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Chapter 11: The Thermodynamic Definition of Entropy

Can all of the energy in the universe be convertemuseful work?

11.1 Thermal Cycles Never Produce Work at 100% Eftiency

The efficient production and consumption of giyas central to the health of any society. Our
society operates in a complex network of interetathips that extend around the globe. Global
energy use patterns have an impact on the qudliheaenvironment, biological diversity, and
the quality of life. Dysfunctional energy supplydaconsumption networks lead to global
instability. The unequal distribution of energyaesces produces disparity in wealth between
the richest and poorest nations and the richespantest individuals within nations. This
disparity gives rise to political unrest and ingdish Dependence on imported fossil fuels
increases our susceptibility to supply disruptiand price fluctuations caused by turmoil in
developing regions. Economic disparity also contrls to environmental degradation.

Much deforestation can be traced to energy suppltations. Historically, deforestation in
places as diverse as the British Isles and the Bastrwas driven by the necessities of cooking
fuel, shelter, and warmth. Currently, the searchafternative fuels, such as sugar cane, palm oil,
and coconut oil is contributing to deforestationl @oil depletion. Our current dependence on
fossil fuels has resulted in the increase of greasb gases. The sustainable use of alternative
fuels will decrease greenhouse gas emissions. 8yrdteesis, especially in forests and oceans is
the primary sink for C@ Biofuels plantations are, however, often not nggalain a sustainable
manner, leading to infertile soils. Deforestatiom @ahe resulting growth of desert areas have a
negative impact on the ability of the biospheraltsorb CQ. Biofuels production, deforestation,
global climate change, and agricultural land degtiad may interact to accelerate global
warming. Competition for fertile soils and cleanteraalso has a negative impact on food
production.

We often focus on the use of energy for trartspion, electricity, and industry. Energy in the
form of food is even more important and basic. Tiglmut the globe, food is often in short
supply. Water is a critical input for agricultuf2esertification and competition with energy
crops decreases the supply of water and solil ressdor food production. The lack of water for
agriculture will further increase the disparitiefween the richest and poorest among us.

The careful analysis of energy efficiency idical for the management of our economy.
Historically, the first attempts to analyze eneeffjciency came at the beginning of the era of
steam power. Steam powered the industrial revalutsdeam engines are examples of processes
that operate as thermal cycles, which convert tneasfers into useful work. The concept of
entropy was introduced to understand the conveditieat into work by steam engines.
However, at no time in human history has the uridedsng of energy flow in our society been
more important. The lessons from the 1850’s aregssalient today as they were at the
beginnings of the industrial revolution. For onasen, steam turbines are the primary method
for the production of electricity. Steam turbines angines that convert energy from burning
coal, oil, wood, biomass, solar thermal energy)uniear energy into mechanical work. The
work from thermal cycles can also be in the forneclodmical work. Processes for solar thermal
energy conversion of water into hydrogen are imgurexamples. Steam engines, steam
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turbines, internal combustion engines, and mangrqilocesses operating in closed thermal
cycles share common limitations.

The successful understanding of thermal cyclkes mvade possible by the development of a
simple model of a steam engine, by Nicolas Léosadi Carnot in 1824. The key to this model
is to retain all the important aspects of an engiiteout unnecessary complications. Consider
an engine, that operating in a cycle, converts aeatgy into work. Can all of the energy that is
supplied from a fuel to power the engine be coreemto work?

Efficiency of Cyclic Processes - Carnot Cyclésm engine is any process that converts thermal
energy into work. The working substance in an emgindergoes expansions and contractions
that are used through mechanical linkages to diuligengs. Steam is an important working
substance. Internal combustion engines use aitrendombustion products from burning fuels
as the working substance. Refrigerators and heappwse Freons, ammonia, or small
hydrocarbons, such as butane, as the working sudestalthough we normally think of gases as
the working substance, liquids and solids can lbaésased as a working substance. What do all
engines, regardless of the working substance mgemmon? All engines extract energy by
heat transfer from a high temperature reservoinydik, and deposit waste energy by heat
transfer into a low temperature reservoir, Figutel l1a.
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Figure 11.1.1: (a) A general process operates leehadigh temperature reservoir gtand
a low temperature reservoir at and performs work w. (b) A Carnot cycle extragisrgy
gu from the high temperature reservoir, delivers wésat g to the low temperature
reservoir, and performs work, w 5 ww; + Wy + Wy .

The temperature of the high temperature resersdiy iand the temperature of the low
temperature reservoir i .TThe high temperature reservoir is kept at congeanperature by
burning a fuel, be it coal, gasoline, or nucleal f0'he nuclear fuel may be consumed in a
fission reactor or in fusion processes in the Jine low temperature reservoir is often the
surroundings, so Tis often near 298 K. Engines operate in a clogetecFor example,
refrigerators and heat pumps recycle their Frestead of venting this working substance to the
atmosphere. Because the working substance is sghyttle overall process must also work in a
cycle. If the system starts at ¥nd R, one complete cycle returns the system back tmitial
state at Y and R. The First Law applies to any process, so the bat transfer and the total
work done must be given by:

AU=q+w 11.1.1
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However, internal energy is a state function. Thange in internal energy for each cycle must
be zeroAU =0. A Carnot cycle is an idealized cycle thath®sen to produce maximal work
when extracting energyydrom the high temperature reservoir, Figure 1h1A Carnot cycle
consists, starting at.;\and R, of an:
l. isothermal expansion at,Textracting energygfrom the high temperature reservoir,
[I. adiabatic expansion that cools the system fiigno T,
[ll. isothermal contraction at, T depositing energy,gnto the low temperature reservoir,
IV. and an adiabatic contraction that heats tstesy back to the starting temperature.
The total heat transferred and work done ardhaatycle sum to give the overall change in
internal energy. However, since q = O for the aali@mprocesses:

AU =g+ q +wW +w +wy + Wy (Carnot cycle, closed) 11.1.2
The total work, w, is given by:
W =W + W+ Wy + Wy (Carnot cycle, closed) 11.1.3

SinceAU =0, the work done must be at the expense ofatia heat transfer. Solving Eq. 11.1.2
for the total work:

w=—(+q) (Carnot cycle, closed) 11.1.4

The efficiency of an engine is defined as the wawke divided by the heat input necessary to do
that amount of work:

= q—VHV (closed) 11.15
Substituting Eq. 11.1.4, for the total work, inbe tdefinition of the efficiency gives:
— +
¢ = q—\:, = qu—Hq‘- (Carnot cycle, closed) 11.1.6

