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Chapter 11:  The Thermodynamic Definition of Entropy 
 

 

Can all of the energy in the universe be converted into useful work? 
 

 
 
11.1 Thermal Cycles Never Produce Work at 100% Efficiency 
 

   The efficient production and consumption of energy is central to the health of any society. Our 
society operates in a complex network of interelationships that extend around the globe. Global 
energy use patterns have an impact on the quality of the environment, biological diversity, and 
the quality of life. Dysfunctional energy supply and consumption networks lead to global 
instability. The unequal distribution of energy resources produces disparity in wealth between 
the richest and poorest nations and the richest and poorest individuals within nations. This 
disparity gives rise to political unrest and instability. Dependence on imported fossil fuels 
increases our susceptibility to supply disruptions and price fluctuations caused by turmoil in 
developing regions. Economic disparity also contributes to environmental degradation. 
   Much deforestation can be traced to energy supply limitations. Historically, deforestation in 
places as diverse as the British Isles and the Near East was driven by the necessities of cooking 
fuel, shelter, and warmth. Currently, the search for alternative fuels, such as sugar cane, palm oil, 
and coconut oil is contributing to deforestation and soil depletion. Our current dependence on 
fossil fuels has resulted in the increase of greenhouse gases. The sustainable use of alternative 
fuels will decrease greenhouse gas emissions. Photosynthesis, especially in forests and oceans is 
the primary sink for CO2. Biofuels plantations are, however, often not managed in a sustainable 
manner, leading to infertile soils. Deforestation and the resulting growth of desert areas have a 
negative impact on the ability of the biosphere to absorb CO2. Biofuels production, deforestation, 
global climate change, and agricultural land degradation may interact to accelerate global 
warming. Competition for fertile soils and clean water also has a negative impact on food 
production. 
   We often focus on the use of energy for transportation, electricity, and industry. Energy in the 
form of food is even more important and basic. Throughout the globe, food is often in short 
supply. Water is a critical input for agriculture. Desertification and competition with energy 
crops decreases the supply of water and soil resources for food production. The lack of water for 
agriculture will further increase the disparities between the richest and poorest among us. 
   The careful analysis of energy efficiency is critical for the management of our economy. 
Historically, the first attempts to analyze energy efficiency came at the beginning of the era of 
steam power. Steam powered the industrial revolution. Steam engines are examples of processes 
that operate as thermal cycles, which convert heat transfers into useful work. The concept of 
entropy was introduced to understand the conversion of heat into work by steam engines. 
However, at no time in human history has the understanding of energy flow in our society been 
more important. The lessons from the 1850’s are just as salient today as they were at the 
beginnings of the industrial revolution. For one reason, steam turbines are the primary method 
for the production of electricity. Steam turbines are engines that convert energy from burning 
coal, oil, wood, biomass, solar thermal energy, or nuclear energy into mechanical work. The 
work from thermal cycles can also be in the form of chemical work. Processes for solar thermal 
energy conversion of water into hydrogen are important examples. Steam engines, steam 
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turbines, internal combustion engines, and many other processes operating in closed thermal 
cycles share common limitations. 
   The successful understanding of thermal cycles was made possible by the development of a 
simple model of a steam engine, by Nicolas Léonard Sadi Carnot in 1824. The key to this model 
is to retain all the important aspects of an engine without unnecessary complications. Consider 
an engine, that operating in a cycle, converts heat energy into work. Can all of the energy that is 
supplied from a fuel to power the engine be converted into work? 
 
Efficiency of Cyclic Processes - Carnot Cycles:  An engine is any process that converts thermal 
energy into work. The working substance in an engine undergoes expansions and contractions 
that are used through mechanical linkages to do useful things. Steam is an important working 
substance. Internal combustion engines use air and the combustion products from burning fuels 
as the working substance. Refrigerators and heat pumps use Freons, ammonia, or small 
hydrocarbons, such as butane, as the working substance. Although we normally think of gases as 
the working substance, liquids and solids can also be used as a working substance. What do all 
engines, regardless of the working substance have in common? All engines extract energy by 
heat transfer from a high temperature reservoir, do work, and deposit waste energy by heat 
transfer into a low temperature reservoir, Figure 11.1.1a. 
 
 
 
 
 
 
 
 
 
 

 (a)     (b) 
 

Figure 11.1.1: (a) A general process operates between a high temperature reservoir at TH and 
a low temperature reservoir at TL and performs work w. (b) A Carnot cycle extracts energy 
qH from the high temperature reservoir, delivers waste heat qL to the low temperature 
reservoir, and performs work, w = wI + wII + wIII  + wIV. 

 
 
The temperature of the high temperature reservoir is TH and the temperature of the low 
temperature reservoir is TL. The high temperature reservoir is kept at constant temperature TH by 
burning a fuel, be it coal, gasoline, or nuclear fuel. The nuclear fuel may be consumed in a 
fission reactor or in fusion processes in the sun. The low temperature reservoir is often the 
surroundings, so TL is often near 298 K. Engines operate in a closed cycle. For example, 
refrigerators and heat pumps recycle their Freon instead of venting this working substance to the 
atmosphere. Because the working substance is recycled, the overall process must also work in a 
cycle. If the system starts at V1 and P1, one complete cycle returns the system back to the initial 
state at V1 and P1. The First Law applies to any process, so the total heat transfer and the total 
work done must be given by: 
 

 ∆U = q + w          11.1.1 
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However, internal energy is a state function. The change in internal energy for each cycle must 
be zero, ∆U =0. A Carnot cycle is an idealized cycle that is chosen to produce maximal work 
when extracting energy qH from the high temperature reservoir, Figure 11.1.1b. A Carnot cycle 
consists, starting at V1 and P1, of an: 
 I. isothermal expansion at TH, extracting energy qH from the high temperature reservoir, 
 II. adiabatic expansion that cools the system from TH to TL, 
 III. isothermal contraction at TL, depositing energy qL into the low temperature reservoir, 
 IV. and an adiabatic contraction that heats the system back to the starting temperature. 
   The total heat transferred and work done around the cycle sum to give the overall change in 
internal energy. However, since q = 0 for the adiabatic processes: 
 

 ∆U = qH + qL + wI + wII  + wIII  + wIV   (Carnot cycle, closed)  11.1.2 
 

The total work, w, is given by: 
 

 w = wI + wII  + wIII  + wIV     (Carnot cycle, closed)  11.1.3 
 

Since ∆U =0, the work done must be at the expense of the total heat transfer. Solving Eq. 11.1.2 
for the total work: 
 

 w = – (qH + qL)      (Carnot cycle, closed)  11.1.4 
 

The efficiency of an engine is defined as the work done divided by the heat input necessary to do 
that amount of work: 
 

 ξ =  
-w
qH

        (closed)  11.1.5 
 

Substituting Eq. 11.1.4, for the total work, into the definition of the efficiency gives: 
 

 ξ  =  
–w
qH

  =  
qH + qL

qH
     (Carnot cycle, closed)  11.1.6 

 

