Chapter 1: Chemical Reactivity

1.0 Introduction

There are two aspects of chemical reactivity:

How far does a reaction run?
How fast does a reaction run?

Some reactions progress almost completely to ptediar example the dissociation of nitric
acid:

HNOs (aq) — H" (aq) + NQ' (aq)
Some reactions barely progress at all, for exarttgelissociation of acetic acid:

CH3COOH (ag) 2 CHsCOO (aq) + H (aq)

The degree to which a reaction progresses is ctilksektent of the reaction. When we ask

“how far does a reaction run,” we are asking if éxéent of the reaction lies to the right,
producing large amounts of products, or to the lgith large amounts of reactants remaining.
The extent of the reaction is expressed quantébtivy the equilibrium constant for the reaction.
The extent of chemical reactions is one of the msydbjects irthermodynamics When we ask
“how fast does a reaction run,” we are asking alioeirate of appearance of products. The rates
of chemical reactions are expressed quantitativetyugh rate constants. The rates of chemical
reactions are studied in the fieldasfemical kinetics Taken together, thermodynamics and
kinetics answer the questions “How far?” and “H@ast?”

Once we characterize a reaction, we naturallydeo why the equilibrium constant and rate
constant have their particular values. To answesdlguestions, we need to build a molecular
model of the reaction. To build molecular models,veed to understand the chemical bond.
Understanding chemical bonding allows us to pretiietstructure of molecules and to
understand bond breaking and bond making stepmantionsQuantum mechanicsexplores
the nature of the chemical bond and the interaaifdight with matter. We then usgatistical
mechanicsto predict chemical reactivity from our knowledgfechemical structure. Statistical
mechanics is the bridge that joins the microscegmdd of molecular structure with the
macroscopic world of thermodynamics and kinetidse major divisions of this text correspond
to these major subdisciplines within physical chetrgi kinetics, thermodynamics, quantum
mechanics, and statistical mechanics.

Biology, chemistry, geology, mathematics, psyobg, and physics comprise a spectrum of
overlapping sciences that are designed to solverirapt problems. The sciences satisfy our
desire to understand the universe. The sciencesyasggistic activities with no boundaries
among the disciplines. However, chemistry does laaweique perspective. Chemistry seeks to
use our knowledge of molecular structure to prettietfunction of chemical systems. The
emphasis ostructure-function relationships is the central theme of any chemistry course, and
physical chemistry in particular. The functionscbemical systems include their physical
properties and, most importantly, their chemicaktwity.



But why do we do chemistry? We have a drivertoaver the laws and processes that explain
all physical phenomena. We just need to know. bliteh, chemistry has great potential for
helping us to live more prosperous and productixes| Nano-technology, for example, is one
specific area of current interest for expandinglmemeficial use and control of chemical
processes. Chemistry provides us the tools todagele array of challenges. The supply of
food, clean air, clean water, and energy are inymaays chemical problems. For example, we
need new materials and catalysts for direct salargy conversion and new techniques for
biomass conversion to useful fuels. Fighting disgaslso a challenge, including finding new
drugs to combat multiple antibiotic resistant baetestrategies for fighting viral and parasitic
infections, preventing cancer, and finding curgsdiabetes and Alzheimer’s disease.
Understanding processes in the environment andamaental protection are of central
importanceBiogeoenvironmentalchemistry is an important discipline that applies physical
chemical concepts to understanding the cyclindnefdhemical constituents of life and energy in
the environment. Understanding structure-functelatronships is central for finding chemical
solutions to these problems. All of these challengguire the best understanding and effort that
we can apply. We face many pressing problems, haohistry can provide solutions.

1.1 Chemical Reactivity

Thermodynamics: Thermodynamics is historically the first modémnanch of chemistry. The

goal of thermodynamics is to provide a fundameaia concrete understanding of all aspects of
our physical world, especially “How far?” Thermodynics studies transfers of heat and work.
Work includes chemical work, which we can thinkasfthe work of chemical synthesis. But,
historically thermodynamics also played anotherangmt role. We can look at science as the
shared oral and written tradition of our observatiof the physical world. In this context,
thermodynamics was the first discipline that predda careful and specific vocabulary for
communicating our ideas. With these communicatatstin hand we have continued to
accumulate a vast array of ideas that help usadigirchemical phenomena. So, likewise, we
begin our discussion with some necessary defirgtion

