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Chapter 10: Entropy, Temperature, and Heat Transfer

When an agueous solution of a protein is heatedeathee melting point of the protein,
hydrogen bonds in the folded, native structuredssaipted. Above the melting point the
protein exists in a random coil geometry. This psxcis called denaturation. Discuss
denaturation from the prospective of energy disgdeasd the change in entropy of the
protein.

10.1 What is the Criterion for Spontaneity?

Spontaneous processes are often exothermic. Howendothermic processes can also be
spontaneous. For example, a salt dissolving inmsiteften endothermic:

KNOs (s) +o H,O — KNOs (aq) AsoH%20s= 34.93 kI mot  10.1.1
and the protonation of weak bases is also oftenthednic:
H* (aq) + SQ” (aq) - HSO? (aq) AH®595 = 20.8 kJ mot 10.1.2

Both of these processes are certainly spontan&aysf the enthalpy or internal energy change
for a process doesn’t predict the spontaneoustdirefor a process, what does?

Our experience is that nature is very “econofacd efficient.” Nature doesn’t have different
sets of rules for rocks, trees, people, and chdmeeations. All physical systems are governed
by a very few laws. In searching for the criterfonthe spontaneity of chemical reactions, we
can look to simple processes, since at a fundarmentd simple processes behave according to
the same principles as complex processes. Enzyatigtoatalyzed reactions and bouncing balls
have much in common. Consider a bouncing ball @hién, Figure 10.1.1. Initially, the ball has
mechanical potential energy, V = mgh. When the isakleased, it falls and bounces on the
table top. After each successive bounce, the ba#lds some kinetic energy and eventually
comes to rest on the surface of the table. Enenggt e conserved, the First Law of
thermodynamics will hold, but still a spontaneouscess occurs. What happens to the total
energy of this system? After the ball is releasleel mechanical potential energy is converted
into kinetic energy of the ball. During each bousoene of the kinetic energy is converted into
thermal energy in the ball and the table. Enerdyaissferred into the rubber of the ball and the
surface of the table in the form of heat; the balll table increase slightly in temperature. This
process shows that the initial potential energthefsystem is dispersed spontaneously into
thermal energy. The natural tendency is for en&wggpread out, or disperse.
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Figure 10.1.1: Potential energy is converted int@#c energy which is dispersed into
thermal energy. A spontaneous process increasegyetispersal.
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We can take a more molecular view of the boumbiall. Potential energy is the stored ability
to do work or transfer heat. After release, theeptal energy of the ball is converted into kinetic
energy of motion of the whole ball. All the moleesllin the ball are moving in the same
direction. The initial potential energy of the bialiconverted into work, which is localized and
organized motion. After each bounce some of tmetkt energy is converted into heat, which
disperses through all the molecules of the balltabte top as random thermal motion. We will
see that there is a useful relationship betweerggriispersal and the statistical distribution of
energy among the degrees of freedom of the system.

Another common example to illustrate energy elisgl is the isothermal expansion of an ideal
gas. Consider a monatomic gas at high pressuréneainio a small region of a vessel by a
temporary internal wall and a stop, Figure 10.T# region outside of the temporary wall is at
vacuum. When the stop is removed the gas expamasaspeously to fill the full available
volume. The internal energy of the gas remainsé#mee, nRT. Energy is conserved.
However, the energy of the gas is now spread oert avarger volume. Once again, the natural
tendency is for energy to disperse.
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stop

Figure 10.1.2: An isothermal expansion of an idgel into a vacuum increases energy
dispersal. When the stop is removed, the gas uodsrg free expansion.

Our goal then is to develop a spontaneity adtefor chemical reactions based on our
expectations of energy dispersal. As you know fy@mur high school and college General
Chemistry courses, this criterion is entropy. Yewdbeen working problems on the entropy
change for phase transitions and chemical reactangars. We now specifically want to focus
on the careful development of the definition ofrepy, so we can better understand the
fundamentals of this singularly important concept.