Remember that the work done by a cyclic process is given by the area enclosed in the plot of P 
versus V. The choice of the particular steps in the Carnot cycle is to maximize this area. The 
equation for the efficiency, Eq. 11.1.6, is the result of the conservation of energy. You don’t get 
something for nothing. To do work for a cyclic process, the energy must be supplied from a high 
temperature reservoir. Because heat flows from the high temperature reservoir into the system, 
the heat flow is positive, qH> 0, since the transfer increases the energy of the system. Transfer of 
energy from the system to the low temperature reservoir is negative, qL<0, since this transfer 
decreases the energy of the system. Because qL is negative, any transfer of energy to the low 
temperature reservoir decreases the work that can be done. Since the low temperature reservoir is 
often the surroundings, the transfer of energy is characterized as the loss of waste heat to the 
surroundings. This waste heat decreases the efficiency of the process. The only way to have a 
100% efficient process is if qL = 0. Our experience tells us that engines always produce waste 
heat; qL cannot be zero. Automobiles have radiators that transfer waste energy to the 
surroundings. Coal fired and nuclear power plants discharge waste heat into nearby rivers or the 
ocean or use cooling towers. Waste heat seems to be a general consequence of the operation of 
thermal cycles. The goal of conservation, then, is to minimize qL. Is it ever possible to have a 
thermal cycle that is 100% efficient? 
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   In deriving Eq. 11.1.6, we did not specify the working substance or if the processes were 
reversible or irreversible. Eq. 11.1.6 is applicable to any working substance or process operating 
in a Carnot cycle. Since reversible processes give the maximum work on expansion and require 
the minimum work for contraction, a reversible Carnot cycle will give the maximum efficiency 
for the process, given the temperatures of the high and low temperature reservoirs. However, 
does the working substance change the efficiency? Is a steam-based cycle more or less efficient 
than a cycle based on heated air or a Freon? Carnot was very clever in setting up the steps in the 
Carnot cycle. The Carnot cycle is a very general model. Does any reversible Carnot cycle give 
the maximum work available for a given TH and TL? 
 
The Efficiency of a Reversible Carnot Cycle is Independent of the Working Substance:  To 
determine if the Carnot efficiency depends on the working substance, we will start with our 
original working substance, Figure 11.1.1, and then assume that a more efficient working 
substance exists. We will work through the consequences and look for an inconsistency. If we 
find that the assumption of a more efficient working substance is consistent with our experience, 
we will conclude that the efficiency of a reversible Carnot cycle depends on the working 
substance. If we find an inconsistency, then our original assumption must be wrong, and then we 
must conclude that all reversible Carnot cycles have the same efficiency. We label the properties 
of the new, more efficient Carnot cycle with primes, Figure 11.1.2. The assumption is that ξ' > ξ, 
in other words the new, primed system is more efficient than the original unprimed system. 
 
 
 
 
 
 
 
 
 
 

     more work        q'H= qH  less work 
     less wasted energy    more wasted energy 

 

Figure 11.1.2:  Assume the primed system has a working substance that gives a higher 
efficiency. 

 
 
   Next we specify that the amount of energy extracted from the high temperature reservoir for 
each system be the same, q'H = qH, so that we can make a fair comparison. If the primed system 
is more efficient, for the same amount of input energy, the primed system will produce more 
work while wasting less energy through heat transfer to the low temperature reservoir, w' > w 
and –q'L < –qL. We write this last inequality as –q'L < –qL since q'L and qL are both negative 
numbers. To help avoid confusion, we will always give comparisons between positive numbers. 
   Now run the less efficient cycle as a heat pump and use the more efficient cycle to drive the 
heat pump, Figure 11.1.3a. A heat pump is just an engine in reverse. Work is input to a heat 
pump, which transfers energy from the colder reservoir to the hotter reservoir. 

ξ' > ξ 
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   Since the primed system is more efficient than the original system, the primed system produces 
more work than the original system needs to operate as a heat pump. The net result is that work 
is still available to do useful things. But where does the energy come from for this work? It can't 
come from the high temperature reservoir, because the same amount of energy is being drawn 
from the high temperature reservoir as is being pumped back in. The energy to pay for the work 
comes from the low temperature reservoir! This low temperature source is inconsistent with our 
experience. A simple example to show this inconsistency is to consider a steam driven boat (real 
examples include air craft carriers and nuclear submarines). Once the high temperature reservoir 
is established at TH, no additional energy is drawn from the reservoir; that is, we wouldn’t need 
to burn any more fuel. Instead the energy to power the vessel is extracted from the ocean. This 
situation doesn’t violate the First Law. The energy is conserved; the energy necessary to do the 
work is extracted as heat from a reservoir. However, our experience tells us that boats need lots 
of fuel for propulsion. Extracting energy from a reservoir and the production of an equal amount 
of work without any other change in the system is called perpetual motion of the second kind, 
which our experience tells us is impossible. Our original assumption must then be incorrect. 
Therefore, any reversible Carnot cycle operating between the same two temperatures gives the 
same, maximal amount of work. The efficiency of a Carnot cycle is independent of the working 
substance. This independence makes the reversible Carnot cycle a very generally useful model. 
   All reversible Carnot cycles operating between the same two temperatures have the same 
efficiency. This realization also tells us something quite important. If our original cycle has an 
efficiency less than 100%, then all cycles between the same two temperatures will have the same 
less than perfect efficiency. Since we have yet to find any Carnot cycle that operates at 100% 
efficiency, then that must mean, in our experience, there are no reversible Carnot cycles that 
operate at 100% efficiency. In other words, our experience is that there is always some waste 
heat from thermal cycles in closed systems, no matter how carefully engineered or no matter how 
close to true reversibility these cycles run. 
 
 
 
 
 
 
 
 
 
 
 
      (a)        (b) 
 

Figure 11.1.3: (a) The more efficient, primed system provides enough work to run the less 
efficient system as a heat pump and is still able to do useful work. No net change occurs for 
the energy in the high temperature reservoir. (b) Such a system would be able to do useful 
work by extracting an equal amount of energy from the low temperature reservoir, without 
any other change in the system. 
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The Second Law of Thermodynamics:   The analysis that we just used is one of the first 
statements of the Second Law of thermodynamics. A careful statement of the Second Law 
similar to that originally given by William Thomson (Lord Kelvin) in 1853 is:1 

 
 

Principle of Thomson: It is impossible to devise an engine that working in a cycle shall 
produce no effect other than the extraction of heat from a reservoir and the performance 
of an equal amount of work. 

 

We can also consider the operation of heat pumps as a basis for our comparison of heat and 
work transfers. In this mode the work output of the primed cycle is set equal to the work 
input of the unprimed cycle so no net work is done. The net energy flow is then the transfer 
of heat from the colder reservoir to the hotter reservoir. The statement of the Second Law 
based on this analysis is due to Rudolf Clausius:2-4 

 
 

Principle of Clausius: It is impossible to devise an engine that working in a cycle shall 
produce no effect other than the transfer of heat from a colder to a hotter body. 