Remember that the work done by a cyclic procegs/en by the area enclosed in the plot of P
versus V. The choice of the particular steps inGaenot cycle is to maximize this area. The
equation for the efficiency, Eq. 11.1.6, is theuiesf the conservation of energy. You don’t get
something for nothing. To do work for a cyclic pess, the energy must be supplied from a high
temperature reservoir. Because heat flows fronhitje temperature reservoir into the system,
the heat flow is positive,. O, since the transfer increases the energy afytbiem. Transfer of
energy from the system to the low temperature veseis negative, <0, since this transfer
decreases the energy of the system. Becausenggative, any transfer of energy to the low
temperature reservoir decreases the work thatealobe. Since the low temperature reservoir is
often the surroundings, the transfer of energharacterized as the loss of waste heat to the
surroundings. This waste heat decreases the eifizief the process. The only way to have a
100% efficient process is if. g 0. Our experience tells us that engines alwagdure waste

heat; g cannot be zero. Automobiles have radiators tlaaisfer waste energy to the
surroundings. Coal fired and nuclear power plargshérge waste heat into nearby rivers or the
ocean or use cooling towers. Waste heat seemsaabreral consequence of the operation of
thermal cycles. The goal of conservation, thetg isinimize q. Is it ever possible to have a
thermal cycle that is 100% efficient?
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In deriving Eq. 11.1.6, we did not specify therking substance or if the processes were
reversible or irreversible. Eq. 11.1.6 is applieatad any working substance or process operating
in a Carnot cycle. Since reversible processestheenaximum work on expansion and require
the minimum work for contraction, a reversible Garaycle will give the maximum efficiency
for the process, given the temperatures of the &rghlow temperature reservoirs. However,
does the working substance change the efficiereg?steam-based cycle more or less efficient
than a cycle based on heated air or a Freon? Caasovery clever in setting up the steps in the
Carnot cycle. The Carnot cycle is a very general@hdoes any reversible Carnot cycle give
the maximum work available for a given @and T.?

The Efficiency of a Reversible Carnot Cycle is petelent of the Working Substance
determine if the Carnot efficiency depends on tlekimg substance, we will start with our
original working substance, Figure 11.1.1, and tagsume that a more efficient working
substance exists. We will work through the consaqges and look for an inconsistency. If we
find that the assumption of a more efficient wogksubstance is consistent with our experience,
we will conclude that the efficiency of a reversil@arnot cycle depends on the working
substance. If we find an inconsistency, then oigimal assumption must be wrong, and then we
must conclude that all reversible Carnot cyclesshtie same efficiency. We label the properties
of the new, more efficient Carnot cycle with primegure 11.1.2. The assumption is that ¢,

in other words the new, primed system is more iefficthan the original unprimed system.

Reservoir, T Reservoir, T
A AR >0 \L\/\l/qH>0
better workingy, W' W

substance

q||_ <0 O[R <0
Reservoir, T E' > E Reservoir, T
more work g= o4 less work
less wasted energy more wasted energy

Figure 11.1.2: Assume the primed system has aingdubstance that gives a higher
efficiency.

Next we specify that the amount of energy exé@ddérom the high temperature reservoir for
each system be the same, ', So that we can make a fair comparison. If thenpd system
is more efficient, for the same amount of inputrggethe primed system will produce more
work while wasting less energy through heat transféhe low temperature reservoir, w' > w
and —q' < —q. We write this last inequality as +& —q_since q'and q are both negative
numbers. To help avoid confusion, we will alwaygegtomparisons between positive numbers.

Now run the less efficient cycle as a heat pamg use the more efficient cycle to drive the
heat pump, Figure 11.1.3a. A heat pump is justr@me in reverse. Work is input to a heat
pump, which transfers energy from the colder resiete the hotter reservoir.
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Since the primed system is more efficient thendriginal system, the primed system produces
more work than the original system needs to opese heat pump. The net result is that work
is still available to do useful things. But wheieed the energy come from for this work? It can't
come from the high temperature reservoir, becaussdame amount of energy is being drawn
from the high temperature reservoir as is beingpedrback in. The energy to pay for the work
comes from the low temperature reservoir! This temperature source is inconsistent with our
experience. A simple example to show this incoansf is to consider a steam driven boat (real
examples include air craft carriers and nucleansrines). Once the high temperature reservoir
is established at [ no additional energy is drawn from the reserviat is, we wouldn’t need
to burn any more fuel. Instead the energy to pdhewnessel is extracted from the ocean. This
situation doesn’t violate the First Law. The eneigggonserved; the energy necessary to do the
work is extracted as heat from a reservoir. Howewer experience tells us that boats need lots
of fuel for propulsion. Extracting energy from @&eevoir and the production of an equal amount
of work without any other change in the systemaided perpetual motion of the second kind,
which our experience tells us is impossible. Ouginal assumption must then be incorrect.
Therefore, any reversible Carnot cycle operatirntgvben the same two temperatures gives the
same, maximal amount of work. The efficiency ofar®t cycle is independent of the working
substance. This independence makes the reversiioi®cycle a very generally useful model.

All reversible Carnot cycles operating betwdas $ame two temperatures have the same
efficiency. This realization also tells us someghquite important. If our original cycle has an
efficiency less than 100%, then all cycles betwthensame two temperatures will have the same
less than perfect efficiency. Since we have yéinit any Carnot cycle that operates at 100%
efficiency, then that must mean, in our experieticere are no reversible Carnot cycles that
operate at 100% efficiency. In other words, ourezignce is that there is always some waste
heat from thermal cycles in closed systems, noanatiw carefully engineered or no matter how
close to true reversibility these cycles run.

Reservoir, I
Mq‘po M QH=—-0gu< 0
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Figure 11.1.3: (a) The more efficient, primed sysf@ovides enough work to run the less
efficient system as a heat pump and is still ablgat useful work. No net change occurs for
the energy in the high temperature reservoir. (lIphSa system would be able to do useful
work by extracting an equal amount of energy fromlbw temperature reservoir, without
any other change in the system.
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The Second Law of ThermodynamicBhe analysis that we just used is one of ths fi
statements of the Second Law of thermodynamicsarafal statement of the Second Law
similar to that originally given by William Thomsdhord Kelvin) in 1853 is-

Principle of Thomsanit is impossible to devise an engine that workim@ cycleshall
produce no effect other than the extraction of freah a reservoir and the performance
of an equal amount of work.

