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Chapter 10: Entropy, Temperature, and Heat Transfer 
 

When an aqueous solution of a protein is heated above the melting point of the protein, 
hydrogen bonds in the folded, native structure are disrupted. Above the melting point the 
protein exists in a random coil geometry. This process is called denaturation. Discuss 
denaturation from the prospective of energy dispersal and the change in entropy of the 
protein. 

 
 
10.1 What is the Criterion for Spontaneity? 
 

   Spontaneous processes are often exothermic. However, endothermic processes can also be 
spontaneous. For example, a salt dissolving in water is often endothermic: 
 

 KNO3 (s) + ∞ H2O → KNO3 (aq)   ∆solH°298 = 34.93 kJ mol-1 10.1.1 
 

and the protonation of weak bases is also often endothermic: 
 

 H+ (aq) + SO4
2- (aq) → HSO4

2- (aq)   ∆rH°298 = 20.8 kJ mol-1 10.1.2 
 

Both of these processes are certainly spontaneous. So, if the enthalpy or internal energy change 
for a process doesn’t predict the spontaneous direction for a process, what does? 
   Our experience is that nature is very “economical and efficient.” Nature doesn’t have different 
sets of rules for rocks, trees, people, and chemical reactions. All physical systems are governed 
by a very few laws. In searching for the criterion for the spontaneity of chemical reactions, we 
can look to simple processes, since at a fundamental level simple processes behave according to 
the same principles as complex processes. Enzymatically catalyzed reactions and bouncing balls 
have much in common. Consider a bouncing ball at height h, Figure 10.1.1. Initially, the ball has 
mechanical potential energy, V = mgh. When the ball is released, it falls and bounces on the 
table top. After each successive bounce, the ball looses some kinetic energy and eventually 
comes to rest on the surface of the table. Energy must be conserved, the First Law of 
thermodynamics will hold, but still a spontaneous process occurs. What happens to the total 
energy of this system? After the ball is released, the mechanical potential energy is converted 
into kinetic energy of the ball. During each bounce some of the kinetic energy is converted into 
thermal energy in the ball and the table. Energy is transferred into the rubber of the ball and the 
surface of the table in the form of heat; the ball and table increase slightly in temperature. This 
process shows that the initial potential energy of the system is dispersed spontaneously into 
thermal energy. The natural tendency is for energy to spread out, or disperse. 
 
 
 
 
 
 
 
 
 

Figure 10.1.1: Potential energy is converted into kinetic energy which is dispersed into 
thermal energy. A spontaneous process increases energy dispersal. 

h 
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   We can take a more molecular view of the bouncing ball. Potential energy is the stored ability 
to do work or transfer heat. After release, the potential energy of the ball is converted into kinetic 
energy of motion of the whole ball. All the molecules in the ball are moving in the same 
direction. The initial potential energy of the ball is converted into work, which is localized and 
organized motion. After each bounce some of this kinetic energy is converted into heat, which 
disperses through all the molecules of the ball and table top as random thermal motion. We will 
see that there is a useful relationship between energy dispersal and the statistical distribution of 
energy among the degrees of freedom of the system. 
   Another common example to illustrate energy dispersal is the isothermal expansion of an ideal 
gas. Consider a monatomic gas at high pressure confined to a small region of a vessel by a 
temporary internal wall and a stop, Figure 10.1.2. The region outside of the temporary wall is at 
vacuum. When the stop is removed the gas expands spontaneously to fill the full available 
volume. The internal energy of the gas remains the same, 3/2 nRT. Energy is conserved. 
However, the energy of the gas is now spread out over a larger volume. Once again, the natural 
tendency is for energy to disperse. 
 
 
 
 
 
 
 

Figure 10.1.2: An isothermal expansion of an ideal gas into a vacuum increases energy 
dispersal. When the stop is removed, the gas undergoes a free expansion. 

 
 
   Our goal then is to develop a spontaneity criterion for chemical reactions based on our 
expectations of energy dispersal. As you know from your high school and college General 
Chemistry courses, this criterion is entropy. You have been working problems on the entropy 
change for phase transitions and chemical reactions for years. We now specifically want to focus 
on the careful development of the definition of entropy, so we can better understand the 
fundamentals of this singularly important concept. 
   The next four chapters each introduce the definition of entropy from a different perspective. 
Each chapter is designed to be free standing, so you can choose which approach to use. Each 
chapter assumes that you have not previously learned about the concept of entropy. 
 

