constraint equation equal to zero: 
 



 c = n1+ n2 – 25 = 0      (constraint)  3 
 

The total differential of the constraint as n1 and n2 are varied is: 
 

 dc = dn1 + dn2 = 0      (constraint)  4 
 

In other words, the total number of widgets produced is constant. So if more type-one widgets 
are produced, then an equal number fewer type-two widgets can be produced. Eq. 4 can be 
multiplied by a constant and still satisfy the constraints: 
 

  (dn1 + dn2) = 0      (constraint)  5 
 

Adding Eqs. 1 and 5 still gives zero for the maximum profit: 
 

 (40 – 2 n1) dn1 + (20 – n2) dn2 +  (dn1 + dn2) = 0  (constrained)  6 
 

Collecting terms in dn1and dn2: 
 

 (40 – 2 n1 + ) dn1 + (20 – n2 + ) dn2 = 0   (constrained)  7 
 

Since dn1 and dn2 can now be treated as independent variables, the only way we can guarantee 
dP = 0 is if both coefficients are separately equal to zero: 
 

 40 – 2 n1 +  = 0 
 20 – n2 +  = 0 
 

Subtracting the second equation from the first gives: 
 

 20 – 2 n1 + n2 = 0  and then  n2 = 2 n1 – 20  (constrained max.) 8 
 

Since n1+ n2 = 25 from the constraint, we can solve for n1 and substitute n1 = 25 – n2 into the last 
equation to give: 
 

 n2 = 50 – 2 n2 – 20 giving  n2 = 10    (constrained max.) 9 
 

and then from the original constraint, n1 = 25 – n2 = 15,. The maximum profit is then: 
 

 P = P1+ P2 = (40 n1 – n1
2) + (20 n2 – 0.5 n2

2) = 525 + 150 = 675 
 
 
24.  Thermodynamic state functions can be written directly in terms of the partition function, Q, 
which adds to the importance of this central concept. Using Eqs. 12.4.9, 12.4.12, 12.2.6, and 
12.1.2, show that the entropy can be written as: 
 

 S =  k ln Q + 
U – U(0)

T  

 
 
Answer:  Starting from Eq. 12.4.9, we need to find the ln pi. Taking the logarithm of pi from Eq. 
12.4.12 gives Eq. 12.5.29: 
 

 ln pi = 
– Ei

  kT – ln Q 
 

Substituting this last equation into Eq. 12.4.9 gives: 
 



 S = – k 
i

 pi



– Ei

  kT – ln Q  

    =  
k

kT 
i

 pi Ei + k 
i

 pi ln Q 

The first summation is just the average energy from Eq. 12.2.6. In the second summation, ln Q is 
a constant, which factors out in front of the summation: 
 

 S = 
E
T  + k ln Q 

i

 pi 

 

The ensemble average energy is U – U(0), Eq. 12.1.2. The sum of the pi is equal to one, because 
the probabilities are normalized,  pi = 1, giving: 
 

 S = k ln Q + 
U – U(0)

T  
 

The partition function gives the number of accessible states; therefore the more accessible states 
the greater the energy dispersal. In addition energy transfer into the system, as given by 
U – U(0), increases the number of accessible states, because more energy is available to the 
system. The entropy given as a function of Q will play an important role in Chapt. 32. 
 
 
25.  What is the probability of selecting an Ace in 10 total cards? To avoid statistical 
complications, assume that after each selection the card is returned to the deck, so that each 
selection is made from a full deck of 52 cards. 
 
 
Answer:  The probability of being dealt an Ace on a single selection is 4/52. The probability of 
being dealt an Ace in 10 selections is 10(4/52) = 40/52. It doesn’t matter which selection of the 
10 results in an Ace, so being dealt a single Ace is an “OR” series of events. 
 
 
26.  The next five problems concern the relationship between statistical weights and the 
probability of occurrence of a particular set of events. The number of ways of selecting n objects 
from N, which we called C[N choose n], is also called the binomial coefficient and given the 
symbol ( )N

n . Using Eq. 12.9.1 show that the binomial coefficient can be expressed as: 
 

 



N

n  = C[N choose n] = 
N!

n!(N-n)! 

 
 
Answer: Starting with Eq. 12.9.1, multiply the numerator and denominator by (N–n)!: 
 

 



N

n  = C[N choose n] = 
N(N–1)…(N–n+1)(N-n)!

n!(N-n)!  
 



However, the numerator is just the complete series of products from N down to 1, which is 
equivalent to N!: 
 

 



N

n  = C[N choose n] = 
N!

n!(N-n)! 
 

 
27. In the last problem we showed that the binomial coefficient ( )N

n  can be defined as: 
 

 



N

n  = C[N choose n] = 
N!

n!(N-n)! 
 

The binomial coefficient ( )N
n  is the numerical coefficient for the nth term in the Nth-order 

polynomial (1 + x)N. For example: 
 

 (1 + x)3 = (1 + 2x + x2)(1 + x) 
   =   1     +  3x   +   3x2   +    x3 

   = 


3

0  1 + 


3

1  x + 


3

2  x2 + 


3

3  x3 

 

Verify the corresponding result for (1 + x)4. 
 