The System and the Surroundings. The central concept of thermodynamics is thahe system.
Thesystemis the simplest part of the universe that disptagsprocess of interest. The system is
the thing that you want to study. For examplepifiyare interested in the properties of water, you
would start by pouring some water in a beaker. Hawneo keep things simple, you would
define your system as just the water, and you wouidclude the beaker or the table on which it
sets. On the other hand, if you were interestdtbim water wets glass, then you would need to
define the system as the water and the beakeheSaetinition of the system depends on the
process you want to study. Then everything elseishaot part of the system is considered part
of the surroundings. We will find that the intefaatof a system with its surroundings is central
to the prediction of thermodynamic and quantum raeatal aspects of chemical reactivity.
Thermodynamics is meant to be very general. \&fet o find the underlying form of all
physical phenomena. We want to find the laws aedribs that explain the behavior of all
systems. So we can use any system as an exampéethgk about processes. To avoid
unnecessary complications, we often discuss venplsi systems like ideal gases or simple
reactions like PGl PCk + Ck. Don’t be put off by the simple examples. The systan be



anything that you are interested in. The systembeaa polymer sample, DNA, a spinel mineral,
a transition metal complex ligand exchange reac&onSN reaction, a membrane, a cell, a rat,
or a human. Yes, calorimetric experiments have loese on living humans. Ecology even
extends thermodynamic principles to the ecosysex@l.| You can consider the earth as the
system.

The Sate of the System and Processes. Thestate of a systems specified by the volume,
pressure, temperature, entropy, and mole amouraabf substance (in each phase, if more than
one phase is present). These variables are syreldddzV, P, T, S, and,mrespectively, where i
indexes each chemical constituent. If electriciedre present, as in a battery, then the electric
potential,@, and electric charge, q, are also an importanabkes. We often specify the amounts
of substances using their concentrations and thévolume of the system. Our goal is to predict
the response of the system to a given procegsogessis the transfer of energy to or from the
system in the form of heat, work, or changes inceatration. We want to be able to predict if a
given process will be spontaneous, that is, ifgteeess will occur. We also want to be able to
predict the position of equilibrium for the systefor a simple example, if we place P@I a
constant volume container at 300 K will the reactio

PCk (9) -~ PCk(9) + Ck (9)

be spontaneous and, if so, what is the positi@yaflibrium? The position of equilibrium is
determined by the relative amounts of productsraadtants when the reaction goes to
equilibrium. Let’s define carefully what we meandygpontaneous process and by equilibrium.

Humpty Dumpty sat on a wall.

Humpty Dumpty had a great fall.
All the King's horses and all the King’'s mgn
Couldn’t put Humpty together again.

Figure 1.2.1: The story of a spontaneous, irrelségrocess.

1.2 Spontaneity and Irreversibility

Spontaneous and Equilibrium Processes. A spontaneous procests a process that occurs
without any outside influence or interventionnAn-spontaneous proceswill not occur on its
own, without energy input from the surroundingseTaverse of a spontaneous process is hon-
spontaneous. Humpty Dumpty is a good analogy. Hurigltoff the wall without any outside
influence—eggs easily roll on their own. Rolling tife wall to make a broken mess is a
spontaneous process. The reverse process wonit wabiout a lot of work (and a little glue),
Figure 1.2.2.
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Figure 1.2.2: All the King’s horses and all the g&mmen couldn’t put Humpty together
again. This process is non-spontaneous.

Consider a simple chemical example, the combustigiucose:

CeH1206 (s) + 6 Q (9) — 6 CQ (9) + 6 HO (1)

The combustion of glucose is the major source efgnfor your body. The combustion of
glucose is a spontaneous process. The reversesprdbe reaction of GGand water is non-
spontaneous:

6 CQ(g) +6 HO (I) % CeH1206 (s) + 6 Q (9)

Plants convert C@and water into glucose through an intricate sarfehemical reactions that
require significant inputs of energy from the sun.

Equilibrium processesshow no tendency for change. Equilibrium processeseither
spontaneous nor non-spontaneous. In other woresetlerse of an equilibrium process is also at
equilibrium. The best examples of equilibrium prEsxs are chemical reactions at equilibrium,
for example the dissociation of acetic acid:

CHsCOOH (ag) 2 CHsCOO (aq) + H (aq)

At equilibrium, the concentrations of all speciésw no tendency for change. You can test to
see if the system is at equilibrium by applyingeaysmall change, say a small change in H
concentration. If the system responds by returtongguilibrium by a small change in the
opposite direction, then the system was at equilibr On the other hand, if we make a small
change for a system that is not at equilibrium sysem evolves to a significantly different
state. A very small change applied to a systemallea aperturbation. The observations
concerning perturbations on chemical reactiongjatlierium are described by the well-known
LeChéatelier’s rules.