 

   What do these statements of the Second Law tell us about cyclic processes? These principles 
tell us that the First Law isn’t the whole story. Heat and work can not be freely interconverted. 
Instead, Thomson’s statement requires that to do useful work energy must be extracted from a 
high temperature reservoir and some heat must also be transfered to a low temperature reservoir. 
Heat transfer to the low temperature reservoir is waste heat, which decreases the efficiency of the 
process. The maximium efficiency of a Carnot cycle cannot be 100%, unless qL= 0. 
   Laws are the compilation of our common observations of the world. Laws are not directly 
derivable, in a mathematical sense, but rather are statements of our expectations based on the 
experience of many people over the course of history. The principles of Thomson and Clausius 
are just two of many statements of the Second Law. Our goal in studying thermodynamics is to 
predict the spontaneity of chemical reactions. It is hard to see the relevance of these statements 
of the Second Law to our goals. Even though the understanding of Carnot cycles is useful in it’s 
own right, the analysis of reversible Carnot cycles historically provided the insight necessary for 
the definition of the concept of entropy. To continue our search for the criterion for spontaneous 
change, we can look at any spontaneous process. A Carnot cycle will work as well as any other 
process, since we seek the underlying form of nature that holds for all physical processes. To 
continue, we next consider a reversible Carnot cycle with an ideal gas as the working substance. 
 
11.2 Maximum Efficiency of a Thermal Process 
 

Ideal Gas Reversible Carnot Cycle:  The efficiency of any Carnot cycle operating between the 
same high temperature reservoir and low temperature reservoir is the same, no matter the 
working substance. So we may as well use an ideal gas as our working substance to make things 
simple. 
   The heat transfer and work done for each step in the Carnot cycle are, Figure 11.2.1: 
 

 I.      Isothermal, TH  qH  =  –wI 
 II.    Adiabatic   qII  =  0 wII = ∆U 
 III.   Isothermal, TL  qL  =  –wIII  
 IV.  Adiabatic   qIV  =  0 wIV = ∆U (Carnot cycle, closed) 11.2.1 
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Figure 11.2.1:  A reversible Carnot cycle with an ideal gas as the working substance. 
 
 
and for the first isothermal step at TH the work is: 
 

 I.     wI = – nRTH ln V2/V1       (isothermal, ideal gas, reversible, closed) 11.2.2° 
 

The first adiabatic step lowers the temperature from TH to TL and wII = ∆U. For any process in an 
ideal gas dU = Cv dT: 
 

 II.    wII = ⌡⌠TH

T
L  Cv dT  =  –⌡⌠TL

TH Cv dT     (adiabatic, ideal gas, closed) 11.2.3° 
 

In Eq. 11.2.3°, we invert the limits of integration and change the sign of the integral so that the 
limits start at the lower temperature and end at the higher. The isothermal compression at TL 
begins the process of returning to the initial state: 
 

 III.    wIII  = – nRTL ln V4/V3       (isothermal, ideal gas, reversible, closed) 11.2.4° 
 

The final adiabatic step returns the system to the initial state at TH: 
 

 IV.    wIV = ⌡⌠TL

TH Cv dT       (adiabatic, ideal gas, closed) 11.2.5° 
 

The cycle is then repeated. The total work is the sum for the four steps: 
 

 w = – nRTH ln V2/V1  –⌡⌠TL

TH Cv dT  – nRTL ln V4/V3  + ⌡⌠TL

TH Cv dT 

      (reversible Carnot cycle, ideal gas, closed) 11.2.6° 
 

The work for the two adiabatic steps cancels giving: 
 

 w =  –nRTH ln V2/V1 – nRTL ln V4/V3 
      (reversible Carnot cycle, ideal gas, closed) 11.2.7° 
 

To simplify this equation, we suspect that there may be a relationship between V1 and V2 and 
also V3 and V4, since the pairs of volumes are at the same temperature. To find a relationship 
between V2/V1 and V4/V3, remember for an adiabatic process, starting at initial state Vi and Pi 
and ending in the final state Vf and Pf, that VfTf

c = ViTi
c, with c = Cv/nR. For the adiabatic steps 

in the Carnot cycle: 
 

 V4T
c
L  = V1T

c
H    (adiabatic, ideal gas, reversible, closed) 11.2.8° 

 

 V3T
c
L  = V2T

c
H    (adiabatic, ideal gas, reversible, closed) 11.2.9° 
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Dividing Eq. 11.2.8° by 11.2.9° gives the desired ratios: 
 

 V4/V3  = V1/V2   (reversible Carnot cycle, ideal gas, closed)  11.2.10° 
 

Substituting Eq. 11.2.10° into Eq. 11.2.7° gives: 
 

 w =  – nRTH ln V2/V1 – nRTL ln V1/V2  =  – nRTH ln V2/V1 + nRTL ln V2/V1 
      (reversible Carnot cycle, ideal gas, closed)  11.2.11° 
 

Collecting terms in ln V2/V1 gives: 
 

 w =  – nR(TH – TL) ln V2/V1  (reversible Carnot cycle, ideal gas, closed)  11.2.12° 
 

Noting that for the heat transfer from the high temperature reservoir, qH  =  –wI , we can now 
calculate the overall efficiency by substitution of Eqs. 11.2.2° and 11.2.12° into the definition of 
the efficiency, Eq. 11.1.5: 
 

 ξmax  =  
–w
qH

   =  
nR(TH – TL) ln V2/V1

nRTH ln V2/V1
     (reversible Carnot cycle, closed) 11.2.13 

 

Cancelling common factors gives the final result: 
 

 ξmax  =  
TH – TL

TH
        (reversible Carnot cycle, closed) 11.2.14 

 

Even though we derived this equation using an ideal gas, this equation is valid for any working 
substance. This equation for the maximum efficiency of a Carnot cycle is the most famous 
equation in thermodynamics. It is certainly one of the most useful. This equation can also be 
considered as a statement of the Second Law of thermodynamics. Notice that the efficiency of a 
Carnot cycle improves as the difference in temperature increases. The difference in temperature 
between the two reservoirs is called the temperature gradient; the temperature gradient drives the 
conversion of heat into work. The larger the gradient, the more efficiently heat can be converted 
into work. Therefore, the higher the temperature of the hot reservoir, the more useful that energy 
is. In a sense, energy in the high temperature reservoir has a higher quality. Energy released into 
the low temperature reservoir, which is usually the surroundings, has a diminished ability to do 
useful work. Energy in the low temperature reservoir is lower in quality. The maximum 
efficiency can be 100% only when the low temperature reservoir is at 0 K, which we will see 
from the Third Law of thermodynamics, is impossible. The limited efficiency of real cycles 
means that not all of the energy of the universe can be converted into useful work. 
 