•  Chapter 10, this chapter, takes a direct thermodynamic approach based on the development 
of a new extensive state function that measures energy dispersal. We also introduce the 
thermodynamic definition of temperature. This chapter is the most general, complete, and 
probably the most abstract. 
•  Chapter 11 uses the historical perspective, which is based on the evaluation of the 
efficiency of cyclic thermal processes. Chapter 11 will be a good starting point if you are 
interested in energy resource issues. A focus of Chapter 11 is solar energy conversion and 
other alternative energy sources. 
•  Chapter 12 takes a molecular point of view by considering statistical measures of energy 
dispersal. Chapter 12 is valuable if you are interested in structural biology and biochemistry. 
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•  Chapter 13 starts with the statement of the definition of entropy and then develops the 
understanding and applications of the definition. If you prefer to see applications and 
practical examples before you jump into the theory, you can start with Chapter 13. 

 

   You can read Chapters 10-13 in any order. Your lecturer will probably not cover all these 
chapters in extensive detail. However, entropy is a tricky concept and having multiple ways of 
learning about entropy is helpful. Eventually, you will probably want to read all four. 
   If you are continuing on in this chapter, then, we begin by considering energy dispersal in 
general and from that understanding we construct the concept of entropy to mirror our 
observations concerning energy transfer in simple systems. 
 
10.2 Energy is Transferred from a Hotter to a Colder Body 
 

   When you heat a pot of water on a stove, the energy from the hot heating element is transferred 
to the cold water in the form of heat. When you and your friends are gathered around a campfire, 
the hot burning logs transfer energy, in the form of heat, to everyone standing around the fire. 
When you touch a hot object, energy is transferred to your fingertips. These observations are so 
common that we often simply take them for granted. However, these experiences are a universal 
expectation that we have for all physical processes; energy is transferred from a hotter to a colder 
body. The transfer of energy from a hotter to a colder object is a spontaneous process. In our 
experience, the opposite process never happens spontaneously. Energy is never transferred from 
a colder to a hotter body, without having to do work. The inside of a refrigerator doesn’t 
spontaneously become colder by transferring energy to the surroundings. Such a process 
wouldn’t violate the First Law of thermodynamics, since energy is conserved. However, we 
know that we need to supply energy to the refrigerator to do the work necessary to cool the 
refrigerator. For another example, water at room temperature doesn’t spontaneously cool to form 
ice. There is a natural direction for energy flow.  
   Considering the flow of energy in each of these cases, we note that energy is dispersed from a 
hot object to colder objects. By dispersed, we mean that the energy in hot objects spreads to 
colder objects. Energy dispersal is a spontaneous process. This observation is a summary of our 
experience, and is a qualitative form of the Second Law of thermodynamics. Our goal is to find a 
general mathematical statement to determine spontaneous heat transfer that holds for all systems 
and that encapsulates this very simple observation about heat transfer. 
 
Something Is Missing:   To find the general statement to determine spontaneous heat transfer, 
consider heat transfer and PV work for a general closed system. The heat transferred is đq and 
the internal energy change is: 
 

 dU = đq + đw = đq – Pext dV    (closed, PV work)  10.2.1 
 

We know that U is a state function, so the change in U will not depend on the path of the 
process. We can then get a general equation for a process by choosing any path we like. The 
most convenient path is a reversible process. It doesn’t matter what kind of process we choose, 
but choosing a reversible path gives P = Pext: 
 

 dU = đqrev + đwrev = đqrev – P dV   (reversible, closed, PV work) 10.2.2 
 

Most importantly, by specifying a reversible path, the work term, –PdV, only depends on the 
properties of the system. We don’t need any additional information about the pressure change for 
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the path, we just need the initial and final states. Let’s review what we know about heat transfer. 
We can obtain the heat transferred for a constant volume process from the heat capacity at 
constant volume, đqv = Cv dT. Assuming a constant volume process, then Eq. 10.2.2 reduces to: 
 

 dU = đqrev,V = Cv dT    (closed, constant V, PV work) 10.2.3 
 

However, this equation isn’t valid if we have a constant pressure process, where đqp = Cp dT. So 
Eq. 10.2.2 doesn’t keep track of heat transfer for any general process, without additionally 
specifying the path. The problem is that reversible heat transfer is still a path function. Internal 
energy is a state function so it should be independent of the path, but to use Eq. 10.2.2, we still 
need to specify a specific path. Something is missing. 
   Another way of seeing our dilemma is to work from the general form of the exact differential. 
Since U is a state function, considering U as a function of T and V, the total differential is: 
 

 dU = 






∂U

∂T V
dT + 







∂U

∂V T
dV     (closed, PV work) 10.2.4 

 