We can illustrate these relationships usingpibtential energy of a mechanical system.
Consider a ball rolling on a potential energy stefa-igure 1.2.3. The potential energy, V(X), is
a function of the position of the ball, x. The stag position, ¥, for the ball is shown for three
different cases. The process we wish to studyesitbvement of the ball in the positive x
direction, X > x;:

Xo — X

The question is, will the starting position resala spontaneous process for an increase in x? If
the derivative of the potential energy with resgect is negative, the potential energy will
decrease with increasing x and the process is apeatis, Figure 1.2.3a. If the derivative is zero,



the system is at equilibrium and the position wahange, Figure 1.2.3b. If the derivative is
positive, the process in the direction written am+spontaneous and the reverse process is the
spontaneous direction; the ball will move to smatleFigure 1.2.3c. The initial states in Figure

1.2.3 a and c that correspond to spontaneous espomaneous processes are said to be
unstable. The equilibrium state is a stable state.

A
V)|, V(x)

A

V(X)

\
avi)
dx

x Y

|
|
Xo

(a) Spontaneous (b) Equilibrium (c) Non-gpoeous

Figure 1.2.3: Potential energy changes for spowiaseequilibrium, and non-spontaneous
processes.

To distinguish the different types of states,oma also apply a small finite change in position,
OX, as a perturbation to check to see if the syssesh equilibrium. If the potential increases for
Ox positive_anchegative, then the system is at equilibrium, Fegli2.4 a and b. That is if
oV(x £ dx) > 0, then the process is at equilibrium. Thiatrenship is called a stability criterion.

A A
V(x) V(x) V(x)

A

(a). (b). ().

Figure 1.2.4: Stability criterion for equilibriurta-b). For a small perturbation in the

position, a stable, equilibrium system givd4x = x)>0. (c). A meta-stable system is stable
with respect to small changes and unstable foelalganges.

There is another important possibility, a mdtbte state, Figure 1.2.4c. Meta-stable states are
at equilibrium for very small changes, but unstdbldarger changes. Meta-stable states



correspond to a local minimum. An example of a rstédle state is a super-saturated solution.
A supersaturated solution is unchanging until abdust settles on the surface of the solution,
or you scratch the sides of the beaker, or youaasieked crystal and then the solute suddenly
precipitates out of solution. A bowl of sugar imtact with oxygen in the atmosphere is a
chemical example of a meta-stable system. Metdesttlites, such as super-saturated solutions
and sugar bowls, are often trapped by slow kirgtcesses.

A more chemical example than a rolling ballhis expansion of a gas. Chemical reactions
often involve gas phase species, so we need taactmr changes in pressure and volume in the
overall energy balance for chemical processes. i@ena gas confined in a cylinder by a
massless, frictionless, perfectly fitting pistomeTinitial state of the gas is given by its pressur
and volume, Pand 4. The state of the system is held constant byttt fixes the position
of the piston. Now, consider a constant temperagypansion of the gas,\L Vo, with V, >
V1. This process is diagrammed in Figure 1.2.5&itsdxpansion spontaneous? If we remove
the stop and the piston moves outward then theegsois spontaneous. The gas will expand if
the initial pressure, Ris greater than the external pressure, that &> Pex. The corresponding
reverse process, starting at &d returning to Yis non-spontaneous. Work must be done on the
system by the surroundings that is different thenforward process to return the piston to its
original position. On the other hand, if we remadive stop and the piston remains stationary,
then the pressure of the system must be equattexiernal pressure; B Py This unchanging
state with equal pressures is the equilibrium state

stop

() (b)

Figure 1.2.5: Spontaneity for gas expansions. ¢a)>Pex the spontaneous direction is an
expansion, ¥> V. A system that is not at equilibrium must be Halthat non-equilibrium
state by a physical constraint. The physical cairgtis a mechanical stop that fixes the
position of the piston. (b) A small perturbationyree used to test if a system is at
equilibrium. If the system returns to its origisaéhte, the system was initially at equilibrium.

The application of a small volume perturbatid¥i, to our gas piston example is shown in
Figure 1.2.5b. Starting with a stop on the pistbtiha initial volume \{, we remove the stop and
apply a small change in volume, compressing theskigistly. If the gas responds by returning to
its initial volume 4, then the gas was at equilibrium. If the gas egpdn a new larger volume
or contracts to an even smaller volume, then tlseegy was not initially at equilibrium.