Practical Energy Production and Conservation:  The internal combustion engine in an 
automobile is adequately modeled as a Carnot cycle. Even though the flame temperature of 
burning gasoline reaches ~3000 K, the effective gas temperature at the peak energy transfer point 
of the compression cycle is much lower, around ~530 K. For an ambient temperature of 300 K, 
the maximum Carnot efficiency between 530K and 300 K is: 
 

 ξmax  =  
TH – TL

TH
  =  

530 – 300
530   =  0.434      (reversible Carnot cycle, closed) 11.2.15 

 

That is, only 43%. This sizeable inefficiency is unavoidable for an engine operating in a thermal 
cycle. At least 57% of the energy in a gallon of fuel is completely wasted to the surroundings. 
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This wasted energy is necessary to “pay” for the conversion of random thermal energy into 
useful work. Improvements in engineering can do nothing about the 57% loss of energy, which 
we will soon see is necessary for the production of entropy. The actual energy efficiency of an 
automobile, based only on internal combustion, is actually on the order of 20-25% when 
frictional losses and other inefficiencies are taken into account.5 Hybrid vehicles do about 25% 
better for highway driving than high efficiency internal combustion only cars. 
   If the same gallon of fuel is instead used to power a fuel cell that produces electricity, then 
theoretical efficiencies in the 80% range for the production of electricity are possible. Because 
fuel cells do not operate in a thermal cycle, they are not limited by the Carnot efficiency. 
However, practical fuel cell based automobile efficiencies closer to 36% are expected.6 
Hydrogen fuel cells are expected to be less than 80% efficient because of issues surrounding 
hydrogen storage. However, hydrogen combustion will not contribute to global warming, if the 
hydrogen is not made using natural gas, oil, or coal. Unfortunately, currently the only large-scale 
source of hydrogen is from natural gas. 
   The production of transportation fuels will remain a critical issue until all-electric or hydrogen 
based vehicles can be efficiently produced without the use of fossil fuels for electricity 
production. Until then we need a greatly increased emphasis on energy conservation and new 
fuels. For energy conservation, thermodynamics provides a sobering message that shows we are 
close to the theoretical maximum efficiency already. That is not to say that efforts towards 
greater efficiency aren’t necessary. A 50% improvement in fleet average gas mileage is an 
important first step in moving towards energy independence and the decrease of greenhouse 
gases. However, a 50% improvement in gas mileage will only bring us closer to the theoretical 
maximum efficiency of about 40% overall. Significant decreases in energy use for transportation 
will require bringing all vehicles under improved efficiency standards, more effective and 
efficient means of mass transportation, and a significant reduction in total miles traveled. 
 
 
              

Example 11.2.1: Carnot Efficiency 
Nuclear powers plants and some coal-fired power plants operate with steam in equilibrium with 
liquid water, so called saturated steam. The maximum temperature for saturated steam is the 
critical point of water, 374°C (705°F) at 221 bar (22.06 MPa, 218 atm). Standard boilers operate 
up to around 180 bar, giving a steam temperature of 357°C. (a) Calculate the Carnot efficiency of 
a power plant operating between the temperatures of 357°C and 32°C, a common exhaust 
temperature for an efficient steam turbine. (b) Nuclear power plants operate at a lower 
temperature than coal-fired plants, because the steam is made using water-to-water heat 
exchange using the reactor coolant.7 Calculate the Carnot efficiency of a power plant operating 
between the temperatures of 250°C and 32°C. 
 
 
Answer:  Converting to the absolute temperature scale, 357°C, 250°C, and 32°C correspond to 
630 K, 523 K, and 305 K, giving the Carnot efficiencies of: 
 

(a) ξmax  =  
TH – TL

TH
  =  

630  – 305
630   =  51.6% 

 

b) ξmax  =  
TH – TL

TH
  =  

523  – 305
523   =  41.7% 
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Nuclear power plants operate at around 38% efficiency, which is not that much less than the 
theoretical maximum.7 
 
              

Example 11.2.2: Carnot Efficiency 
Most coal and oil fired power plants operate on superheated steam. Superheated steam is not in 
equilibrium with liquid water, so the maximum temperatures are much higher. The Tennessee 
Valley Authority’s Kingston Fossil Plant near Knoxville, Tennessee, uses superheated steam at 
540°C (1000°F) at pressures of more than 124 bar (1,800 psi).8 The turbine discharge 
temperature is 32–38°C. Calculate the maximum Carnot efficiency of a modern superheated 
steam power plant. 
 
 
Answer:  Using 540°C and 35°C, or in absolute units 813 K and 308 K, gives (TH – TL)/TH still a 
disappointing 61.1% efficiency. Actual operating efficiencies are in the ~48% range for high 
temperature, steam based, electrical production. 
 
              

 
 
Solar Energy Conversion:  All objects emit light. As the temperature of an object increases the 
net energy produced as light increases and the frequency of maximum emission increases. This 
emission is called black-body radiation. Your body emits light in the infra-red region of the 
electromagnetic spectrum (you glow in the infra-red region of the spectrum). The temperature of 
the filament in an incandescent light bulb corresponds to around 3800 K. A small change in the 
temperature produces a large change in the light flux from an object. The total flux, which is the 
energy emitted per second per unit area, is given by the Stefan-Boltzmann law: 
 

 Jblackbody = σ T4         11.2.16 
 

where σ is the Stefan-Boltzmann constant, 5.6704×10−8 W·m-2·K-4 and 1 W = 1 J s-1. Most all of 
the available energy on the earth, other than nuclear and geothermal energy, derives from the 
sun. The equivalent black-body surface temperature of the sun is 5800 K. This energy drives 
photosynthesis, the water cycle, and wind generation. The water cycle gives rise to hydroelectric 
power, and wind generation gives rise to wind turbine based energy production. Fossil fuels are 
the result of photosynthetic energy production that has been stored over geologic time. 
   Trees and other conventionally grown crops are only about 1% efficient in converting solar 
energy into biomass.9 The total world efficiency for solar conversion to biomass is estimated to 
be 0.13-0.17%.9 The direct conversion of solar energy into useful chemical fuels can more 
efficiently utilize the energy from the sun. Many processes have been proposed that convert solar 
energy into electricity or fuels, especially hydrogen. 
 