Using the definition of the constant volume heat capacity: 
 

 Cv = 






∂U

∂T V
                (constant V) 10.2.5 

 

and substituting into Eq. 10.2.4 gives: 
 

 dU = Cv dT + 






∂U

∂V T
dV     (closed, PV work) 10.2.6 

 

This equation is still not what we are looking for, because we don’t know what (∂U/∂V)T is. The 
last term can’t be just –PdV, since –PdV is only the reversible work done against an external 
force. (∂U/∂V)T includes all changes in the internal energy for a given volume change, which 
include forces between molecules. Intermolecular forces are strong for liquids, solids, and 
solutions. Also, the heat capacity appears in the equation, and the heat capacity in general is a 
path function. Something is missing. We still haven’t gotten a completely general description of 
our system. We need a better way of describing reversible heat transfer for a general process. 
 
Energy is transferred from a Hotter to a Colder Body:   Eq. 10.2.6 shows that T and V don’t 
work out well as the independent variables to describe a system in the most general case. 
However, Eq. 10.2.2 still looks like it might be a good place to start. We need to find a new 
variable that allows us to predict the direction of reversible heat transfer. We want this new 
variable to measure energy dispersal. For the lack of a better symbol, choose S to represent this 
new variable. We want S to be a state function, so it is independent of the path of the process. 
We should be able to express the total differential of the internal energy in the form of Eq. 
7.11.13 with S and V chosen as the independent variables, U(S,V), since U is a state function: 
 

 dU = 






∂U

∂S V
dS + 







∂U

∂V S
dV     (closed, PV work) 10.2.7 

 

If our new variable S works out, it will be really fortunate since all the tricks that we learned in 
the last chapter for exact differentials will work for the new equation and we will be able to 
predict the outcome for processes where energy is transferred in the form of heat and work. For 
example, if dV = 0 then no work will be done, alternatively if dS = 0, no reversible heat will be 
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transferred. To find out more about our new variable, S, we first need to establish the sign 
convention. If the system transfers heat to the surroundings, đqrev < 0, and then we choose the 
sign convention so that dS < 0 as well. Having đqrev and dS have the same sign make it easier to 
keep track of the direction of energy transfer. The big difference between đqrev and dS is that dS 
will be a state function, which is independent of the path. To learn more about dS we need to 
consider a typical general process. We need to consider a hotter system and a colder system so 
that we can monitor the direction of energy transfer and the corresponding change in S. 
   A simple model for considering energy transfer is to consider two blocks of metal labeled A 
and B as an isolated system, Figure 10.2.1. We consider the two blocks as an isolated system, so 
that the only transfers of energy are between the two blocks. We then allow energy transfer from 
the hotter block to the colder block in a reversible process. 
 

 
 
 
 
 
 
 

Figure 10.2.1: Energy transfer in the form of heat from a hotter to a colder body. The system 
is isolated from the surroundings, so no energy is exchanged with the surroundings. 

 
 
However, to keep the transfer reversible, we set the temperature TA just slightly higher than TB. 
If we can understand this simple system, then we can understand all heat transfer processes. The 
heat flow for block A is đqA,rev and the energy change for block A is dUA, and similarly for block 
B. The thermal energy transferred for A and B is necessarily equal in magnitude but opposite in 
sign, đqB,rev = – đqA,rev. The change in internal energy from Eq. 10.2.2 for the two blocks is: 
 

 dUA = đqA,rev + đwA,rev = đqA,rev – P dVA   (closed, PV work) 10.2.8 
 dUB = đqB,rev + đwB,rev = đqB,rev – P dVB   (closed, PV work) 10.2.9 
 