The next four chapters each introduce the dedfmof entropy from a different perspective.
Each chapter is designed to be free standing, s@go choose which approach to use. Each
chapter assumes that you have not previously ldaheut the concept of entropy.

» Chapter 10, this chapter, takes a direct thermantyc approach based on the development
of a new extensive state function that measuregggmspersal. We also introduce the
thermodynamic definition of temperature. This clea the most general, complete, and
probably the most abstract.

» Chapter 11 uses the historical perspective, wisittased on the evaluation of the
efficiency of cyclic thermal processes. Chaptemdllbe a good starting point if you are
interested in energy resource issues. A focus afpin 11 is solar energy conversion and
other alternative energy sources.

» Chapter 12 takes a molecular point of view bysidering statistical measures of energy
dispersal. Chapter 12 is valuable if you are irgi@ in structural biology and biochemistry.
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» Chapter 13 starts with the statement of the defimof entropy and then develops the
understanding and applications of the definitidryolu prefer to see applications and
practical examples before you jump into the thegoy can start with Chapter 13.

You can read Chapters 10-13 in any order. Yecturer will probably not cover all these
chapters in extensive detail. However, entropytrscy concept and having multiple ways of
learning about entropy is helpful. Eventually, yeill probably want to read all four.

If you are continuing on in this chapter, theme, begin by considering energy dispersal in
general and from that understanding we constrécttimcept of entropy to mirror our
observations concerning energy transfer in simyséems.

10.2 Energy is Transferred from a Hotter to a Colde Body

When you heat a pot of water on a stove, theggrfeom the hot heating element is transferred
to the cold water in the form of heat. When you godr friends are gathered around a campfire,
the hot burning logs transfer energy, in the fofrheat, to everyone standing around the fire.
When you touch a hot object, energy is transfetwegbur fingertips. These observations are so
common that we often simply take them for grankémlwvever, these experiences are a universal
expectation that we have for all physical processeergy is transferred from a hotter to a colder
body. The transfer of energy from a hotter to aleobbject is a spontaneous process. In our
experience, the opposite process never happensasiounisly. Energy is never transferred from
a colder to a hotter body, without having to do kvdrhe inside of a refrigerator doesn’t
spontaneously become colder by transferring enterglye surroundings. Such a process
wouldn’t violate the First Law of thermodynamics)ce energy is conserved. However, we
know that we need to supply energy to the refriger® do the work necessary to cool the
refrigerator. For another example, water at roompterature doesn’t spontaneously cool to form
ice. There is a natural direction for energy flow.

Considering the flow of energy in each of theages, we note that energy is dispersed from a
hot object to colder objects. By dispersed, we nteahthe energy in hot objects spreads to
colder objects. Energy dispersal is a spontanemeeps. This observation is a summary of our
experience, and is a qualitative form of the Sedand of thermodynamics. Our goal is to find a
general mathematical statement to determine speotenheat transfer that holds for all systems
and that encapsulates this very simple observabout heat transfer.

Something Is Missing To find the general statement to determine t&pwous heat transfer,
consider heat transfer and PV work for a genersex system. The heat transferredigsand
the internal energy change is:

dU =dq +dw =dq — R dV (closed, PV work) 10.2.1

We know that U is a state function, so the chandée will not depend on the path of the
process. We can then get a general equation foycegs by choosing any path we like. The
most convenient path is a reversible process.dsdd matter what kind of process we choose,
but choosing a reversible path gives Pex: P

dU =dqey+ dWrey = dQrev — P dV (reversible, closed, PV work) 10.2.2

Most importantly, by specifying a reversible pdtre work term, —PdV, only depends on the
properties of the system. We don’t need any addaticnformation about the pressure change for
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the path, we just need the initial and final states's review what we know about heat transfer.
We can obtain the heat transferred for a constalninve process from the heat capacity at
constant volumejq, = C, dT. Assuming a constant volume process, then &g.2 reduces to:

dU =dqevv=C, dT (closed, constant V, PV work) 10.2.3

However, this equation isn’t valid if we have a stamt pressure process, whégg = C, dT. So
Eq. 10.2.2 doesn’t keep track of heat transfenforgeneral process, without additionally
specifying the path. The problem is that reversitdat transfer is still a path function. Internal
energy is a state function so it should be independf the path, but to use Eq. 10.2.2, we still
need to specify a specific path. Something is mgssi