Photosynthesis and Photovoltaic Energy Conversion:  Even though photosynthesis, 
photovoltaics, and solar thermal production are steady state processes, the limiting efficiency can 
still be compared to the corresponding Carnot efficiency.11 The maximum efficiency of direct 
solar processes, such as photochemistry, photosynthesis, and photovoltaic cells, is the 
corresponding Carnot efficiency for the process operating between the surface temperature of the 
sun, 5800 K, and ambient temperatures: 
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 ξmax  =  
TH – TL

TH
  =  

5800  – 300
5800   =  94.8%      11.2.17 

 

In the case of photovoltaic cells, electrons are the working substance and the inefficiency results 
from the backwards flow of electrons through the device driven by the ambient available thermal 
kinetic energy, RTL. Photovoltaics also suffer radiative loss as the solar cell surface temperature 
increases above the ambient, given by Eq. 11.2.16. One significant additional limiting factor for 
photovoltaics or photosynthesis is that neither process utilizes the full emission spectrum of the 
sun. The photosynthetically active radiation, or PAR, is in the range of 380-710 nm, which is 
about 50% of the total solar flux.12 The practical limiting efficiencies for direct solar energy 
conversion in photosynthesis and photovoltaics are about 20%.13,14 
   It may seem strange to consider absorption of light from the sun in this fashion. However, 
referring to Figure 11.1.1, note that heat transfer, in general, occurs by conduction, convection, 
and radiation. Energy transfer from the sun is just all in radiation. Since the energy transfer 
pathway in Figure 11.1.1 need not be specified, the transfer may be remote through convection 
or radiation as well as through direct conductive contact. 
 

 
https://share.sandia.gov/news/resources/releases/2004/renew-energy-batt/Stirling.html 

Figure 11.2.2: Stirling engine based electricity production using solar-dish concentration at 
Sandia National Laboratory. The system gives a solar-to-electric conversion efficiency 
reaching 30 percent. Each unit can produce up to 25 kilowatts of daytime power.10 

 
 
Solar Thermal Cycles:  Solar thermal processes convert the energy of the sun into thermal energy 
in an absorbing medium, Figure 11.2.2. Solar thermal cycles can more efficiently use the full 
spectrum of the sun than photovoltaics or photosynthesis. Many thermal cycles have been 
proposed that use this thermal energy to produce useful fuels. The direct dissociation of water at 
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temperatures greater than 2500 K using solar mirror concentration has been proposed for the 
production of hydrogen. Even at 2700 K the extent of the dissociation of water lies far to the left: 
 

 H2O (g) →←   H2 (g) + ½ O2 (g)        11.2.18 
 

However, separation techniques, including effusion, may be useful for extracting H2 in a steady 
state, non-equilibrium continuous process. Even though solar thermal production is neither at 
equilibrium or a closed process, the limiting efficiency can still be compared to the 
corresponding Carnot efficiency. Consider a cyclic process that uses energy extracted from a 
solar absorber, Figure 11.2.3. The maximum efficiency of solar thermal processes is estimated as 
the corresponding Carnot efficiency for the process operating between the absorber temperature, 
TH, and ambient temperatures, TL, just like any Carnot cycle: 
 

 ξmax  =  
TH – TL

TH
  =  

2500  – 300
2500   =  88%      11.2.19 

 

which is a tantalizing improvement over plant based photosynthesis. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.2.3: A Concentrating Solar Power, CSP, system heats an absorber to a high 
temperature. The solar flux provides the energy to the high temperature reservoir for a 
chemical process that operates in a cycle, produces hydrogen or other fuel, and discharges 
waste energy to the surroundings. 

 
 
   Additional inefficiencies result when the energy of the system is lost as black-body radiation to 
the surroundings at the characteristic temperature of the process.15,16 Let the total solar flux into 
the process be given as Jsolar. The efficiency for solar thermal processes including the Carnot 
efficiency and radiative loss at the absorber at temperature, TH, using Eq. 11.2.16 is: 
 

 ξmax =  






TH – TL

TH
 






Jsolar A – a σ TH

4

Jsolar A
       11.2.20 

 

where A is the solar collector area and a is the area of the absorber. This radiative energy loss 
from the surface of the absorber greatly decreases the efficiency at higher temperatures. The 
efficiency peaks at around 75% for temperatures in the 1500 – 2000 K range. Finding chemical 
reactions that generate hydrogen from water efficiently at temperatures below 2000 K is an 
important challenge. 

Reservoir, TH ~ 2500 K 

Reservoir, TL ~ 300 K 

H2 (g) H2O 

qH 

qL 
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   Thermochemical water-splitting cycles produce hydrogen from water at much lower 
temperatures than the direct process, Eq. 11.2.18.17 The Sulfur-Iodine cycle consists of three 
coupled reactions, which add to give the dissociation of water: 
 

 H2SO4 (l)  →  SO2 (g)+ H2O (g) + ½ O2 (g)   (>850°C)  11.2.21 
 I2 + SO2 + 2 H2O  →  2 HI + H2SO4    (>120°C)  11.2.22 
 2 HI  →  I2 + H2       (>450°C)  11.2.23 
        

net: H2O  →  H2 (g) + ½ O2 (g) 
 

These three reactions constitute a catalytic cycle operating in a steady state. All the reactants, 
other than water, are regenerated and recycled. Thermal energy is required for the endothermic 
high-temperature dissociation of sulfuric acid. Energy is dispersed to the surroundings through 
the low temperature exothermic processes. In the Sulfur-Iodine cycle most of the input energy 
goes into the dissociation of sulfuric acid. This thermochemical cycle can use concentrating solar 
power, nuclear, or any other high temperature energy source. The development of new 
thermochemical cycles is one way chemistry can make a central contribution to energy security 
and the amelioration of greenhouse gas emission. 
   The highest practical conversion efficiency of solar energy into electricity may be the use of 
solar concentrator based Stirling engine driven electrical generation.10,18 Stirling engines are 
external heat source engines, Figure 11.2.2. Helium or hydrogen, which has the highest thermal 
conductivity of any gas, is used as the working substance. Stirling engines are heavier than 
internal combustion engines, but their high relative mechanical efficiencies make Stirling 
engines ideal for stationary applications like solar energy conversion. Stirling engines operate in 
a closed cycle, which is limited by the Carnot efficiency.16 Typical Stirling engines operate at 
700°C, giving a Carnot efficiency of 68%.16,18 The chemical aspects of research in this area are 
in materials science for developments in solar collector fabrication and high temperature 
materials. This efficiency is also a useful comparison benchmark when considering chemical 
solar thermal cycles. 
 
11.3 Thermodynamic Definition of Entropy; Entropy Measures the Dispersal of Energy 
 

Carnot was very clever in creating the Carnot cycle as a general model for cyclic thermal 
processes. The Carnot cycle is independent of the working substance and is maximal for 
reversible processes. This behavior is universal for all systems operating in a thermal cycle. The 
Carnot efficiency incorporates a general principle of the physical world. However, in 
thermodynamics we usually prefer to express our description of a process in terms of state 
functions and in terms directly related to the internal energy change for the process. Let’s see if 
we can recast the Carnot efficiency into terms that are useful for evaluating the spontaneity of 
chemical reactions and phase transitions. Consider a general Carnot cycle. The efficiency is 
given as, Eq. 11.1.6: 
 

 ξ = 
-w
qH

  =  
qH + qL

qH
     (any Carnot cycle, closed) 11.3.1 

 

For a reversible Carnot cycle, Eq. 11.2.14 also holds and then ξ = ξmax giving: 
 

 
qH + qL

qH
  =  

TH –TL

TH
    (reversible Carnot cycle, closed ) 11.3.2 
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This relationship shows, quite surprisingly, that the heat transfers from the high temperature 
reservoir and to the low temperature reservoir are not independent. The heat transfers are directly 
and exclusively related to the temperatures of the reservoirs. As a consequence, except when TL 
= 0, energy is always necessarily wasted into the low temperature reservoir. In other words, the 
high quality energy from the high temperature reservoir is dispersed into the surroundings. Why 
does this transfer of heat necessarily happen? 
   Dividing by the denominators in Eq. 11.3.2: 
 