Internal energy is conserved for this isolated overall process and dUtot = dUA + dUB = 0. These 
equations hold for heat transfer in either direction: both đqA,rev > 0 and đqA,rev < 0 conserve 
energy. However, assume block A is hotter than block B. Based on our experience, the 
spontaneous direction for energy dispersal is for the hotter block to transfer heat to the colder 
block so that đqrev,A < 0. Comparing Eqs. 10.2.8 and 10.2.9 with Eq. 10.2.7 for each block, term 
by term, we find that: 
 

 – P dVA = 






∂UA

∂VA S
dVA  – P dVB = 







∂UB

∂VB S
dVB  (closed)  10.2.10 

which leaves the remaining term for each block: 

 đqA,rev = 






∂UA

∂SA V
dSA  đqB,rev = 







∂UB

∂SB V
dSB  (closed)  10.2.11 

 

Eqs. 10.2.11 for the reversible heat flow are particularly interesting. Notice the signs for 
(∂U/∂S)V and dS in Eq. 10.2.11. Heat is transferred into block B giving đqB,rev > 0, dSB > 0, and 
the internal energy increases, dUB > 0. The ratio of the changes, (∂UB/∂SB)V, is positive. On the 

TA 
Hotter 

TB 
Colder 
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other hand, for block A heat is transferred out, đqA,rev < 0, dSA < 0, and the internal energy 
decreases, dUA < 0. However, (∂UA/∂SA)V is still positive, since it is the ratio of two negative 
numbers. So the partial derivative (∂U/∂S)V is always positive. However, what is (∂U/∂S)V? To 
make things easier, assume that the volume change of the blocks is negligible so that dVA = 0 
and dVB = 0, then for the total internal energy applying Eq. 10.2.7 for each block: 
 

 dUtot = dUA + dUB = 






∂UA

∂SA V
dSA + 







∂UB

∂SB V
dSB = 0          (isolated, cst. VA&VB) 10.2.12 

 

The sum is equal to zero because of conservation of energy. But, if S shows the direction for 
energy dispersal as we require, then the sum of the overall change in S should be positive for the 
spontaneous process: 
 

 dSA + dSB > 0      (isolated, spontaneous) 10.2.13 
 

showing an increase in energy dispersal. Comparing the two changes by subtracting dSA from 
both sides of Eq. 10.2.13: 
 

 dSB > –dSA or equivalently    –dSA < dSB  (isolated, spontaneous) 10.2.14 
 

Note since system A is losing reversible heat, dSA < 0, so that –dSA is a positive number. In the 
comparison, –dSA < dSB, we are comparing two positive numbers; the magnitude of the change 
for A is smaller than the magnitude for the change in B. Summarizing these relationships, if the 
overall change in S is to be positive for the dispersal of energy, then the change in the magnitude 
of S for the hotter block is less than the change for the colder block. However, if –dSA < dSB, the 
sum for the internal energy in Eq. 10.2.12 still must equal zero showing that: 
 

  






∂UA

∂SA V
 > 






∂UB

∂SB V
    (isolated, spontaneous) 10.2.15 

 

In other words, if the magnitude of dSA is smaller, the coefficient in front of dSA must be larger 
so that the two terms for A and B cancel. This last inequality, Eq. 10.2.15, is just what we would 
expect for the temperatures of the two bodies. Thermodynamic temperatures are positive as are 
these partial derivatives. We also assumed that block A was hotter than block B at the beginning, 
which is the result that we see for the partial derivatives in Eq. 10.2.15. Now let’s line up all the 
changes, Figure 10.2.2. 
   If we define the temperature as the change in internal energy with a change in S, at constant 
volume: 

 






∂U

∂S
V

≡ T          10.2.16 

 

then our equations result in an increase in S for the transfer of heat from the hotter to the colder 
body. This definition is important because it determines the temperature of the system using 
properties of the system that are independent of the equation of state. Our new variable S is 
making sense as a measure of energy dispersal. S is called the entropy. Substitution of the 
definition of temperature in terms of the partial derivative back into Eq. 10.2.11 gives in general: 
 

 đqrev = T dS       (closed)  10.2.17 
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      đqA,rev= – đqB,rev 
 

   dUtot   =     dUA + dUB    = 0      (isolated) 
   dStot   =     dSA + dSB     > 0      (isolated, spontaneous) 
 

     dSA < 0  dSB > 0   (energy dispersal) 
 

  – dSA  < dSB       (isolated, spontaneous) 
 

  






∂UA

∂SA V
 > 







∂UB

∂SB V
      (isolated, spontaneous) 

     |||      ||| 
     TA  >    TB         (by definition) 
 

Figure 10.2.2: Changes for heat transfer from a hotter to a colder body, TA > TB. 
 