Another way of seeing our dilemma is to worknfrthe general form of the exact differential.
Since U is a state function, considering U as ation of T and V, the total differential is:

oU oU
du —(aTdeT +(6VdeV (closed, PV work)  10.2.4
Using the definition of the constant volume heataaty:
C = @—.L;)V (constant V) 10.2.5
and substituting into Eq. 10.2.4 gives:
du =G dT +@—\L;)Tdv (closed, PV work)  10.2.6

This equation is still not what we are looking foecause we don’t know whatl{/0V)+ is. The
last term can’t be just —PdV, since —PdV is onby tbversible work done against an external
force. PU/AV)~ includes all changes in the internal energy fgiven volume change, which
include forces between molecules. Intermoleculere® are strong for liquids, solids, and
solutions. Also, the heat capacity appears in tfuaton, and the heat capacity in general is a
path function. Something is missing. We still hatvgotten a completely general description of
our system. We need a better way of describingrséMe heat transfer for a general process.

Energy is transferred from a Hotter to a Colder BodEq. 10.2.6 shows that T and V don't
work out well as the independent variables to desa system in the most general case.
However, Eq. 10.2.2 still looks like it might bgaod place to start. We need to find a new
variable that allows us to predict the directionefersible heat transfer. We want this new
variable to measure energy dispersal. For thedaekbetter symbol, choose S to represent this
new variable. We want S to be a state functiont sandependent of the path of the process.
We should be able to express the total differewntidhe internal energy in the form of Eq.
7.11.13 with S and V chosen as the independerdblas, U(S,V), since U is a state function:

oU oU
du —(aS)VdS J{GV)SdV (closed, PV work)  10.2.7

If our new variable S works out, it will be reafiyrtunate since all the tricks that we learned in
the last chapter for exact differentials will wddt the new equation and we will be able to

predict the outcome for processes where energgnsferred in the form of heat and work. For
example, if dV = 0 then no work will be done, atiatively if dS = 0, no reversible heat will be
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transferred. To find out more about our new vagaBl, we first need to establish the sign
convention. If the system transfers heat to theosundingsdqe,< 0, and then we choose the
sign convention so that dS < 0 as well. Hawingg, and dS have the same sign make it easier to
keep track of the direction of energy transfer. Bhpdifference betweedy., and dS is that dS
will be a state function, which is independenthd path. To learn more about dS we need to
consider a typical general process. We need tadena hotter system and a colder system so
that we can monitor the direction of energy tranafel the corresponding change in S.

A simple model for considering energy transgetoi consider two blocks of metal labeled A
and B as an isolated system, Figure 10.2.1. Weid®nthe two blocks as an isolated system, so
that the only transfers of energy are betweenwlebiocks. We then allow energy transfer from
the hotter block to the colder block in a revessiptocess.

/4

Ta Ts
Hottel [[' Coldel

P o o

Figure 10.2.1: Energy transfer in the form of Hean a hotter to a colder body. The system
is isolated from the surroundings, so no energxahanged with the surroundings.