We can also consider the operation of heat pumpsbhasis for our comparison of heat and
work transfers. In this mode the work output of pinened cycle is set equal to the work
input of the unprimed cycle so no net work is doftee net energy flow is then the transfer
of heat from the colder reservoir to the hotteeresir. The statement of the Second Law
based on this analysis is due to Rudolf Clau$fus:

Principle of Clausiusilt is impossible to devise an engine that workim@ cycleshall
produce no effect other than the transfer of heahfa colder to a hotter body.

What do these statements of the Second Lawgedbout cyclic processes? These principles
tell us that the First Law isn’t the whole storyedi and work can not be freely interconverted.
Instead, Thomson'’s statement requires that to dtubwork energy must be extracted from a
high temperature reservoir and some heat musbalsansfered to a low temperature reservoir.
Heat transfer to the low temperature reservoiraste heat, which decreases the efficiency of the
process. The maximium efficiency of a Carnot cyaanot be 100%, unless=0.

Laws are the compilation of our common obseovetiof the world. Laws are not directly
derivable, in a mathematical sense, but rathestatements of our expectations based on the
experience of many people over the course of hisidre principles of Thomson and Clausius
are just two of many statements of the Second IGwv.goal in studying thermodynamics is to
predict the spontaneity of chemical reactionss hard to see the relevance of these statements
of the Second Law to our goals. Even though theststdnding of Carnot cycles is useful in it's
own right, the analysis of reversible Carnot cydiesorically provided the insight necessary for
the definition of the concept of entropy. To congrour search for the criterion for spontaneous
change, we can look at asgontaneous process. A Carnot cycle will work el as any other
process, since we seek the underlying form of eatwat holds for all physical processes. To
continue, we next consider a reversible Carnotecwith an ideal gas as the working substance.

11.2 Maximum Efficiency of a Thermal Process

Ideal Gas Reversible Carnot Cycl@he efficiency of any Carnot cycle operatingvizsn the
same high temperature reservoir and low temperaggervoir is the same, no matter the
working substance. So we may as well use an ideahg our working substance to make things
simple.

The heat transfer and work done for each stéipeirCarnot cycle are, Figure 11.2.1:

l. Isothermal, § H = —W
[I. Adiabatic g=20 w; =AU
lll. Isothermal, T a. = —Wiy

IV. Adiabatic @ =0 Wy =AU (Carnot cycle, closed) 11.2.1
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>V
Figure 11.2.1: A reversible Carnot cycle with daal gas as the working substance.

and for the first isothermal step at the work is:
. wW=-nRTInV.yV; (isothermal, ideal gas, reversible, closetip.?

The first adiabatic step lowers the temperaturefiig, to T, and w = AU. For any process in an
ideal gas dU = ¢dT:

Il wy = fl C, dT = —ﬂ” C, dT (adiabatic, ideal gas, closed) 11°2.3
In Eq. 11.2.8, we invert the limits of integration and change #ign of the integral so that the

limits start at the lower temperature and end athigher. The isothermal compressionat T
begins the process of returning to the initialestat

. wy ==nRT In V4/V3 (isothermal, ideal gas, reversible, closetlp.£

The final adiabatic step returns the system tartitial state at T;:

V. wy = ﬂt‘ C,dT (adiabatic, ideal gas, closed) 11°2.5

The cycle is then repeated. The total work is tiva for the four steps:
W=—nRTE I ValVy =74 C,dT —nRTINVyVs + ¥ CaT
(reversible Carnot cycle, ideal gas, closetl].2.6
The work for the two adiabatic steps cancels giving

w = —nRTK In Vo/V1— nRT. In V4/V3
(reversible Carnot cycle, ideal gas, closetl).2.7
To simplify this equation, we suspect that there/ lm@ a relationship between ¥nd \4 and
also \5 and V4, since the pairs of volumes are at the same tathper To find a relationship
between WV, and Vi/V3, remember for an adiabatic process, startingit@listate \f and P

and ending in the final statg ¥nd R, that \{T;* = V;T;, with ¢ = G/nR. For the adiabatic steps
in the Carnot cycle:

VAN (adiabatic, ideal gas, reversible, closed)  .B1.2

Vng = VZTE (adiabatic, ideal gas, reversible, closed) $1.2
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Dividing Eq. 11.2.8 by 11.2.9 gives the desired ratios:
V4V3 =VilV, (reversible Carnot cycle, ideal gas, closed)2 1T
Substituting Eq. 11.2.20nto Eq. 11.2.7 gives:

w= —nRH{ In V2/V1 - nRT. In V1/V2 = —nRH In V2/V1 + nRT. In V2/V1
(reversible Carnot cycle, ideal gas, closéd)2.12

Collecting terms in In YV gives:
w=—-nR(E—-T) In ViV, (reversible Carnot cycle, ideal gas, closed)2 1P

Noting that for the heat transfer from the high pemature reservoir,q= —W , we can now
calculate the overall efficiency by substitutionkafs. 11.2.2and 11.2.12into the definition of
the efficiency, Eqg. 11.1.5:

E _—w nR(TH - T|_) In Vo/V 1
max = o - NnRTH In V2/V1

(reversible Carnot cycle, closed) 11.2.13

Cancelling common factors gives the final result:

Tu—T _
Emax = —HTH - (reversible Carnot cycle, closed) 11.2.14

Even though we derived this equation using an igas) this equation is valid for any working
substance. This equation for the maximum efficiepicg Carnot cycle is the most famous
equation in thermodynamics. It is certainly oneéhaf most useful. This equation can also be
considered as a statement of the Second Law ahtttimamics. Notice that the efficiency of a
Carnot cycle improves as the difference in tempeeaincreases. The difference in temperature
between the two reservoirs is called the tempegajtadient; the temperature gradient drives the
conversion of heat into work. The larger the gratithe more efficiently heat can be converted
into work. Therefore, the higher the temperaturéhefhot reservoir, the more useful that energy
is. In a sense, energy in the high temperaturevesdas a higher quality. Energy released into
the low temperature reservoir, which is usuallygberoundings, has a diminished ability to do
useful work. Energy in the low temperature reseriglower in quality. The maximum

efficiency can be 100% only when the low tempeateservoir is at 0 K, which we will see
from the Third Law of thermodynamics, is impossiiae limited efficiency of real cycles
means that not all of the energy of the universebmaconverted into useful work.