Another example of a system that shows no tenydfm change is a steady state system.
Steady statesccur for open systems that have a continual soofrenergy or material. A



simple example is a bucket with a hole in it, Fegr2.6. The level of the water in the bucket
will not change if the flow of water going into thecket is equal to the flow leaving the bucket.

Figure 1.2.6: Steady state systems show no tendenchange, but require the continual
input of energy or material. Steady state systesuonsh as living organisms, are not at
equilibrium.

The flows can be chemical, electrical, or flamf®nergy caused by temperature or pressure
gradients. The necessity of carefully balancingflitlves makes it seem unlikely that steady state
systems can be common or useful. However, livirgjesys at rest can often be considered as
being in steady states. Photosynthesis and mesabckn be usefully approximated as steady
state systems. Both photosynthesis and metabohsmependent on the formation of a steady
state proton gradient across a membrane. We véalhusmbrane systems as examples in many of
the following chapters. In addition, nano-systemesadten analyzed using steady state models.
Separations techniques like electrophoresis aradretbalysis also operate, in certain cases, in
steady states. The atmosphere and other biogeoemental processes are often amenable to
study using steady state models.

Flow reactors are common chemical exampleseaidst state systems. Flow reactors are used
in research on oscillating reactions and in cheha@ngineering. One particular energy resource
application is the production of bio-diesel fronedd=rench fryer oil. The process is the trans-
esterification of the triglycerides in the vegetabll with methanol to produce the fatty acid
methyl esters and glycerol:

CH~O-C(=O)R Ch—OH o)

I KOH | |
CH—O-C(=O)R +3CWDH - CH—OH + 3R-C-O-CH
I I

CH,~O-C(=O)R Ch—OH

The glycerol is immiscible in the biodiesel metkgters and is easily separated. The R-groups
are G4C,, unsaturated alkane chains. This process is aitlgieun in a flow reactor with
microwave heating.

Steady state systems are also considered nadti@-sStiowever, it is important to recognize the
difference between meta-stable equilibrium, sucbuger-saturation and other kinetically
hindered process, and meta-stable steady statzslySitates are not at equilibrium and can only
be kept in a time-invariant state away from equitliim by the constant input of energy or
material.



Irreversible and Reversible Processes: Equilibrium processes, like weak acid dissooraare
reversible. You can make a small change in either directiothe right or the left for the
reaction as written, and the process will returadailibrium resisting the change. Figure 1.2.4a
and b show that a perturbation is a useful testefeersibility. The ball rolls forward or

backward and then returns to equilibrium in respdosperturbations, so the process is
reversible. However, as we just discussed, spoatenprocesses are not reversible; the reverse
of a spontaneous process is non-spontaneous. Seengecorrespondence of the concept of
irreversibility with spontaneous processes andrsaiity with equilibrium processes.
Spontaneous processes @reversible, and equilibrium processes are reversible. Weusan

the terms spontaneous and irreversible interchdohgead the terms equilibrium and reversible
interchangeably.

Equilibrium processes are reversible. At eqillilm, the forward and the exact reverse of each
process occur. For a steady state process, oriltBeland, the reverse process is not the exact
reverse of the forward process. In Figure 1.2.@ewoeversible, water would need to be able to
flow back into the faucet from the bucket and fribva trough back into the bucket.

A net process can occur for a system at equihtorA reversible process can occur through a
sequence of equilibrium states. Gas expansionsgpansitions, mixing, and chemical
reactions can all occur reversibly. Consider theodgposition of one mole of calcium carbonate,
as a simple example, Figure 1.2.7.

CaCQ (s) ~ CaO (s) + C@0)

Figure 1.2.7: The decomposition of calcium carbenstone reversibly by maintaining the
system at the equilibrium decomposition pressube. dquilibrium decomposition pressure
of CQO;, is constant at a given temperature (for exampl€)®bar at 758C).

Any amount of pure CaC{and CaO are at equilibrium as long as the @@ssure is equal to
the equilibrium pressure and both solids are pte3dr@ pressure can be maintained at a
constant value if this reaction is run in a cylintiet is fitted with a piston. During the forward
process the gas volume increases, but the pressueens constant and the system remains at
equilibrium. To convert a small amount of Cagdito CaO, a small amount of heat is added by
increasing the temperature of the surroundingshbypfanitesimal amount for a short period.
Because the temperature increase is infinitesito@onvert an equal amount CaO back into
CaCQ, the same amount of heat is removed from the sybtean infinitesimal decrease in
temperature for a short period. There is no nengban the surroundings for the combined
forward and reverse processes. Because the decimpas one mole of CaC§can be
accomplished through a sequence of such infinitglsiransfers, the net change in the
surroundings for the overall combined forward agnerse process is zero, no matter how big the
overall transfer. The process occurs through aessmpiof equilibrium states, and is therefore
reversible.