However, to keep the transfer reversible, we seteéimperature ATjust slightly higher than g

If we can understand this simple system, then weucalerstand all heat transfer processes. The
heat flow for block A isiga rev and the energy change for block A isxdldnd similarly for block

B. The thermal energy transferred for A and B isassarily equal in magnitude but opposite in
sign,dgs rev= —dgarev. The change in internal energy from Eq. 10.2.2Hertwo blocks is:

dUA = qu,rev'l' dWAyrev = qu,I’EV - P d\[A\ (Closed, PV WOI’k) 1028
dUg =d0s revt+ dWp rev = dQs rev — P d\5 (closed, PV work)  10.2.9

Internal energy is conserved for this isolated allgrrocess and di{= dUy + dUs = 0. These
equations hold for heat transfer in either directioothdga rev> 0 anddga rey< O coOnserve
energy. However, assume block A is hotter thanlbBcBased on our experience, the
spontaneous direction for energy dispersal isHerttotter block to transfer heat to the colder
block so thatigey a < 0. Comparing Egs. 10.2.8 and 10.2.9 with EqR Z0for each block, term
by term, we find that:

_(3Ua _(Us
—Pdw= (aVJSdVA -Pd\%= (aVB)SdVB (closed) 10.2.10
which leaves the remaining term for each block:
oU oU
dgarev = (O_S,/jvds’* dgs rev = (G_SBB)VdSB (closed) 10.2.11

Egs. 10.2.11 for the reversible heat flow are paldrly interesting. Notice the signs for
(0U/0S), and dS in Eq. 10.2.11. Heat is transferred inbchbB givingdgg ev> 0, d$ > 0, and
the internal energy increases,giJ0. The ratio of the change8lUg/0Sg)v, is positive. On the
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other hand, for block A heat is transferred dgh y< 0, dS < 0, and the internal energy
decreases, dik 0. However, UA/0Sa)yv is still positive, since it is the ratio of twogedive
numbers. So the partial derivatinX0S)y is always positive. However, what 8l{/0S),? To
make things easier, assume that the volume chdrtge blocks is negligible so that @\ O
and d\s = 0, then for the total internal energy applying EQ.2.7 for each block:

AUt = dUa + dUg = (aUA) dS, + @Lé:) d$s =0 (isolated, cst.A4¢Vg) 10.2.12

The sum is equal to zero because of conservatienearfgy. But, if S shows the direction for
energy dispersal as we require, then the sum afvbeall change in S should be positive for the
spontaneous process:

dS +dS$ >0 (isolated, spontaneous) 10.2.13

showing an increase in energy dispersal. Compahi@dgwo changes by subtractingsdom
both sides of Eq. 10.2.13:

dSs >—-dS  orequivalently —-dS<d$ (isolated, spontaneous) 10.2.14

Note since system A is losing reversible heaf, <8, so that —dSis a positive number. In the
comparison, —d$S< dSs, we are comparing two positive numbers; the mageitof the change
for A is smaller than the magnitude for the chaimgB. Summarizing these relationships, if the
overall change in S is to be positive for the dispkof energy, then the change in the magnitude
of S for the hotter block is less than the chamgetfe colder block. However, if -8 dSs, the
sum for the internal energy in Eq. 10.2.12 stillsthequal zero showing that:
@%:) @Lé:) (isolated, spontaneous) 10.2.15
In other words, if the magnitude of g smaller, the coefficient in front of d$ust be larger
so that the two terms for A and B cancel. Thisilasguality, Eqg. 10.2.15, is just what we would
expect for the temperatures of the two bodies. Mibeynamic temperatures are positive as are
these partial derivatives. We also assumed thaklAowas hotter than block B at the beginning,
which is the result that we see for the partialvdgives in Eq. 10.2.15. Now let’s line up all the
changes, Figure 10.2.2.

If we define thegemperature as the change in internal energy with a changs &t constant
volume:

(O_U) =T 10.2.16
0S Y

then our equations result in an increase in Shiettansfer of heat from the hotter to the colder
body. This definition is important because it detigres the temperature of the system using
properties of the system that are independenteétiuation of state. Our new variable S is
making sense as a measure of energy dispersataied theentropy. Substitution of the
definition of temperature in terms of the partiafiglative back into Eq. 10.2.11 gives in general:

dgrev =T dS (closed) 10.2.17
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hotter :> colder

dgare= —d0g rev

dUe = dUy + dug =0 (isolated)
dSe« = dSQ + ds >0 (isolated, spontaneous)
dS <0 dg >0 (energy dispersal)
—-dS < ds (isolated, spontaneous)
auA) (aUB) .
_— N > _—D
(OSA v 3Ss )y (isolated, spontaneous)
Il Il
Ta > Ts (by definition)

Figure 10.2.2: Changes for heat transfer from gehtt a colder body, > Tg.