Practical Energy Production and Conservatiomhe internal combustion engine in an
automobile is adequately modeled as a Carnot clgelen though the flame temperature of
burning gasoline reaches ~3000 K, the effectivetgaperature at the peak energy transfer point
of the compression cycle is much lower, around 483Bor an ambient temperature of 300 K,
the maximum Carnot efficiency between 530K and RG$:

¢ _Tu—T, _530-300
max =TT, T 530

= 0.434 (reversible Carnot cycle, closed).2115

That is, only 43%. This sizeable inefficiency isaunidable for an engine operating in a thermal
cycle. At least 57% of the energy in a gallon d@lfis completely wasted to the surroundings.
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This wasted energy is necessary to “pay” for theveosion of random thermal energy into
useful work. Improvements in engineering can ddimgt about the 57% loss of energy, which
we will soon see is necessary for the productioendfopy. The actual energy efficiency of an
automobile, based only on internal combustioncisally on the order of 20-25% when
frictional losses and other inefficiencies are takeo account.Hybrid vehicles do about 25%
better for highway driving than high efficiencyanbal combustion only cars.

If the same gallon of fuel is instead used tavguoa fuel cell that produces electricity, then
theoretical efficiencies in the 80% range for theduction of electricity are possible. Because
fuel cells do not operate in a thermal cycle, theynot limited by the Carnot efficiency.
However, practical fuel cell based automobile éficies closer to 36% are expected.
Hydrogen fuel cells are expected to be less théf &flicient because of issues surrounding
hydrogen storage. However, hydrogen combustionnatiicontribute to global warming, if the
hydrogen is nomade using natural gas, oil, or coal. Unfortunatelirrently the only large-scale
source of hydrogen is from natural gas.

The production of transportation fuels will rama critical issue until all-electric or hydrogen
based vehicles can be efficiently produced withbeatuse of fossil fuels for electricity
production. Until then we need a greatly increas@ghasis on energy conservation and new
fuels. For energy conservation, thermodynamicsigesva sobering message that shows we are
close to the theoretical maximum efficiency alreallyat is not to say that efforts towards
greater efficiency aren’t necessary. A 50% improgetin fleet average gas mileage is an
important first step in moving towards energy inelegience and the decrease of greenhouse
gases. However, a 50% improvement in gas mileath@my bring us closer to the theoretical
maximum efficiency of about 40% overall. Signifitalecreases in energy use for transportation
will require bringing all vehicles under improveffiéency standards, more effective and
efficient means of mass transportation, and a sogmit reduction in total miles traveled.

Example 11.2.1:Carnot Efficiency

Nuclear powers plants and some coal-fired powentplaperate with steam in equilibrium with
liquid water, so called saturated steam. The mawirtemperature for saturated steam is the
critical point of water, 374°C (705°F) at 221 ba2 (06 MPa, 218 atm). Standard boilers operate
up to around 180 bar, giving a steam temperatuB598fC. (a) Calculate the Carnot efficiency of
a power plant operating between the temperatur886fC and 32°C, a common exhaust
temperature for an efficient steam turbine. (b) Isacpower plants operate at a lower
temperature than coal-fired plants, because tlaersie made using water-to-water heat
exchange using the reactor coolaalculate the Carnot efficiency of a power plapemting
between the temperatures of 250°C and 32°C.

Answer Converting to the absolute temperature scalé;@5250°C, and 32°C correspond to
630 K, 523 K, and 305 K, giving the Carnot effiaes of:

Ty—T, 630 — 305
(a) Emax = HTH - = 630 = 516%

Ty—T, 523 — 305
b) Emax = HTH - = 523 = 417%




424

Nuclear power plants operate at around 38% effagiewhich is not that much less than the
theoretical maximum.

Example 11.2.2:Carnot Efficiency

Most coal and oil fired power plants operate oneshipated steam. Superheated steam is not in
equilibrium with liquid water, so the maximum temgkeires are much higher. The Tennessee
Valley Authority’s Kingston Fossil Plant near Knalke, Tennessee, uses superheated steam at
540°C (1000°F) at pressures of more than 124 h&e@1psi)® The turbine discharge
temperature is 32—-38°C. Calculate the maximum Qagfficiency of a modern superheated
steam power plant.

Answer Using 540°C and 35°C, or in absolute units 818nd 308 K, gives (J— T.)/Ty still a
disappointing 61.1% efficiency. Actual operatinfj@éncies are in the ~48% range for high
temperature, steam based, electrical production.

Solar Energy ConversionAll objects emit light. As the temperature of@nject increases the
net energy produced as light increases and thadrexy of maximum emission increases. This
emission is called black-body radiation. Your beuahyits light in the infra-red region of the
electromagnetic spectrum (you glow in the infra4region of the spectrum). The temperature of
the filament in an incandescent light bulb corregfsoto around 3800 K. A small change in the
temperature produces a large change in the lightffom an object. The total flux, which is the
energy emitted per second per unit area, is giyathd Stefan-Boltzmann law:

Joiackbody=0 T* 11.2.16

whereo is the Stefan-Boltzmann constant, 5.6704%18- m? K*and 1 W = 1 J'§ Most all of
the available energy on the earth, other than aueled geothermal energy, derives from the
sun. The equivalent black-body surface temperatfitiee sun is 5800 K. This energy drives
photosynthesis, the water cycle, and wind genaralibe water cycle gives rise to hydroelectric
power, and wind generation gives rise to wind tuedvased energy production. Fossil fuels are
the result of photosynthetic energy production tiest been stored over geologic time.

Trees and other conventionally grown crops afg about 1% efficient in converting solar
energy into biomassThe total world efficiency for solar conversiontimmass is estimated to
be 0.13-0.17%.The direct conversion of solar energy into usefémical fuels can more
efficiently utilize the energy from the sun. Manyppesses have been proposed that convert solar
energy into electricity or fuels, especially hydeog

Photosynthesis and Photovoltaic Energy Conversiéven though photosynthesis,
photovoltaics, and solar thermal production aradyestate processes, the limiting efficiency can
still be compared to the corresponding Carnot iefficy* The maximum efficiency of direct

solar processes, such as photochemistry, photassisttand photovoltaic cells, is the
corresponding Carnot efficiency for the processajrey between the surface temperature of the
sun, 5800 K, and ambient temperatures:
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¢ _Tu—T, _5800-300
max =TT, T 5800

In the case of photovoltaic cells, electrons aeavtlorking substance and the inefficiency results
from the backwards flow of electrons through theicke driven by the ambient available thermal
kinetic energy, RT. Photovoltaics also suffer radiative loss as tilarscell surface temperature
increases above the ambient, given by Eqg. 11.2h6.significant additional limiting factor for
photovoltaics or photosynthesis is that neithecess utilizes the full emission spectrum of the
sun. The photosynthetically active radiation, o 4s in the range of 380-710 nm, which is
about 50% of the total solar fldk The practical limiting efficiencies for direct solenergy
conversion in photosynthesis and photovoltaicsaamt 209>

It may seem strange to consider absorptiorgbt firom the sun in this fashion. However,
referring to Figure 11.1.1, note that heat transfegeneral, occurs by conduction, convection,
and radiation. Energy transfer from the sun is @lish radiation. Since the energy transfer
pathway in Figure 11.1.1 need not be specifiedtrdmesfer may be remote through convection
or radiation as well as through direct conductigatact.