 
Answer: Start with the explicit polynomial: 
 

 (1 + x)4 = (1 + 3x + 3x2 + x3)(1+x) = 1 + 4 x + 6 x2 + 4 x3 + x4 
 

In terms of the binomial coefficients, following the pattern from the cubic polynomial, we should 
find: 
 

 (1 + x)4 =  


4

0 1 + 


4

1  x + 


4

2  x2 + 


4

3  x3 + 


4

4  x4 
 

Do the evaluations of the binomial coefficients match up with the expected coefficients: 
1 : 4 : 6 : 4 : 1? 
 

 


4

0  = 


4

4  = 
4!

0!(4-0)! = 1 


4

1  = 


4

3  = 
4!

1!(4-1)! = 4 


4

2  = 
4!

2!(4-2)! = 6 

 
 
28.  Assume that 3 distinguishable balls are selected at random for placement into two boxes. 
The volume of box 1 is V1 and the volume of box 2 is V2. The probability of a single ball landing 
in box 1 is proportional to its volume, p1 = V1/(V1 + V2). The probability of a single ball landing 
in box 2 is proportional to its volume, p2 = V2/(V1 + V2). What is the probability that all 3 balls 
land in the first box? There is only one way for all 3 balls to land in box 1 giving the probability 
as p(3,0) = p1

3. There is only one way for all 3 balls to land in box 2 giving p(0,3) = p2
3. Find the 

probability of 2 balls landing in box 1 and the remaining ball landing in box 2. Relate the results 
to the statistical weight W(2,1). 
 
 
Answer: The probability of a single ball landing in box 1 is p1. The probability of two specific 
balls landing in box 1 is p1

2 and then the probability of the remaining ball landing in box 2 is p2. 



The overall probability for a set of specific balls is given as (p1
2p2). However, there is more than 

one way of achieving this distribution: 
 
 
 
 
 

 W(2,1) = 
3!

2! 1! = 3 
 

The final probability is then p(2,1) = W(2,1) (p1
2p2) = 3 (p1

2p2). This example shows the 
relationship between W and the probability of occurrence of a particular set of distribution 
numbers. Notice that this result can also be expressed using the binomial coefficient, which is the 
subject of the next problem. 
 
 
29.  Show that for a two-category problem with N distinguishable objects the binomial 
coefficient and statistical weight are related by: 
 

 W(n1,n2) =  



N

n1
 

 

An example is the previous two-box problem. The result also holds for any molecular system 
that has only two energy levels. Use the result of the last problem as a specific example. 
 
 
Answer:  In general for a two category selection problem, because there are only two categories 
the distribution numbers are related by n2 = N – n1 and: 
 

 W(n1,n2) = 
N!

n1! n2!
 = 

N!
n1! (N-n1)!

 = 



N

n1
 

 
 

Using the last problem as an example, for 3 balls, the probability for finding two balls in the first 
box and one ball in the second box depends on the statistical weight for the distribution (2,1): 
 

 W(2,1) = 
3!

2! 1! = 
3!

2! (3–2)! = 


3

2  
 

giving the final probability: 

 p(2,1) = W(2,1) (p1
2p2) = 



3

2  (p1
2p2) 

 

The binomial coefficients are the statistical weight for two-category problems. The next problem 
puts this result in a broader context. 
 
 
30.  Assume that 3 distinguishable balls are selected at random for placement into two boxes. 
The volume of box 1 is V1 and the volume of box 2 is V2. The probability of a single ball landing 
in box 1 is proportional to its volume, p1 = V1/(V1 + V2). The probability of a single ball landing 
in box 2 is proportional to its volume, p2 = V2/(V1 + V2). There is only one way for all 3 balls to 

a 
b 

c a 
c 

b b 
c 

a 



land in box 1 giving the probability as p(3,0) = p1
3. There is only one way for all 3 balls to land 

in box 2 giving p(0,3) = p2
3. The probability of 2 balls landing in box 1 and the remaining ball 

landing in box 2 is p(2,1) = 3(p1
2p2), because there are 3 ways of arranging the set of distribution 

numbers. Likewise p(1,2) = 3(p1p2
2). Show the relationship of the probabilities p(3,0), p(2,1), 

p(1,2), and p(0,3) to the terms in the expansion of the polynomial (p1+ p2)3 . 
 
 
Answer:  Expanding the polynomial gives: 
 

 (p1+ p2)3 = p1
3    +   3 p1

2p2    +  3 p1 p2
2   +  p2

3 
                           

  p(3,0)       p(2,1) p(1,2)        p(0,3) 
 

The first term is the probability of all three balls occurring in the first box. The second term is the 
probability of finding two balls in the first box and 1 ball in the second box, and so on. The 
probabilities are related through the statistical weights given by the binomial coefficients. The 
polynomial can be more generally written using the binomial coefficients as: 
 

 (p1+ p2)3 = 


3

0  p1
3 + 



3

1  p1
2p2 + 



3

2  p1 p2
2 + 



3

3  p2
3 

 

The probability of occurrence of the different sets of distribution numbers is proportional to the 
statistical weights. This result is the theoretical foundation for the title of Sec. 12.4. 
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