 1 + 
qL

qH
  =  1 –  

TL

TH
    (reversible Carnot cycle, closed ) 11.3.3 

 

Cancelling the constant and cross-multiplying to collect terms for the same reservoir: 
 

 
qL

TL
  =  –  

qH

TH
     (reversible Carnot cycle, closed ) 11.3.4 

 

and rearrangement finally gives a relationship that links the heat transferred from a given 
reservoir with the temperature of that reservoir: 
 

 
qL

TL
 + 

qH

TH
  = 0     (reversible Carnot cycle, closed ) 11.3.5 

 

The heat transferred to or from the reservoir is dependent on the reservoir temperatures. This 
equation is also the sum of q/T around the full cycle, since q = 0 for the adiabatic steps. 
Whenever the sum of a function around a closed cycle is zero, it is suggestive that the function 
may be a state function. After this same detailed analysis of the Carnot cycle, Clausius proposed 
the definition for the entropy:3,4 

 

 S ≡ 
qrev
T       (reversible process, closed) 11.3.6 

 

which Eq. 11.3.5 shows is a state function for the Carnot cycle. The differential form for the 
definition of the entropy is: 
 

 dS ≡ 
đqrev

T       (reversible process, closed) 11.3.7 
 

The restriction that the heat transfer must be for a reversible process is particularly important, 
since q/T evaluated around a Carnot cycle for an irreversible, spontaneous process is not a state 
function. 
   Thermodynamics is a very practical science. If a new concept is useful we keep it, otherwise 
the concept is tossed out. We need to show that entropy as defined by Eq. 11.3.6 is a useful 
concept. In particular, to fit into the foundations of thermodynamics, we need to show that 
entropy is a state function for any process, not just a Carnot cycle. Then the usefulness of 
entropy will be established if we can use entropy to predict the spontaneous direction for 
chemical reactions and other physical processes. We need to show that: 

 a. S is a state function for a general cycle:  o ⌡⌠  đqrev
T  = 0 

 b. for irreversible cycles:  o ⌡⌠ đqT   < 0 
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 c. ∆S ≥  ⌡⌠ đqT  

 d. Entropy always increases for a spontaneous process in an isolated system. 
 

We tackle each of these steps in turn. 
 
a. Entropy is a State Function for a General Cycle:  Consider a general cycle, which is not 
necessarily a Carnot cycle or reversible. This general cycle may be approximated as a series of 
reversible Carnot cycles as diagrammed in Figure 11.3.1. The adiabatic steps between the cycles 
don’t contribute to the dqrev/T terms, since dq = 0 for an adiabatic process. 
 
 
 
 
 
 
 
 
 
 
 (a)      (b) 

Figure 11.3.1:  A general cycle may be divided into a series of N Carnot cycles. As N → ∞ 
the general cycle is approximated arbitrarily well. (a) The sum of qrev/T around each 
individual Carnot cycle is equal to zero, Eq. 11.3.5. (b) Summing qrev/T around the general 
cycle is equivalent to summing over each individual cycle. 

 
 
   First, let the number of small cycles, N, go to infinity, N→ ∞. As the number of reversible 
Carnot cycles increases, the approximation to the general cycle gets better and better. In the 
limit, the approximation is arbitrarily good. Now focus on each individual reversible Carnot 
cycle. Using Eq. 11.3.5, the sum of qrev/T is equal to zero around each small cycle, Figure 
11.3.1a. 
   To integrate đqrev/T around the general cycle, sum qrev/T over all the high temperature 
isotherms of the Carnot cycles and then over all the low temperature isotherms, Figure 11.3.1b. 
This sum includes all the qrev/T terms for the high and low temperatures for each individual 
Carnot cycle, which all sum to zero. In other words, it doesn’t matter what order the qrev/T terms 
are added: over all the high temperature isotherms and then all the low temperature isotherms 
around the full cycle, or alternatively around each of the individual Carnot cycles. Therefore, the 
sum of qrev/T around the general cycle is also zero as N → ∞. Mathematically,  
 

 o ⌡⌠ đqrev
T   = 0      (reversible, closed)  11.3.8 

 

This cyclic integral is the entropy change for the cyclic process, which is equal to zero as 
required for a state function. This proof is central to verifying the importance of the entropy. Eq. 
11.3.8 can be considered a statement of the Second Law. However, what happens for a 
spontaneous, irreversible process? The entropy must be calculated for a reversible path that 

P 

V 

P 

V 
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operates between the same initial and final states as the actual spontaneous process. Since the 
entropy is a state function, the entropy change is independent of the actual path of the process. 
 
b. The Clausius Inequality Holds for Irreversible Cycles:  Entropy is defined using only 
reversible heat transfers, dS = đqrev/T. But, what about đq/T for a spontaneous process? How 
does đq/T change for a spontaneous cyclic process? We know that the efficiency of an 
irreversible, spontaneous process will be less than the efficiency for a reversible process: 
 

 ξ < ξmax      (irreversible, cyclic, closed) 11.3.9 
 

The efficiency for any Carnot process is given by Eq. 11.1.6. The efficiency for a reversible 
process is given by Eq. 11.2.14. Substitution into the inequality, Eq. 11.3.9, gives the 
relationship of the heat transfers for a spontaneous process to the heat transfers for a reversible, 
maximum work process. 
 

 
qH + qL

qH
  <  

TH – TL

TH
    (irreversible Carnot cycle, closed) 11.3.10 

 

Rearranging this equation in a parallel fashion to Eq. 11.3.3-11.3.5 gives: 
 

 1 + 
qL

qH
  < 1 –  

TL

TH
    (irreversible Carnot cycle, closed) 11.3.11 

 
qL

TL
  <  –  

qH

TH
     (irreversible Carnot cycle, closed) 11.3.12 

 
qL

TL
 + 

qH

TH
  < 0     (irreversible Carnot cycle, closed) 11.3.13 

 

which is in the same form as Eq. 11.3.5. The equality holds for reversible processes, and the 
inequality holds for irreversible, spontaneous processes. The corresponding differential form for 
an infinitesimal energy transfer is: 
 

 
đq
T  < 0      (irreversible Carnot cycle, closed) 11.3.14 

 

which holds for a spontaneous process as part of a Carnot cycle. To extend these equations to a 
general cycle, not just Carnot cycles, we repeat the thought process we used for Eq. 11.3.8. 
Approximate the general cycle as a sequence of many Carnot cycles. The sum around the general 
cycle of đq/T can be replaced by the sums around the individual Carnot cycles, where Eq. 
11.3.13 or 11.3.14 holds for each individual Carnot cycle: 
 

 o ⌡⌠ đqT  ≤ 0     <  for irreversible process = for reversible process     (closed)    11.3.15 
 

This relationship is called the Clausius inequality. The only restriction is that the process is 
closed. We can now use Eq. 11.3.15 to compare đq/T for a real, spontaneous process with the 
corresponding đqrev/T for a reversible process between the same initial and final states. 
 
c. The Clausius Inequality Compares a Real Process with the Matching Reversible Cycle:  The 
Clausius inequality, Eq. 11.3.15, holds for a general cyclic process. How can we use the Clausius 
inequality to compare a non-cyclic spontaneous process to the corresponding reversible process? 
Consider a cycle that starts at the initial state, i, progresses to a final state, f, and then returns 
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back to the initial state to complete the cycle. The Clausius inequality applies to the overall 
process, Figure 11.3.2. The process that we want to study is the forward process from i to f. 
Assume that this process is a spontaneous process. However, to complete the cycle, the process 
from f back to i is chosen as a reversible process. 
 