= 94.8% 11.2.17

: - \1,. T\ AT SN
https://share.sandia.gov/news/resources/releaggf@@ew-energy-batt/Stirling.html
Figure 11.2.2: Stirling engine based electricitydarction using solar-dish concentration at
Sandia National Laboratory. The system gives argolalectric conversion efficiency

reaching 30 percent. Each unit can produce up tdl@®atts of daytime powel’

Solar Thermal CyclesSolar thermal processes convert the energyeo$tim into thermal energy
in an absorbing medium, Figure 11.2.2. Solar théaoyees can more efficiently use the full
spectrum of the sun than photovoltaics or photd®mgis. Many thermal cycles have been
proposed that use this thermal energy to produetilfsiels. The direct dissociation of water at
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temperatures greater than 2500 K using solar mowacentration has been proposed for the
production of hydrogen. Even at 2700 K the extdrihe dissociation of water lies far to the left:

HO (g) - H.(g) +¥% Q (9) 11.2.18

However, separation techniques, including effusioay be useful for extracting,th a steady
state, non-equilibrium continuous process. Evenghasolar thermal production is neither at
equilibrium or a closed process, the limiting a#fitcy can still be compared to the
corresponding Carnot efficiency. Consider a cyptiacess that uses energy extracted from a
solar absorber, Figure 11.2.3. The maximum efficyenf solar thermal processes is estimated as
the corresponding Carnot efficiency for the proagssrating between the absorber temperature,
Ty, and ambient temperatures, just like any Carnot cycle:

g _Tu-T, _2500-300
max = T 7 T 2500

= 88% 11.2.19

which is a tantalizing improvement over plant bagbkdtosynthesis.

Reservoir, || ~ 300 K

Figure 11.2.3: A Concentrating Solar Power, CSBtesy heats an absorber to a high
temperature. The solar flux provides the energhéchigh temperature reservoir for a
chemical process that operates in a cycle, produggr®gen or other fuel, and discharges
waste energy to the surroundings.

Additional inefficiencies result when the eneajythe system is lost as black-body radiation to
the surroundings at the characteristic temperatiniee proces$>°Let the total solar flux into
the process be given agia} The efficiency for solar thermal processes inklgdhe Carnot
efficiency and radiative loss at the absorbermtpterature, 1, using Eq. 11.2.16 is:

_ (Tu- TL) (JsolarA -ag TH")
Emax = [ T LA 11.2.20

whereA is the solar collector area aads the area of the absorber. This radiative enkrggy
from the surface of the absorber greatly decretsesfficiency at higher temperatures. The
efficiency peaks at around 75% for temperaturaébenl 500 — 2000 K range. Finding chemical
reactions that generate hydrogen from water effityeat temperatures below 2000 K is an
important challenge.
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Thermochemical water-splitting cycles producdrbgen from water at much lower
temperatures than the direct process, Eq. 11218e Sulfur-lodine cycle consists of three
coupled reactions, which add to give the dissammatif water:

HSO: (I) - SG (9)+ H0 (9) + 2 Q (9) (>850°C) 11.2.21
l,+ SQ+2H0 - 2HI+HSO, (>120°C) 11.2.22
2HI - L+ H, (>450°C) 11.2.23

nett HO - Hx(9)+%Q(Q)

These three reactions constitute a catalytic oypkrating in a steady state. All the reactants,
other than water, are regenerated and recyclednmiienergy is required for the endothermic
high-temperature dissociation of sulfuric acid. Eyeas dispersed to the surroundings through
the low temperature exothermic processes. In thfeirSodine cycle most of the input energy
goes into the dissociation of sulfuric acid. THiermochemical cycle can use concentrating solar
power, nuclear, or any other high temperature gnsogrce. The development of new
thermochemical cycles is one way chemistry can naag@ntral contribution to energy security
and the amelioration of greenhouse gas emission.

The highest practical conversion efficiency aias energy into electricity may be the use of
solar concentrator based Stirling engine driventstml generation’*® Stirling engines are
external heat source engines, Figure 11.2.2. Hetiuhydrogen, which has the highest thermal
conductivity of any gas, is used as the workingssaiice. Stirling engines are heavier than
internal combustion engines, but their high relativechanical efficiencies make Stirling
engines ideal for stationary applications like selaergy conversion. Stirling engines operate in
a closed cycle, which is limited by the Carnot@éicy ® Typical Stirling engines operate at
700°C, giving a Carnot efficiency of 6898:1® The chemical aspects of research in this area are
in materials science for developments in solareotdr fabrication and high temperature
materials. This efficiency is also a useful comgami benchmark when considering chemical
solar thermal cycles.

11.3 Thermodynamic Definition of Entropy; Entropy Measures the Dispersal of Energy

Carnot was very clever in creating the Carnot cgsl@ general model for cyclic thermal
processes. The Carnot cycle is independent of trkimg substance and is maximal for
reversible processes. This behavior is universalicystems operating in a thermal cycle. The
Carnot efficiency incorporates a general princigdléhe physical world. However, in
thermodynamics we usually prefer to express oucrgasn of a process in terms of state
functions and in terms directly related to the riné energy change for the process. Let’s see if
we can recast the Carnot efficiency into terms #inatuseful for evaluating the spontaneity of
chemical reactions and phase transitions. Consideneral Carnot cycle. The efficiency is
given as, Eq. 11.1.6:

- +
13 :q—V: = qu—Hq‘- (any Carnot cycle, closed) 11.3.1

For a reversible Carnot cycle, Eqg. 11.2.14 alsd$iahd theig = &nax giving:

d+q _ Tu-T
O Th

(reversible Carnot cycle, closed ) 11.3.2
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This relationship shows, quite surprisingly, theg heat transfers from the high temperature
reservoir and to the low temperature reservoimateéndependent. The heat transfers are directly
and exclusively related to the temperatures ofélservoirs. As a consequence, except when T
= 0, energy is always necessarily wasted intodiaetemperature reservoir. In other words, the
high quality energy from the high temperature resieris dispersed into the surroundings. Why
does this transfer of heat necessarily happen?