Solving Eg. 10.2.17 for dS gives the definitiortlod entropy change as:

ds= dj}— (closed) 10.2.18

This equation is a statement of the Second Laweartodynamics. Eq. 10.2.18 shows that
transfer of thermal energy to a system increasesitropy of the system. Note that the units of
entropy are J K. Entropy is extensive because heat transfer eneite. The entropy of 20 mL
of water is twice the entropy of 10 mL of water effiollowing is a quick initial example, which
you will remember from General Chemistry, to helgka the entropy more concrete.

Example 10.2.1:Phase Transitions

Melting phase transitions at the equilibrium tréiosi temperature remain at constant
temperature and are reversible. Melting transitemesreversible since any amount of solid,
finite or infinitesimal, may be converted into liguand any amount of liquid may be converted
to solid by additions or withdrawals of heat. Ahstant pressurég.., = dH, giving for the
constant temperature and pressure phase transition:

AqysH . .
DS =f|‘f—; (reversible phase transition at cst.and P) 10.2.19

where T, is the equilibrium melting point anh,H is the enthalpy of fusion at the same

temperature. The terms melting and fusion are symons. Calculate the molar entropy of
fusion for methanol at its normal melting point-87.53C; AwsH® is 3.215 kJ mét.

Answer We need to convert the melting point to absolebeperature, § = 175.62 K. Then:
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AHe  3.215 kJ mat (1000 J/1kJ
DNeysS° = f;i, = 175 6(2 K L 18.31 J K mor*
° .

Notice that entropy changes are often small vatoespared to enthalpy changes, so that
entropies are usually given in units of 3,kot kJ K*. See Appendix Data Section Table 8.1.1.

Thermodynamic Definition of Temperaturd he empirical definition of temperature estsibéd
using an ideal gas thermometer is essentially: ézatpre is the property that is measured by a
thermometer. This empirical definition does lititeadvance our fundamental understanding of
the underlying concepts. The thermodynamic de@iniof temperature, Eq. 10.2.16, is the most
direct and fundamental definition of temperatun@nf this definition flows all of
thermodynamics and the predictive power of thistrgeseral theory. However, you might be
surprised that such a simple concept as temperafisrauch an abstract foundation. How can
something as simple to measure as temperatureshiahiean abstract interpretation? Remember
however, that the measurement of temperature liy reat direct at all. We associate the
measurement of temperature with thermometers.\vizwdt do thermometers measure? Typical
thermometers actually measure the change in vobfraevorking substance like an alcohol, or
mercury, or a piece of metal in a bimetallic stopultimately an ideal gas. Thermometers seem
so intuitive because the measurements correlateawiit tactile concept of hot and cold. Eq.
10.2.15 puts the concept of hotter and colder faimmaquantitative basis that also correlates with
our tactile concept of hot and cold. At this poimg should consider our new definition of
temperature so that we can judge its validity amcbinme more comfortable with this powerful
new concept.

The internal energy of a system gives the aghilita system to transfer energy in the form of
heat and work. In other words, the internal eneedgtes the ability of a system to do useful
things. The change in entropy is a measure of gradispersal. For the definition of temperature,
the change in internal energy for a system appedh® numerator ofdU/0S),. That is,

(0U/0S)y gives the ability of a system to do useful thifgsa given change in entropy. Consider
two blocks of metal, each having the same inteznalrgy but one being much larger than the
other. Next, assume that we transfer one jouleefgy into each block. The change in entropy
for this transfer of energy into the smaller blaelsmall. The input energy stays localized in the
small system. The same amount of energy transfertedhe large block produces a larger
change in energy dispersal. The joule of energyeas out” more in the larger block. Because
the change in entropy is in the denominator ofdevative, fU/OS)y, for the same change in
internal energy, the smaller block has a largenezébr QU/0S),. The input energy in the
smaller system has a greater ability to do usetuwkvbecause the energy is not as dispersed.
Since the smaller block has a larggldfgS)y, by the definition of temperature, the smallercllo
is at higher temperature. The temperature candagtit of as the “quality” of the available
energy. A transfer of energy at higher temperabasa greater ability to do useful things.