 
 
 
 
 
 
 
 

Figure 11.3.2: A general cycle that consists of an irreversible process from the initial state to 
a final state, and then a reversible process from the final state back to the initial state. 

 
 
The cyclic integral in Eq. 11.3.15 can then be split into two integrals, one for the irreversible, 
spontaneous process from i to f and one for the reversible process from f to i: 
 

 ⌡
⌠

i

f
  đqT   +⌡⌠f

i
  đqrev

T   < 0         (cycle, closed) 11.3.16 
 

The inequality holds if any part of the cycle is irreversible. Because the return process is 
reversible, we can switch the integration limits and correspondingly change the sign of the 
integral: 

 ⌡
⌠

i

f
  đqT   – ⌡⌠i

f
  đqrev

T   < 0         (cycle, closed) 11.3.17 
 

The second integral over đqrev/T is defined as the entropy change for the process, ∆S: 
 

 ⌡
⌠

i

f
  đqT   – ∆S  < 0         (cycle, closed) 11.3.18 

 

Adding the ∆S term to both sides of the inequality gives: 
 

 ∆S  ≥ ⌡⌠i

f
  đqT        > for irreversible process  = for reversible process   (closed)     11.3.19 

 

where the equality holds for the special case when the process is reversible, since then đq = đqrev. 
This is the result we have been looking for. ∆S is the total change for đqrev/T for the process and 
the right hand side is the total change in the actual đq/T for the process. The surprising fact is 
that for a spontaneous process the total real đq/T is always less than the corresponding reversible 
change, which is something that we would not have expected. This inequality is also called the 
Clausius inequality. The importance of the Clausius inequality is that it is completely general. 
This relationship is a fundamental restriction that must be true for any spontaneous process. If 
the integral of đq/T is evaluated for a new process and found to violate the direction of the 
inequality, then the process must be non-spontaneous! However, remember that the reverse of a 
non-spontaneous process is spontaneous. So Eq. 11.3.19 acts as a directional arrow for 
spontaneous processes. The spontaneous direction for any process is the direction that satisfies 

V 

i 

f irreversible 

reversible 

P 
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the Clausius inequality. We can recast the Clausius inequality in a simpler, but still very 
powerful form by focusing on isolated systems. 
 
d. Entropy Always Increases for a Spontaneous Process in an Isolated System:  The Clausius 
inequality is completely general. However, we can simplify our search for spontaneous processes 
by looking at the specific subset of processes that occur in isolated systems. For an isolated 
system đq = 0 and the Clausius inequality, Eq. 11.3.19 reduces to: 
 

 ∆S ≥ 0    > for irreversible process = for reversible process    (isolated)   11.3.20 
 

In words, the entropy always increases for a spontaneous process in an isolated system. At first, 
the specific choice of an isolated system may seem to be quite restrictive. However, many 
processes can occur in isolated systems, including chemical reactions. We will shortly see that 
the specification of an isolated system is not at all restrictive for closed systems. In fact, 
specifying that the system is overall isolated is a useful and handy simplification that allows us to 
focus on the chemistry that is occurring in the process under study. 
   The fact that entropy always increases for a spontaneous process in an isolated system tells us 
how to determine if a given process is spontaneous or not. For example, the entropy change for 
the process where the pressure of a mole of ideal gas is doubled is negative: 
 

 N2 (gas, 1 bar) → N2 (gas, 2 bar)    ∆S = –5.8 J K-1 (isolated, ideal gas)   11.3.21° 
 

In an isolated system, this process is not spontaneous, since the entropy change is negative. 
Rather, the reverse is the spontaneous direction. A gas at high pressure spontaneously expands to 
give a gas at low pressure, such as when a balloon bursts. Of course, this example is just the 
beginning. In particular, the universe may be considered as an isolated system for many practical 
circumstances, and then Eq. 11.3.20 can be phrased as: the entropy of the universe is always 
increasing. Entropy is the criterion for spontaneous change, in isolated systems. 
 
11.4 Summary – Looking Ahead 
 

Entropy and the Carnot Cycle:   We can now relate the concept of entropy to the Carnot cycle. 
No engine can be 100% efficient because the conversion of heat exclusively into work is not an 
entropically allowable process. Work is essentially organized, concentrated energy. To pay for 
the production of work, energy must be dispersed by transfer of waste heat into the surroundings. 
However, from the definition of entropy, dS = đqrev/T, the temperature of the transfer is in the 
denominator of this expression. Therefore, for a given heat transfer, đqrev, the change in entropy 
is greater when the transfer takes place at low temperature rather than high temperature. This 
dependence means that the transfer of energy qL into the low temperature reservoir can give a net 
increase in entropy and still have some energy left over, qH + qL, for useful work. 
   Entropy is the key concept in understanding the interrelationships of chemical systems to their 
surroundings. Our analysis of the efficiency of thermal processes shows that all of the energy of 
the universe cannot be converted into useful work. In the next chapter we calculate the entropy 
change for a wide variety of processes including phase transitions and chemical reactions. 
 
 

Chapter Summary 
 

1. Fuel bioplantations, food croplands, and forests compete for soil resources and water. 
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2. Poor farming practices contribute to deforestation, especially through soil depletion. 
3. Deforestation contributes to global climate change. 
4. Steam engines are examples of processes that operate as thermal cycles, which convert heat 

transfers into useful work. 
5. All engines extract energy by heat transfer from a high temperature reservoir, do work, and 

deposit waste energy by heat transfer into a low temperature reservoir. 
6. The low temperature reservoir for thermal cycles is usually the surroundings. 

7. The efficiency of a process is: ξ =  
-w
qH

 

8. The efficiency of a Carnot cycle, reversible or irreversible: ξ = 
-w
qH

   =  
qH + qL

qH
 

9. The efficiency of a reversible Carnot cycle is independent of the working substance. 
10. The Second Law of Thermodynamics–Principle of Thomson: It is impossible to devise 

an engine that working in a cycle shall produce no effect other than the extraction of 
heat from a reservoir and the performance of an equal amount of work. 

11. The Second Law of Thermodynamics–Principle of Clausius: It is impossible to devise 
an engine that working in a cycle shall produce no effect other than the transfer of heat 
from a colder to a hotter body. 