Dividing by the denominators in Eq. 11.3.2:

R

G 1- T, (reversible Carnot cycle, closed ) 11.3.3
Cancelling the constant and cross-multiplying tthexd terms for the same reservoir:
% = - % (reversible Carnot cycle, closed ) 11.3.4

and rearrangement finally gives a relationship lin&s the heat transferred from a given
reservoir with the temperature of that reservoir:

a9,

T tT, (reversible Carnot cycle, closed)  11.3.5

The heat transferred to or from the reservoir {gethelent on the reservoir temperatures. This
equation is also the sum of /T around the fulleysince q = 0 for the adiabatic steps.
Whenever the sum of a function around a closedeagctero, it is suggestive that the function
may be a state function. After this same detaileyais of the Carnot cycle, Clausius proposed
the definition for the entropy?

SE%’ (reversible process, closed) 11.3.6

which Eq. 11.3.5 shows is a state function for@aenot cycle. The differential form for the
definition of the entropy is:

d
dSE%’ (reversible process, closed) 11.3.7

The restriction that the heat transfer must befmversible process is particularly important,
since q/T evaluated around a Carnot cycle for mvarsible, spontaneous process is not a state
function.

Thermodynamics is a very practical science.néwa concept is useful we keep it, otherwise
the concept is tossed out. We need to show thedmnas defined by Eqg. 11.3.6 is a useful
concept. In particular, to fit into the foundatiosfshermodynamics, we need to show that
entropy is a state function for any process, nstt guCarnot cycle. Then the usefulness of
entropy will be established if we can use entrapgredict the spontaneous direction for
chemical reactions and other physical processesétid to show that:

d
a. S is a state function for a general cycfe: C-IFeV =0

. : d
b. for irreversible cyclesf TCI <0



429

c.AS> fd—Tq

d. Entropy always increases for a spontaneouspsaa an isolated system.

We tackle each of these steps in turn.

a. Entropy is a State Function for a General Cycteonsider a general cycle, which is not
necessarily a Carnot cycle or reversible. This greycle may be approximated as a series of
reversible Carnot cycles as diagrammed in Figur8.11The adiabatic steps between the cycles
don’t contribute to the dg/T terms, since dq = 0 for an adiabatic process.

A A
/\
P ‘-“ P
— |
\\\ (\/
(a) oV (b) oV

Figure 11.3.1: A general cycle may be divided mtgeries of N Carnot cycles. As-Noo
the general cycle is approximated arbitrarily wgl). The sum of g/T around each
individual Carnot cycle is equal to zero, Eg. 13.8b) Summing @/T around the general
cycle is equivalent to summing over each individualle.

First, let the number of small cycles, N, gartiinity, N —» . As the number of reversible
Carnot cycles increases, the approximation to émeal cycle gets better and better. In the
limit, the approximation is arbitrarily good. Nowdus on each individual reversible Carnot
cycle. Using Eq. 11.3.5, the sum @f4f is equal to zero around each small cycle, Figure
11.3.1a.

To integratelq./T around the general cycle, su/A over all the high temperature
isotherms of the Carnot cycles and then over alldlv temperature isotherms, Figure 11.3.1b.
This sum includes all thegT terms for the high and low temperatures for eadividual
Carnot cycle, which all sum to zero. In other woitdoesn’t matter what order the T terms
are added: over all the high temperature isothe@madsthen all the low temperature isotherms
around the full cycle, or alternatively around ea€lkthe individual Carnot cycles. Therefore, the
sum of g/T around the general cycle is also zero as . Mathematically,

d
f%’ =0 (reversible, closed) 11.3.8

This cyclic integral is the entropy change for tiyelic process, which is equal to zero as
required for a state function. This proof is celntwaverifying the importance of the entropy. Eq.
11.3.8 can be considered a statement of the Se@mdHowever, what happens for a
spontaneous, irreversible process? The entropy Ipeusalculated for a reversible path that
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operates between the same initial and final seteéke actual spontaneous process. Since the
entropy is a state function, the entropy changedspendent of the actual path of the process.

b. The Clausius Inequality Holds for Irreversiblgdles Entropy is defined using only
reversible heat transfers, dSie/T. But, what aboutig/T for a spontaneous process? How
doesdqg/T change for a spontaneous cyclic process? W kimat the efficiency of an
irreversible, spontaneous process will be less tharefficiency for a reversible process:

& <& (irreversible, cyclic, closed) 11.3.9

The efficiency for any Carnot process is given loy EL.1.6. The efficiency for a reversible
process is given by Eq. 11.2.14. Substitution thinequality, Eq. 11.3.9, gives the
relationship of the heat transfers for a spontasguwacess to the heat transfers for a reversible,
maximum work process.

+ —
Ou q_<TH in

T T (irreversible Carnot cycle, closed) 11.3.10
Rearranging this equation in a parallel fashioB¢o11.3.3-11.3.5 gives:
1 +gi <1 —% (irreversible Carnot cycle, closed) 11.3.11
% < — ﬁq_ﬁ (irreversible Carnot cycle, closed) 11.3.12
% +% <0 (irreversible Carnot cycle, closed)  1133.

which is in the same form as Eq. 11.3.5. The etyuhblds for reversible processes, and the
inequality holds for irreversible, spontaneous psses. The corresponding differential form for
an infinitesimal energy transfer is:

d : :
Tq <0 (irreversible Carnot cycle, closed)  1143.

which holds for a spontaneous process as parCaifraot cycle. To extend these equations to a
general cycle, not just Carnot cycles, we repeathbught process we used for Eq. 11.3.8.
Approximate the general cycle as a sequence of i@anyot cycles. The sum around the general
cycle ofdg/T can be replaced by the sums around the indwi@arnot cycles, where Eq.