 
Solving Eq. 10.2.17 for dS gives the definition of the entropy change as: 
 

 dS ≡ 
đqrev

T        (closed)  10.2.18 
 

This equation is a statement of the Second Law of thermodynamics. Eq. 10.2.18 shows that 
transfer of thermal energy to a system increases the entropy of the system. Note that the units of 
entropy are J K-1. Entropy is extensive because heat transfer is extensive. The entropy of 20 mL 
of water is twice the entropy of 10 mL of water. The following is a quick initial example, which 
you will remember from General Chemistry, to help make the entropy more concrete. 
 
 
              

Example 10.2.1: Phase Transitions 
Melting phase transitions at the equilibrium transition temperature remain at constant 
temperature and are reversible. Melting transitions are reversible since any amount of solid, 
finite or infinitesimal, may be converted into liquid and any amount of liquid may be converted 
to solid by additions or withdrawals of heat. At constant pressure, đqrev = dH, giving for the 
constant temperature and pressure phase transition: 
 

 ∆fusS = 
∆fusH
Tm

   (reversible phase transition at cst. Tm and P)  10.2.19 
 

where Tm is the equilibrium melting point and ∆fusH is the enthalpy of fusion at the same 
temperature. The terms melting and fusion are synonymous. Calculate the molar entropy of 
fusion for methanol at its normal melting point of -97.53°C; ∆fusH° is 3.215 kJ mol-1. 
 
 
Answer: We need to convert the melting point to absolute temperature, T°m = 175.62 K. Then: 

hotter colder 
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 ∆fusS° = 
∆fusH°

T°m
 = 

3.215 kJ mol-1 (1000 J/1kJ)
175.62 K  = 18.31 J K-1 mol-1 

Notice that entropy changes are often small values compared to enthalpy changes, so that 
entropies are usually given in units of J K-1, not kJ K-1. See Appendix Data Section Table 8.1.1. 
 
              

 
 
Thermodynamic Definition of Temperature:   The empirical definition of temperature established 
using an ideal gas thermometer is essentially: temperature is the property that is measured by a 
thermometer. This empirical definition does little to advance our fundamental understanding of 
the underlying concepts. The thermodynamic definition of temperature, Eq. 10.2.16, is the most 
direct and fundamental definition of temperature. From this definition flows all of 
thermodynamics and the predictive power of this most general theory. However, you might be 
surprised that such a simple concept as temperature has such an abstract foundation. How can 
something as simple to measure as temperature have such an abstract interpretation? Remember 
however, that the measurement of temperature is really not direct at all. We associate the 
measurement of temperature with thermometers. But, what do thermometers measure? Typical 
thermometers actually measure the change in volume of a working substance like an alcohol, or 
mercury, or a piece of metal in a bimetallic strip, or ultimately an ideal gas. Thermometers seem 
so intuitive because the measurements correlate with our tactile concept of hot and cold. Eq. 
10.2.15 puts the concept of hotter and colder on a firm quantitative basis that also correlates with 
our tactile concept of hot and cold. At this point, we should consider our new definition of 
temperature so that we can judge its validity and become more comfortable with this powerful 
new concept. 
   The internal energy of a system gives the ability of a system to transfer energy in the form of 
heat and work. In other words, the internal energy relates the ability of a system to do useful 
things. The change in entropy is a measure of energy dispersal. For the definition of temperature, 
the change in internal energy for a system appears in the numerator of (∂U/∂S)V. That is, 
(∂U/∂S)V gives the ability of a system to do useful things for a given change in entropy. Consider 
two blocks of metal, each having the same internal energy but one being much larger than the 
other. Next, assume that we transfer one joule of energy into each block. The change in entropy 
for this transfer of energy into the smaller block is small. The input energy stays localized in the 
small system. The same amount of energy transferred into the large block produces a larger 
change in energy dispersal. The joule of energy “spreads out” more in the larger block. Because 
the change in entropy is in the denominator of the derivative, (∂U/∂S)V, for the same change in 
internal energy, the smaller block has a larger value for (∂U/∂S)V. The input energy in the 
smaller system has a greater ability to do useful work because the energy is not as dispersed. 
Since the smaller block has a larger (∂U/∂S)V, by the definition of temperature, the smaller block 
is at higher temperature. The temperature can be thought of as the “quality” of the available 
energy. A transfer of energy at higher temperature has a greater ability to do useful things. 
   Let’s put our new concepts together. For thermal energy to be transferred there must be a 
temperature difference between the two objects. This temperature difference is the temperature 
gradient. The temperature gradient drives the transfer of thermal energy (please review the 
discussion on conductive heat flux in the kinetics chapter). The energy dispersal is measured by 
the change in entropy for the complete system. The balance of any work done and heat 
transferred is determined by the conservation of energy through dU = đq + đw. 
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   The thermodynamic definition of temperature, through (∂U/∂S)V ≡ T, is equivalent to the 
empirical definition of temperature that is established by the ideal gas thermometer. However, 
this equivalence is not obvious or straightforward. We will accept, for now, that the two 
temperature definitions are equivalent and leave the proof to your further reading. 
 