Let’s put our new concepts together. For therem&lrgy to be transferred there must be a
temperature difference between the two objectss T@mperature difference is the temperature
gradient. The temperature gradient drives the teaind thermal energy (please review the
discussion on conductive heat flux in the kinetloapter). The energy dispersal is measured by
the change in entropy for the complete system.bEh@nce of any work done and heat
transferred is determined by the conservation efggnthrough dU =q + dw.
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The thermodynamic definition of temperatureptiygh QU/0S), = T, is equivalent to the
empirical definition of temperature that is estsivid by the ideal gas thermometer. However,
this equivalence is not obvious or straightforwaste will accept, for now, that the two
temperature definitions are equivalent and leaegotioof to your further reading.

10.3 Entropy, Energy Dispersal, and Internal Degreg of Freedom

There are two general ways of increasing endigpersal. The one we have focused on to this
point is providing greater spatial dispersion. Ejyeattispersal increases by taking the energy in a
localized area and spreading it into a larger aresjuivalently taking some energy in one object
and splitting it between two objects. Another wayricrease energy dispersal is to increase the
number of ways that the energy can be absorbedhnteystem. For example, non-linear
molecules have one more rotational axis than lineaecules. Chemical reactions that produce
non-linear molecules from linear molecules havavafable increase in energy dispersal
because there are more rotational degrees of fredaiat can absorb energy. Transferring energy
into low frequency vibrations is another good exbamgd energy dispersal. The potential energy
curves for a high frequency and a low frequencyatibn are shown in Figure 10.3.1.

y A klarge v A £ small
V = Y k(r—ro)? \\ ,/
o " fo T
(a). high frequency (b). low fremey

Figure 10.3.1: High frequency vibrations have saraimplitudes and are harder to excite.
Low frequency vibrations contribute more to therepy of the system.

High frequency vibrations, like very stiff springge more difficult to excite than low frequency
vibrations. It is easier to transfer energy inte floequency vibrations. Only vibrations with
wavenumbers less than 500 tabsorb energy at temperatures near room temperatoe

greater the number of low frequency vibrationsg@ystem, the greater the number of ways that
the system can absorb energy and the greater éngyedispersal. Low frequency vibrations also
have larger amplitudes than high frequency vibretidiowever, energy dispersal for vibrations
is more a function of the degree to which the wibres may be excited than the increased spatial
dispersion through increases in amplitude. Increptiie number of low frequency normal

modes increases the number of degrees of freedatngdah accept energy, and therefore
increases energy dispersal and the entropy.

Example 10.3.1:Protein Folding

When an aqueous solution of a protein is heatedeathee melting point of the protein, hydrogen
bonds in the folded, native structure are disrupfdmbve the melting point the protein exists in a
random coil geometry. This process is called dea#itn. Discuss denaturation from the
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perspective of energy dispersal and the changetiogy of the protein. A short segment of
alpha-helix is shown in Figure 10.3.2 to illustratgypical hydrogen-bonding framework.

Figure 10.3.2: A short segment of alpha-helicalgdanylalanine. The hydrogen bonding
network that stabilizes the alpha-helix is showrdbited lines.

Figure 10.3.3: The backbone dihedral angles inydddanine. The peptide is shown in the
all-trans conformation.