11.3.13 or 11.3.14 holds for each individual Camate:

d , : :
quo < forirreversible process = for reversiptecess (closed) 11.3.15

This relationship is called the Clausius inequalitige only restriction is that the process is
closed. We can now use Eq. 11.3.15 to comfafE for a real, spontaneous process with the
correspondingq/T for a reversible process between the same limitid final states.

c. The Clausius Inequality Compares a Real Proeggsthe Matching Reversible Cycl&he
Clausius inequality, Eqg. 11.3.15, holds for a gaheyclic process. How can we use the Clausius
inequality to compare a non-cyclic spontaneousgs®to the corresponding reversible process?
Consider a cycle that starts at the initial statprogresses to a final stateand then returns
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back to the initial state to complete the cyclee THausius inequality applies to the overall
process, Figure 11.3.2. The process that we wastutly is the forward process frarnof.
Assume that this process is a spontaneous prddesg&ver, to complete the cycle, the process
from f back toi is chosen as a reversible process.

Airreversibl f
N
\
P \
\
1
1
7/
/
//
I S - reversible

Figure 11.3.2: A general cycle that consists oirgversible process from the initial state to
a final state, and then a reversible process frafibhal state back to the initial state.

The cyclic integral in Eq. 11.3.15 can then betsptb two integrals, one for the irreversible,
spontaneous process froro f and one for the reversible process friotmi:

d l d rev
fi 7(:1 +ff —Fll.— <0 (cycle, closed) 11.3.16

The inequality holds if any part of the cycle i®wersible. Because the return process is
reversible, we can switch the integration limitsl @errespondingly change the sign of the
integral:

ﬂ d_Tq —fi d_ﬁl-@ <0 (cycle, closed) 11.3.17
The second integral ovég./T is defined as the entropy change for the pro@ss

ﬂ d_Tq -AS <0 (cycle, closed) 11.3.18
Adding theAS term to both sides of the inequality gives:

f d . . .
AS zf_ TCI > for irreversible process = for reversiptecess (closed) 11.3.19
|

where the equality holds for the special case wherprocess is reversible, since tkdgr= dge..
This is the result we have been looking f. is the total change fdg./T for the process and
the right hand side is the total change in theadiy/T for the process. The surprising fact is
that for a spontaneous process the totaldgdl is alwaydess than the corresponding reversible
change, which is something that we would not hayeeted. This inequality is also called the
Clausius inequality. The importance of the Clausnasgjuality is that it is completely general.
This relationship is a fundamental restriction tmaist be true for any spontaneous process. If
the integral ofig/T is evaluated for a new process and found ttatedhe direction of the
inequality, then the process must be non-spontaétawever, remember that the reverse of a
non-spontaneous process is spontaneous. So EqL9 a@s as a directional arrow for
spontaneous processes. The spontaneous direatianyfgrocess is the direction that satisfies
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the Clausius inequality. We can recast the Clauseuality in a simpler, but still very
powerful form by focusing on isolated systems.

d. Entropy Always Increases for a Spontaneous Riean Isolated SystenT:he Clausius
inequality is completely general. However, we campéify our search for spontaneous processes
by looking at the specific subset of processesdbatir in isolated systems. For an isolated
systemdq = 0 and the Clausius inequality, Eq. 11.3.19 ceduo:

AS=0 > for irreversible process = for reversibleqess (isolated) 11.3.20

In words, the entropy always increases for a sp@mas process in an isolated system. At first,
the specific choice of an isolated system may steelpe quite restrictive. However, many
processes can occur in isolated systems, includhiegical reactions. We will shortly see that
the specification of an isolated system is notlaeatrictive for closed systems. In fact,
specifying that the system is overall isolated isseful and handy simplification that allows us to
focus on the chemistry that is occurring in thecpss under study.

The fact that entropy always increases for atg@ous process in an isolated system tells us
how to determine if a given process is spontaneou®t. For example, the entropy change for
the process where the pressure of a mole of idesalsgdoubled is negative:

N2 (gas, 1 bar)» N (gas, 2 bar) AS=-58JK (isolated, ideal gas) 11.321

In an isolated system, this process is not spontas)esince the entropy change is negative.
Rather, the reverse is the spontaneous directigasfat high pressure spontaneously expands to
give a gas at low pressure, such as when a baflomts. Of course, this example is just the
beginning. In particular, the universe may be cdei®d as an isolated system for many practical
circumstances, and then Eq. 11.3.20 can be phess¢ke entropy of the universe is always
increasing. Entropy is the criterion for spontargeochbiange, in isolated systems.

11.4 Summary — Looking Ahead

Entropy and the Carnot CycleWe can now relate the concept of entropy toGhmot cycle.

No engine can be 100% efficient because the coloveo$ heat exclusively into work is not an
entropically allowable process. Work is essentialiganized, concentrated energy. To pay for
the production of work, energy must be dispersettdnysfer of waste heat into the surroundings.
However, from the definition of entropy, dSig./T, the temperature of the transfer is in the
denominator of this expression. Therefore, fonegiheat transfedg.e,, the change in entropy

is greater when the transfer takes place at lovpésature rather than high temperature. This
dependence means that the transfer of engrgytqthe low temperature reservoir can give a net
increase in entropy and still have some energyohedt, g4 + g, for useful work.

Entropy is the key concept in understandingnkerrelationships of chemical systems to their
surroundings. Our analysis of the efficiency ofrthal processes shows that all of the energy of
the universe cannot be converted into useful Workhe next chapter we calculate the entropy
change for a wide variety of processes includingsghtransitions and chemical reactions.

Chapter Summary
1. Fuel bioplantations, food croplands, and forestapete for soil resources and water.
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2. Poor farming practices contribute to deforestatespecially through soil depletion.

3. Deforestation contributes to global climate gean

4. Steam engines are examples of processes that®jps thermal cycles, which convert heat
transfers into useful work.

5. All engines extract energy by heat transfer feomgh temperature reservoir, do work, and
deposit waste energy by heat transfer into a lomperature reservoir.

6. The low temperature reservoir for thermal cyedassually the surroundings.

7. The efficiency of a process &= —

OH
- +
8. The efficiency of a Carnot cycle, reversiblércgversible:¢ :q—V: = qu—Hq‘-

9. The efficiency of a reversible Carnot cyclendependent of the working substance.

10. The Second Law of Thermodynamics—Principletadrmson: It is impossible to devise
an engine that working in a cycle shall producesfiect other than the extraction of
heat from a reservoir and the performance of amalegnount of work.

11. The Second Law of Thermodynamics—Principlelati§ius: It is impossible to devise
an engine that working in a cycle shall producefiect other than the transfer of heat
from a colder to a hotter body.