The concept of irreversible and reversible psses is useful because the description places a
system within the context of its surroundings. Goeisspontaneous processes; for example,
Humpty Dumpty falling off the wall. The change hetsystem is the production of a big mess.
The change in the surroundings for the proced®iptoduction of a little heat from the
conversion of kinetic energy into random thermargy from Humpty’s collision with the
ground. Now consider the reverse process, puttungpty together again, Figure 1.2.2. All the
King's horses and all the King’s men are part & skrroundings; they attempt reassembly. The
work input to rebuild Humpty is not the exact reseeof the forward process. Instead, we need
all the King’s horses and all the King’s men—aniteof glue.

To be precise and general, a reversible prazasde returned to its initial state with no net
overall change in the surroundings. To reverseranearsible process, the change in the
surroundings is not the exact reverse of the chésrgée original, forward process.
Spontaneous processes occur with exchanges odh@atork with the surroundings. Returning
a spontaneous process to its initial state reqemesgy input from the surroundings in the form
of heat and work that is not the exact revers@efdorward process. A net change in the
surroundings occurs after a spontaneous procesgdssed. The relationship of a system to its
surroundings will be a critical part of our anasysf spontaneous processes.

Time and Equilibrium:  For our initial discussion of spontaneous anailérium processes
above, we were careful not to use time in our dkdims. An equilibrium system is sometimes
defined as a system that does not change macrastigpiith time. However, not all time-
invariant systems are at equilibrium. A spontanqmosess is a process that occurs within a
finite period of time, without outside influenceiatervention. So, there is often a relationship
between time and spontaneity.

Kinetics is the study of the time dependencphyfsical processes. Thermodynamics is the
study of systems at equilibrium. Eventually, alhrequilibrium systems approach equilibrium,
so kinetics is the study of the approach to equulih. However, we need to be careful about the
use of time as a variable with thermodynamics. Tiag no effect on thermodynamic
predictions. We always wait for equilibrium befaeplying thermodynamics. Thermodynamics
and kinetics are complementary approaches to titly sff chemical reactivity. However,
thermodynamics and kinetics are also disjoint. fileeapproaches study very different aspects
of chemical reactivity, and it is important notdonfuse the two. For example, spontaneous
processes can be very, very slow and non-spontar@ouesses can be associated with very
rapid kinetic processes. For example, the readidthy, and Q gas is very favorable
thermodynamically, but Hand Q can be mixed in a flask and not react for verylperiods of
time:

Hz(9) + %2 Q (9) - H0 (1) (spontaneous but slow) 1.2.1

However, add a catalyst, like platinum, or a spzarét the reaction becomes so rapid an
explosion results. Oxidation reactions, like thenbaistion of glucose, are also often in this
category. Kinetic stability is one of the reasorts/wour cells use many enzymes to catalyze the
oxidation of glucose. On the other hand, the disgimn of acetic acid is non-spontaneous from
a thermodynamic perspective:

CH;COOH (ag)— CH:COO (aq) + H (aq) (non-spontaneous but fast) 1.2.2

Adding one mole of acetic acid to water, the weell does not spontaneously dissociate into
one mole of hydrogen ions and one mole of acetai® ias written. On the other hand, proton
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transfer reactions are some of the fastest chemgeaations known. The reverse of Eq. 1.2.2 is
very spontaneous and changes in both directions ac@icoseconds. Table 1.1 summarizes
these observations. We need to be careful noteddingtic arguments to explain a
thermodynamic process, and vice versa.

There is one point of connection, though, betwthermodynamics and kinetics and that is
when the system reaches equilibrium. We will fihdttthe equilibrium constant for a reaction is
given by the ratio of the overall forward and resgereaction rate constants,&ki/k.

Table 1.1: Thermodynamics and Kinetics Study DéfgrAspects of Chemical Reactivity.
Thermodynamic reactivity and kinetic reactivity alisjoint.