10.3 Entropy, Energy Dispersal, and Internal Degrees of Freedom 
 

   There are two general ways of increasing energy dispersal. The one we have focused on to this 
point is providing greater spatial dispersion. Energy dispersal increases by taking the energy in a 
localized area and spreading it into a larger area or equivalently taking some energy in one object 
and splitting it between two objects. Another way to increase energy dispersal is to increase the 
number of ways that the energy can be absorbed into the system. For example, non-linear 
molecules have one more rotational axis than linear molecules. Chemical reactions that produce 
non-linear molecules from linear molecules have a favorable increase in energy dispersal 
because there are more rotational degrees of freedom that can absorb energy. Transferring energy 
into low frequency vibrations is another good example of energy dispersal. The potential energy 
curves for a high frequency and a low frequency vibration are shown in Figure 10.3.1. 
 
 
 
 
 
 
 
 
 
      (a). high frequency            (b). low frequency 
 

Figure 10.3.1: High frequency vibrations have smaller amplitudes and are harder to excite. 
Low frequency vibrations contribute more to the entropy of the system. 

 
 
High frequency vibrations, like very stiff springs, are more difficult to excite than low frequency 
vibrations. It is easier to transfer energy into low frequency vibrations. Only vibrations with 
wavenumbers less than 500 cm-1 absorb energy at temperatures near room temperature. The 
greater the number of low frequency vibrations for a system, the greater the number of ways that 
the system can absorb energy and the greater the energy dispersal. Low frequency vibrations also 
have larger amplitudes than high frequency vibrations. However, energy dispersal for vibrations 
is more a function of the degree to which the vibrations may be excited than the increased spatial 
dispersion through increases in amplitude. Increasing the number of low frequency normal 
modes increases the number of degrees of freedom that can accept energy, and therefore 
increases energy dispersal and the entropy. 
 
              

Example 10.3.1: Protein Folding 
When an aqueous solution of a protein is heated above the melting point of the protein, hydrogen 
bonds in the folded, native structure are disrupted. Above the melting point the protein exists in a 
random coil geometry. This process is called denaturation. Discuss denaturation from the 
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perspective of energy dispersal and the change in entropy of the protein. A short segment of 
alpha-helix is shown in Figure 10.3.2 to illustrate a typical hydrogen-bonding framework. 

 
Figure 10.3.2: A short segment of alpha-helical poly-alanylalanine. The hydrogen bonding 
network that stabilizes the alpha-helix is shown by dotted lines. 

 

 
 

Figure 10.3.3:  The backbone dihedral angles in alanylalanine. The peptide is shown in the 
all-trans conformation. 