12. All reversible Carnot cycles operating between the same two temperatures have the same 
efficiency:  

 ξmax  =  
TH – TL

TH
 

13. The Stefan-Boltzmann law describes the loss of energy of an object through radiation: 
 Jblackbody = σ T4

 

14. The practical limiting efficiencies for direct solar energy conversion in photosynthesis and 
photovoltaics are about 20%. 

15. The solar thermal efficiency including the Carnot efficiency and radiative loss is: 

 ξmax =  






TH – TL

TH
 






Jsolar A – a σ TH

4

Jsolar A
 

 where A is the solar collector area and a is the area of the absorber. 

16. The definition of the entropy change for a closed process is S ≡ 
qrev
T   or  dS ≡ 

đqrev
T  

17. S is a state function for a general cycle:  o ⌡⌠  đqrev
T    = 0 

18. The Clausius Inequality: for irreversible cycles,  o ⌡⌠ đqT   < 0 

19. The Clausius Inequality can also be written: for a general process, ∆S ≥  ⌡⌠ đqT  

20. Entropy always increases for a spontaneous process in an isolated system. 
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Problems: The Thermodynamic Definition of Entropy 
 

1. Calculate the Carnot efficiency of a solar concentrator–Stirling engine system that operates at 
700°C and 37°C. 
 
2. Is it more efficient to fly in the summer or winter? 
 
3. On a really hot day, is it possible to cool the kitchen by opening the refrigerator door? 
 
4. One mole of an ideal monatomic gas is used as the working substance for a reversible Carnot 
cycle. The initial temperature is 500. K and the initial volume is 4.00 L. For step I, the gas 
expands to twice its initial volume. In step II the temperature is lowered to 300. K. What is the 
volume after step II, V3, and after step III, V4? Step IV returns the system to the initial 
temperature and volume. 
 
5. One mole of an ideal monatomic gas is used as the working substance for a reversible Carnot 
cycle. The initial temperature is 500. K and the initial volume is 4.00 L. For step I, the gas 
expands to twice its initial volume. In step II the temperature is lowered to 300. K (see problem 
4). Notice that for a reversible cycle, the work done in steps II and IV is equal, but opposite in 
sign. (a) Calculate the work done in step I and step III. (b) Calculate the energy transferred from 
the high temperature reservoir, qH. (c) Calculate the efficiency for the cycle. 
 
6. A 0.200-mol sample of a monatomic ideal gas is used as the working substance in a reversible 
Carnot cycle that operates between 700 K and 300 K. The starting volume is 0.500 L. The heat 
transferred into the gas from the high temperature reservoir is 1000. J. (a) Calculate q, w, ∆U, 
and ∆S for each of the steps in the Carnot cycle. (b) Calculate q, w, ∆U, and ∆S for the complete 
cycle. 
 
7. The peak sun solar flux that reaches a surface pointed directly at the sun is about 1.00 kW m-2. 
Using a solar collector of area 10.0 m2, calculate the collector temperature that would be 
necessary to produce 4.00 kW of power using a steam turbine coupled to an electric generator at 
peak sun flux. Assume the discharge temperature of the turbine is 35°C and that the combined 
steam turbine and electrical generator operate at 60.0% of the maximum Carnot efficiency (due 
to frictional losses, etc.). Neglect radiative losses from the solar collector absorber surface. 
 
8. In problem 7, we neglected radiative losses from the solar collector absorber surface. 
Assuming the same conditions and operating temperatures as in problem 7, calculate the output 
power when radiative losses from the solar collector absorber surface are taken into account. 
Assume that the absorber surface is 0.1 m2 (this concentration ratio is  A/a =100). 
 
9. Give a rough sketch of the progress for a reversible Carnot cycle on a plot of entropy versus 
temperature. Label the steps I-IV so that you can compare with Figure 11.2.1. Also indicate the 
starting point. 
 
10. The solar concentration ratio of a solar collector is defined as the total collector area divided 
by the absorber area, c = A/a. The solar collection area for a very large “power tower” is on the 
order of 200. m2. For a small solar absorber area of 0.1 m2 (~1 ft2), the corresponding 
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concentration ratio is 2000. Plot the solar thermal efficiency for this concentration ratio as a 
function of absorber temperature, TH, including the Carnot efficiency and radiative losses. 
Assume that the low temperature reservoir for the solar thermal process is at 300. K and the solar 
flux is 1000. W m-2. 
 
11. The electrolysis of water is a potential source of hydrogen for use as a transportation fuel. 
However, H2 production is very costly. From your General Chemistry course, you might 
remember that the direct electrolysis of water is based on the two standard reduction half-cells: 
 2 H+ (aq) +  2 e-  →   H2 (g)   E° ≡ 0 V 
 O2 (g) + 4 H+ (aq) + 4 e- →  2 H2O (l) E° = 1.23 V 
with the standard cell potential: 
 H2O (l) → H2 (g) + ½ O2(g)   E°cell  = E°cathode – E°anode = –1.23 V.  
This cell potential is large and unfavorable. The Westinghouse-S cycle was developed in the 
1970’s to use solar thermal energy to lower the cost of the production of hydrogen.17 The 
Westinghouse-S cycle consists of two reactions, the net result of which is the production of H2: 
 

 H2SO4 (aq) →  SO2 (g) + H2O (g) + ½ O2 (g)  at 1140 K 
 SO2 (g) + 2 H2O (l) →  H2SO4 (aq) + H2(g)   at 320-350 K 
        

 H2O (l) → H2 (g) + ½ O2(g) 
 

The first step, the dehydration of sulfuric acid, is run in a concentrating solar collector. The 
second step is run in an electrolytic cell with the standard reduction half reactions: 
 

 2 H+ (aq) + 2 e-  →  H2 (g)     E° ≡ 0 V 
 SO4

2- (aq) + 4 H+ (aq) + 2 e- →  2 H2O (l) + SO2 (g)  E° = +0.17 V 
 

giving the standard cell potential E°cell  = E°cathode – E°anode = –0.17 V. Even though this cell 
potential is still negative, the energy requirement is greatly diminished from the direct 
hydrolysis. Of course, electrical energy is required to run the second step, which must be 
obtained from conventional sources. The solar thermal efficiency for this process covers only the 
production of SO2 (g). (a) Calculate the change in enthalpy for both steps in the Westinghouse-S 
cycle. (b) Calculate the maximum solar thermal efficiency for the production of SO2 (g) for the 
thermal part of the process operating between 1140 K and 350 K. Neglect radiative losses. (c) 
Calculate the electrical work necessary to produce one mole of H2 for E°cell at  -1.23 V and 
-0.17 V. [Hint: for electrochemical cells zi is given by the number of electrons transferred in the 
balanced cell reaction.] 
 
12. In Eq. 11.2.20: 

 ξmax =  






TH – TL

TH
 






Jsolar A – a σ TH

4

Jsolar A
 

The second term in brackets is the correction for the efficiency caused by radiative loss from the 
absorber surface. This correction results from the Stefan-Boltzmann equation, Eq. 11.2.16. 
Derive this radiative loss correction from Eq. 11.2.16. 