Answer The backbone dihedral angles for a peptide lawevs in Figure 10.3.3. When a protein
solution is brought into contact with a hotter abjeenergy is transferred into the protein
solution. When sufficient energy is available, lpgkn bonds are disrupted. The network of
backbone hydrogen bonds restricts the motion opth&ein. Melting frees the rotation of the
backbone dihedrals providing more low frequencgitors and a more open structure. The
melting of hydrogen bonds converts high frequecgions into low frequency torsions, which
have higher degrees of excitation and larger aonges. This process increases energy dispersal
and therefore, the conformational entropy.

However, we should be very careful not to fortpet solvent and the tertiary structure of the
protein. Globular proteins typically have hydroplwodémino acids on the interior of the folded,
native protein and hydrophilic amino acids on tadace. Unfolding exposes the hydrophobic
side chains of the amino acids from the interiothef protein to the solvent. On the other hand,
the backbone functional groups of amino acids gdedphilic. Unfolding is aided by favorable
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solvation of the backbone functional groups thatewsterior to the protein. Overall, the change
in effective volume of the protein decreases ormlgiirig, which is surprising. In globular
proteins, one big contributor to this decreaséesloss of internal void volume upon
denaturatiort.In summary, conformational entropy is just one porent of the total overall
change in entropy of denaturation. However, con&dromal entropy is a good practical example
of energy dispersal to help motivate our studyrafapy.

10.4 Summary — Looking Ahead

By following the flow of energy for a simple m&ss, we have defined both the temperature of
a system and the change in entropy for a procdmscdncepts of temperature and entropy are
deeply intertwined, so understanding one helpswderstand the other. We can find a general
statement that combines the First and Second Law®omodynamics by substituting Eq.
10.2.17 into dU =gy — PdV, Eq. 10.2.2:

dU =TdS - PdV (closed, PV work) 10.4.1

Comparing terms in this last equation with theltdttierential assuming U(S,V) from Eqg.
10.2.7, we find the relationships:

oJ oU
(68)\/_ T (GV)S_ -P 10.4.2

The temperature relationship is just the definifimm Eqg. 10.2.16. The pressure relationship is
the general form of Eq. 10.2.10. The combined Finst Second Laws of thermodynamics, Eq.
10.4.1, will be a central focus as we continuedwedbop the fundations of thermodynamics. In
Chapter 11 and 12 we will find the general relaglip between entropy change and spontaneous
processes. Chapter 11 presents the argumentsehauged historically and also focuses on
energy sources for running our society. In Chap8we will also evaluate the entropy change

for many different kinds of processes. You mayoi like, skip to Chapter 13 at this point if

you would like to see some concrete examples. Usi@agoncepts will build your understanding
and also show the utility of entropy for predictitng outcome of different processes, especially
chemical reactions. The concept of entropy is #etk understanding chemical reactivity.

10.5 Historical Footnote

There are 30-40 ways of stating the Second Laweritodynamics. Historically there are three
main statements of the definition of entropy. Tigtfvas by Rudolph Clausius in 185Zhe
Clausius approach is the subject of the next chalpbelwig Boltzmann in 1877 and Max Planck
in 1900 developed the statistical view of entrdpylhe statistical definition of entropy is
presented in Chapter 12. In 1909 Constantin Cavdthrg proposed a mathematically rigorous
statement of the Second L&W:

“In the neighborhood of any prescribed initial stahere are states which cannot be
reached by an adiabatic process.”

This approach is the inspiration for the preseotain this chapter. However, the
Carathéodory statement is only used tangentialpumdiscussion. The development of
entropygand temperature in this chapter is baseti@approach by F. C. Andrethand H.
A. Bent:
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Chapter Summary

1. Energy dispersal is a spontaneous process.

ouU ou
. For a closed system, dL(—) ds +(—) av
y sy

Vs
U
(58)=m

. For a closed systeriqe, = T dS
. For a closed system, &*\%’

. Entropy is a measure of energy dispersal.

. The temperature can be thought of as the “qulalftthe available energy. A given amount of
energy at a higher temperature has a greateryaaldo useful things.