 
 
Answer:  The backbone dihedral angles for a peptide are shown in Figure 10.3.3. When a protein 
solution is brought into contact with a hotter object, energy is transferred into the protein 
solution. When sufficient energy is available, hydrogen bonds are disrupted. The network of 
backbone hydrogen bonds restricts the motion of the protein. Melting frees the rotation of the 
backbone dihedrals providing more low frequency torsions and a more open structure. The 
melting of hydrogen bonds converts high frequency torsions into low frequency torsions, which 
have higher degrees of excitation and larger amplitudes. This process increases energy dispersal 
and therefore, the conformational entropy. 
   However, we should be very careful not to forget the solvent and the tertiary structure of the 
protein. Globular proteins typically have hydrophobic amino acids on the interior of the folded, 
native protein and hydrophilic amino acids on the surface. Unfolding exposes the hydrophobic 
side chains of the amino acids from the interior of the protein to the solvent. On the other hand, 
the backbone functional groups of amino acids are hydrophilic. Unfolding is aided by favorable 

ψ=180° φ=180°
°

O 

O 

N 

N N 



  411 

solvation of the backbone functional groups that were interior to the protein. Overall, the change 
in effective volume of the protein decreases on unfolding, which is surprising. In globular 
proteins, one big contributor to this decrease is the loss of internal void volume upon 
denaturation.1 In summary, conformational entropy is just one component of the total overall 
change in entropy of denaturation. However, conformational entropy is a good practical example 
of energy dispersal to help motivate our study of entropy. 
 

              

 
10.4 Summary – Looking Ahead 
 

   By following the flow of energy for a simple process, we have defined both the temperature of 
a system and the change in entropy for a process. The concepts of temperature and entropy are 
deeply intertwined, so understanding one helps us understand the other. We can find a general 
statement that combines the First and Second Laws of thermodynamics by substituting Eq. 
10.2.17 into dU = đqrev – PdV, Eq. 10.2.2: 
 

 dU = TdS – PdV      (closed, PV work) 10.4.1 
 

Comparing terms in this last equation with the total differential assuming U(S,V) from Eq. 
10.2.7, we find the relationships: 
 

 






∂U

∂S V
= T  







∂U

∂V S
= –P       10.4.2 

 

The temperature relationship is just the definition from Eq. 10.2.16. The pressure relationship is 
the general form of Eq. 10.2.10. The combined First and Second Laws of thermodynamics, Eq. 
10.4.1, will be a central focus as we continue to develop the fundations of thermodynamics. In 
Chapter 11 and 12 we will find the general relationship between entropy change and spontaneous 
processes. Chapter 11 presents the arguments that were used historically and also focuses on 
energy sources for running our society. In Chapter 13 we will also evaluate the entropy change 
for many different kinds of processes. You may, if you like, skip to Chapter 13 at this point if 
you would like to see some concrete examples. Using the concepts will build your understanding 
and also show the utility of entropy for predicting the outcome of different processes, especially 
chemical reactions. The concept of entropy is the key to understanding chemical reactivity. 
 
10.5 Historical Footnote 
 

There are 30-40 ways of stating the Second Law of thermodynamics. Historically there are three 
main statements of the definition of entropy. The first was by Rudolph Clausius in 1854.2 The 
Clausius approach is the subject of the next chapter. Ludwig Boltzmann in 1877 and Max Planck 
in 1900 developed the statistical view of entropy.3-5 The statistical definition of entropy is 
presented in Chapter 12. In 1909 Constantin Carathéodory proposed a mathematically rigorous 
statement of the Second Law:6,7 
 

“In the neighborhood of any prescribed initial state, there are states which cannot be 
reached by an adiabatic process.” 

 

This approach is the inspiration for the presentation in this chapter. However, the 
Carathéodory statement is only used tangentially in our discussion. The development of 
entropy and temperature in this chapter is based on the approach by F. C. Andrews8 and H. 
A. Bent.9 
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Chapter Summary 
 

1. Energy dispersal is a spontaneous process. 

2. For a closed system,  dU = 






∂U

∂S V
dS + 







∂U

∂V S
dV 

3. 






∂U

∂S V
≡ T 

4. For a closed system, đqrev = T dS 

5. For a closed system, dS ≡ 
đqrev

T  

6. Entropy is a measure of energy dispersal. 
7. The temperature can be thought of as the “quality” of the available energy. A given amount of 

energy at a higher temperature has a greater ability to do useful things. 
8. High frequency vibrations have smaller amplitudes and are harder to excite than low 

frequency vibrations. Low frequency vibrations contribute to the entropy of the system. 
Unhindered torsions are examples of low frequency vibrations. 
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Problems: Entropy, Temperature, and Heat Transfer 
 

1. What is the change in entropy for the system for an adiabatic reversible expansion? 
 
2. Calculate the change in entropy for the isothermal reversible expansion of one mole of an 
ideal gas from an initial volume of 1.00 m3 to a final volume of 10.0 m3. 
 