12. All reversible Carnot cycles operating betwdensame two temperatures have the same
efficiency:
E — M

max — TH

13. The Stefan-Boltzmann law describes the lognefgy of an object through radiation:
Joiackbody=0 T*

14. The practical limiting efficiencies for direstlar energy conversion in photosynthesis and
photovoltaics are about 20%.

15. The solar thermal efficiency including the Garefficiency and radiative loss is:

£ - (TH - TL) (JsolarA -ao TH‘)
max TH \]solarA

whereA is the solar collector area aads the area of the absorber.

d
16. The definition of the entropy change for a etbprocess is Sq— or dSs=—F— Clrev

17. S is a state function for a general cycfe: C.IFeV

=0
. . . . d
18. The Clausius Inequality: for irreversible cynl@g 7(:1 <0

. : . d
19. The Clausius Inequality can also be writtenafgeneral procesAS > f TCI

20. Entropy always increases for a spontaneouepsadn an isolated system.
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Problems: The Thermodynamic Definition of Entropy

1. Calculate the Carnot efficiency of a solar cartior—Stirling engine system that operates at
700°C and 37C.

2. Is it more efficient to fly in the summer or wen?
3. On areally hot day, is it possible to cool kitehen by opening the refrigerator door?

4. One mole of an ideal monatomic gas is usedeawtinking substance for a reversible Carnot
cycle. The initial temperature is 500. K and th&ahvolume is 4.00 L. For step |, the gas
expands to twice its initial volume. In step Il tieenperature is lowered to 300. K. What is the
volume after step Il, ¥ and after step lll, ¥? Step IV returns the system to the initial
temperature and volume.

5. One mole of an ideal monatomic gas is usedeawtitking substance for a reversible Carnot
cycle. The initial temperature is 500. K and th&ahvolume is 4.00 L. For step |, the gas
expands to twice its initial volume. In step |l tieenperature is lowered to 300. K (see problem
4). Notice that for a reversible cycle, the workdon steps Il and IV is equal, but opposite in
sign. (a) Calculate the work done in step | ang #ie (b) Calculate the energy transferred from
the high temperature reservoiy. §c) Calculate the efficiency for the cycle.

6. A 0.200-mol sample of a monatomic ideal gasseduas the working substance in a reversible
Carnot cycle that operates between 700 K and 30thK.starting volume is 0.500 L. The heat
transferred into the gas from the high temperateservoir is 1000. J. (a) Calculate q,M4d,

andAS for each of the steps in the Carnot cycle. (ly@ate g, wAU, andAS for the complete
cycle.

7. The peak sun solar flux that reaches a surfaireqal directly at the sun is about 1.00 kW.m
Using a solar collector of area 10.6,malculate the collector temperature that would be
necessary to produce 4.00 kW of power using a stadrne coupled to an electric generator at
peak sun flux. Assume the discharge temperatutieeafurbine is 35C and that the combined
steam turbine and electrical generator operat@.8e6 of the maximum Carnot efficiency (due
to frictional losses, etc.). Neglect radiative Es$rom the solar collector absorber surface.

8. In problem 7, we neglected radiative losses ftioensolar collector absorber surface.
Assuming the same conditions and operating temyresas in problem 7, calculate the output
power when radiative losses from the solar colleabsorber surface are taken into account.
Assume that the absorber surface is 0?this concentration ratio ig/a =100).

9. Give a rough sketch of the progress for a révier€arnot cycle on a plot of entropy versus
temperature. Label the steps I-IV so that you @aanpare with Figure 11.2.1. Also indicate the
starting point.

10. The solar concentration ratio of a solar cédlets defined as the total collector area divided
by the absorber area, c&a. The solar collection area for a very large “poveaver” is on the
order of 200. rh For a small solar absorber area of 0%(+1 f£), the corresponding
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concentration ratio is 2000. Plot the solar thereffatiency for this concentration ratio as a
function of absorber temperaturey, Tncluding the Carnot efficiency and radiativedes.

Assume that the low temperature reservoir for tiardhermal process is at 300. K and the solar
flux is 1000. W rif.

11. The electrolysis of water is a potential sowfhydrogen for use as a transportation fuel.
However, H production is very costly. From your General Ch&tngicourse, you might
remember that the direct electrolysis of waterasdal on the two standard reduction half-cells:

2H (aq)+ 2e - Hx(9) P=0V
Oz (9) +4H (ag) +4 e~ 2HO () E =123V
with the standard cell potential:
H.O (l) - H; (g) + %2 Q(g) Ecel = E’cathode— Eanode= —1.23 V.

This cell potential is large and unfavorable. Thestihghouse-S cycle was developed in the
1970's to use solar thermal energy to lower thé obthe production of hydrogeh.The
Westinghouse-S cycle consists of two reactionsnéteesult of which is the production of:H

H.SOs (ag) » SG (9) + HO (9) + 72 Q (9) at 1140 K
SO (g) + 2 HO () = H.SO, (aq) + H(Q) at 320-350 K

H.O (I) - H2 (9) + %2 Q(9)

The first step, the dehydration of sulfuric ac&lrun in a concentrating solar collector. The
second step is run in an electrolytic cell with sit@ndard reduction half reactions:

2H (ag)+2& — Hy () E=0V
SO (ag) +4H (ag) +2e— 2 H0 () + SQ (g) P =+0.17V

giving the standard cell potentiatd = E°cathode— E anode= —0.17 V. Even though this cell
potential is still negative, the energy requiremsrgreatly diminished from the direct
hydrolysis. Of course, electrical energy is requit@ run the second step, which must be
obtained from conventional sources. The solar thégafiiciency for this process covers only the
production of S@(g). (a) Calculate the change in enthalpy for &éps in the Westinghouse-S
cycle. (b) Calculate the maximum solar thermalcggficy for the production of S@g) for the
thermal part of the process operating between K140d 350 K. Neglect radiative losses. (c)
Calculate the electrical work necessary to prodireemole of Hfor E°¢pat -1.23 V and

-0.17 V. [Hint: for electrochemical cellsis given by the number of electrons transferrethen
balanced cell reaction.]

12. In Eq. 11.2.20:

£ - (TH - TL) (JsolarA -ag TH")
max TH JsolarA

The second term in brackets is the correctiontferafficiency caused by radiative loss from the
absorber surface. This correction results fromStefan-Boltzmann equation, Eq. 11.2.16.
Derive this radiative loss correction from Eq. 11&