. High frequency vibrations have smaller amplitudad are harder to excite than low
frequency vibrations. Low frequency vibrations cdnite to the entropy of the system.
Unhindered torsions are examples of low frequenlogations.
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Problems: Entropy, Temperature, and Heat Transfer

1. What is the change in entropy for the systenafoadiabatic reversible expansion?

2. Calculate the change in entropy for the isotlameversible expansion of one mole of an
ideal gas from an initial volume of 1.0C o a final volume of 10.0 I

3. Evapotranspiration is the process of conversidiquid water into vapor by the earth’s
surface. Evapotranspiration is the sum of evapamaind transpiration. Evaporation is the direct
vaporization of water from water bodies, plant aoefs, and the soil. Transpiration is the
conversion of liquid water into water vapor by mment of water within plants and the
subsequent loss of water vapor through stomataeimetaves. Approximately 60% of the energy
available from the solar flux in a forest is congahiy evapotranspiration. The solar flux at the
equator at midday is about 1000 WAnThe evaporation of water results in a large iaseein
entropy in vegetated areas. Evapotranspirationratsterates the surface temperature and
maintains the local humidity. To provide a veryghumodel, consider a flat surface that is
heated to the boiling point of water by the sunsukse that 60% of the solar flux is available for
the vaporization of water on this surface. Calathe rate of the production of entropy from the
vaporization of water per second peranhmidday at the equator for a forest. The enthafp
vaporization of water at the normal boiling poisit\j;gH = 40.7 kJ mot.

4. The following is a common student question camiog temperature as a measure of the
“quality” of the energy in a system. Answer thedgint’'s question.
“The higher the temperature of a substance (fomg@ a gas) the higher the quality of the
energy in the system to do useful work. But atdéwme high temperature, the system has
high entropy as well, which accounts for energypeélisal and hence less availability of the
energy. How is the concept of temperature as aunead quality and the concept of entropy
consistent?”

5. A hot cup of coffee has a temperature of 68c78nd a mass of 250 g. Calculate the change in
entropy for 250. g of water when the temperaturadseased from 25°C to 60.0C at constant
pressure. Assume a constant heat capacity of K18gY. [Hint: Remember that at constant
pressure dH = &dT and then you need to integrate the definitibantropy.]

6. Calculate the change in entropy for the isotlameversible expansion of an ideal gas from an
initial volume of \; to a final volume of Y. This is the same problem as Problem 2. However,
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this time, approach the derivation using the comdbiRirst and Second Laws of
thermodynamics, Eq. 10.4.1. Solve for the changmntropy using Eq. 10.4.1 and then make
substitutions appropriate for an isothermal reesexpansion of an ideal gas.

7. Use the concept of energy dispersal to distwesspecific changes in entropy for the
combustion of one mole of glucose:

CeH1206 (s) + 6 Q (9) » 6 CQ (9) + 6 HO (9)
where the water is produced as a gas at high teyver Do you expect this reaction to be
spontaneous?

0S oUY [0S P
8. Show thagav)u- —(avjs (OU)V =T

9. Considering that S(U,V), find the total diffetiesh of S. From the total differential and the
relationship in Problem 8, show that:

1 P
ds =T du +T dv

10. We will find that dH = T dS + V dP. (see Prahl&2) Find the total differential of H
assuming that H(S,P). Then determine the values for

(%), ()
0S)p AN oP)g

oSy G
11. Prove th{tﬁ)v— T
12. Using the combined First and Second Laws, dUdS —P dV, and the definition of
enthalpy, HE U + PV, show thatdH =T dS + V dP.

13. The N-[2-(dimethylamino)ethyl]-N-methylguanidiion has a strong intramolecular
hydrogen bond. Describe the change in entropy winerion is heated sufficiently to break the
hydrogen bond.

CH,

14. Describe the potential of using the oceant®frorld as a source of thermal energy.
Explicitly consider changes in the internal eneagg entropy of the oceans and extraction of
energy from the oceans to do useful work.