3. Evapotranspiration is the process of conversion of liquid water into vapor by the earth’s 
surface. Evapotranspiration is the sum of evaporation and transpiration. Evaporation is the direct 
vaporization of water from water bodies, plant surfaces, and the soil. Transpiration is the 
conversion of liquid water into water vapor by movement of water within plants and the 
subsequent loss of water vapor through stomata in the leaves. Approximately 60% of the energy 
available from the solar flux in a forest is consumed by evapotranspiration. The solar flux at the 
equator at midday is about 1000 W m-2. The evaporation of water results in a large increase in 
entropy in vegetated areas. Evapotranspiration also moderates the surface temperature and 
maintains the local humidity. To provide a very rough model, consider a flat surface that is 
heated to the boiling point of water by the sun. Assume that 60% of the solar flux is available for 
the vaporization of water on this surface. Calculate the rate of the production of entropy from the 
vaporization of water per second per m2 at midday at the equator for a forest. The enthalpy of 
vaporization of water at the normal boiling point is ∆vapH = 40.7 kJ mol-1. 
 
4. The following is a common student question concerning temperature as a measure of the 
“quality” of the energy in a system. Answer the student’s question. 

“The higher the temperature of a substance (for example a gas) the higher the quality of the 
energy in the system to do useful work. But at the same high temperature, the system has 
high entropy as well, which accounts for energy dispersal and hence less availability of the 
energy. How is the concept of temperature as a measure of quality and the concept of entropy 
consistent?” 

 
5. A hot cup of coffee has a temperature of 60-70°C and a mass of 250 g. Calculate the change in 
entropy for 250. g of water when the temperature is increased from 25.0°C to 60.0°C at constant 
pressure. Assume a constant heat capacity of 4.18 J K-1 g-1. [Hint: Remember that at constant 
pressure dH = Cp dT and then you need to integrate the definition of entropy.] 
 
6. Calculate the change in entropy for the isothermal reversible expansion of an ideal gas from an 
initial volume of V1 to a final volume of V2. This is the same problem as Problem 2. However, 
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this time, approach the derivation using the combined First and Second Laws of 
thermodynamics, Eq. 10.4.1. Solve for the change in entropy using Eq. 10.4.1 and then make 
substitutions appropriate for an isothermal reversible expansion of an ideal gas. 
 
7. Use the concept of energy dispersal to discuss the specific changes in entropy for the 
combustion of one mole of glucose: 

C6H12O6 (s) + 6 O2 (g) → 6 CO2 (g) + 6 H2O (g) 
where the water is produced as a gas at high temperature. Do you expect this reaction to be 
spontaneous? 
 

8. Show that 






∂S

∂V U
= – 







∂U

∂V S
 






∂S

∂U V
 =  

P
T 

 
9. Considering that S(U,V), find the total differential of S. From the total differential and the 
relationship in Problem 8, show that: 

 dS = 
1
T dU + 

P
T dV 

 
10. We will find that dH = T dS + V dP. (see Problem 12) Find the total differential of H 
assuming that H(S,P). Then determine the values for: 

 






∂H

∂S P
  and  







∂H

∂P S
 

 

11. Prove that 






∂S

∂T V
= 

Cv

T  

 
12. Using the combined First and Second Laws, dU = T dS –P dV, and the definition of 
enthalpy, H ≡ U + PV, show that dH = T dS + V dP. 
 
13. The N-[2-(dimethylamino)ethyl]-N-methylguanidium ion has a strong intramolecular 
hydrogen bond. Describe the change in entropy when this ion is heated sufficiently to break the 
hydrogen bond. 
 

CH3

N
N NH2

CH3

CH3

NH2

+

CH3 N

N NH2

CH3

CH3

N
+ HH

 
 
14. Describe the potential of using the oceans of the world as a source of thermal energy. 
Explicitly consider changes in the internal energy and entropy of the oceans and extraction of 
energy from the oceans to do useful work. 