Spontaneous Non-spontaneous

Fast | iINOs (aq) » HT + NOy CH;COOH (ag)— CH,COO + H'
Ha(g) + % G (g) PtH,0 (1) Zn(NHs)*"(aq) » Zn*" + NH; (aq)

asc) |H(@+ %0 @~ HO () | [PICIHO)NH™ CT — PICK(NH), + HO
Glucose + 6 @~ 6 CO+ 6 HO | 2 CHy+ 3 HO(g) » CO +CQ + 7 H

Kinetics, Thermodynamics, and Non-equilibrium Thermodynamics: Thermodynamics is the
study of systems at equilibrium. Kinetics is thedst of the rates of chemical processes and the
approach to equilibrium. Non-equilibrium thermodgmes combines the disciplines of
thermodynamics and kinetics. The theory of nondédmuum thermodynamics has several goals.
One goal is to predict the formation of steadyesta® second goal is to describe the coupling of
different rate processes. One example of coupledgsses is the interaction of electrical
conductivity, concentration gradients, and the padidn of entropy in membrane systems. Non-
equilibrium thermodynamics is central to undersiagdhe emergence of order from chaos.
Non-equilibrium thermodynamics is therefore veryortant in biochemistry, biology, complex
chemical reaction mechanisms, and nano-technolWgywill get a start in this important area.

1.3 Chemical Reactivity—The State of the System

As mentioned above, the state of a system @ifsgabby V, P, T, S, and;fior each chemical
constituent. The results of a process are measyrétk changes in V, P, T, S, andWe need
to discuss how these variables are defined andureghsTheir units are also very important. In
this section, we discuss V and P. We will discussd S in detail in later chapters on
thermodynamics. The amounts of substances camatliezly be specified using moles,
concentrations, or partial pressures, which igdpée of the next chapter.

Volume: Volume, mass, and time are the only direct messants that we make. Pressure,
temperature, and entropy are measured indiredtyg.ohly comments that we need to make
about volume at this point are on units. The Iraomal System of Units, or Sl units, are
established by international agreement and acceptddwide. The Sl base units are kg
(kilograms), m (meters), and s (seconds). The spmeding units for volume are’m

1 n?=1000 L = 1x16mL = 1x10 cn?®
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Using volume in moccurs when working on problems with the resultpiles.

Pressure: Consider a gas confined in a rectangular coatalfigure 1.3.1. Given a surface of
area A, the pressure is defined as the force thexearts perpendicular to the surface divided by
the area, P = f/A. The Sl units for force are newtd\N. The Sl units for pressure are the units of
force divided by area or N fn Expanding out the units of the newton gives

N m? = (kg m se®)/m? = kg m' seé®. Thepascalis defined as 1 P& 1 N ni* = 1 kg m' seé®.
Thebar is a convenient measure of pressure and is defisexactly 1x10Pa:

1 Pa=1Nnf=1kgm'sec 1 bar= 1x1¢ Pa 1 bar = 100 kPa

> X
Figure 1.3.1: Pressure is the force per unit &eaf/A, exerted by a gas on a surface. The force
is the component perpendicular to the surfacehigidase the x direction.

The pressure is measured using a manometer. Gdogskechanometers are used for measuring
absolute pressure, Figure 1.3.2. The classic U4tjde manometer is used for measuring
pressure differences. Closed end manometers aaflyussed to measure the barometric
pressure, §. To use a closed end manometer, the manometerstibed completely and then
inverted. So the pressure in the internal epglj$just the vapor pressure of the liquid. If the
manometer fluid is mercury, the vapor pressureegigible and B = 0, that is, a vacuum.
Consider the closed end manometer, Figure 1TBR external pressure provides a force on the
surface of the liquid outside the tube, pushingliipgd up the manometer tube. The column of
liquid and the internal pressure inside add to pi®a force downwards on the inside of the
tube, Ry + Bn. The level of the liquid is stationary, so theckes must balanceef= R + Rig.

Pext

g_ o0
Pext= Pn + Iqiq

Figure 1.3.2: Closed end manometers measure abswkssure. Open-end or U-tube
manometers measure pressure differences, or diffakpressure.

P=Rx+ Iqiq
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For an open-end manometer, the forces also baleshice. The reference level is the top of the
shorter of the two columns of liquids. At this nefiece level the forces and pressures on both
sides are equal. The measured pressure, P, isatgupe on the left-hand side, which balances
with the total pressure on the right-hand side:

P = R+ Rig 1.3.1

The pressure of the column of liquid depends ord#resity of the liquid, d, and the height of the
column of liquid, h, and is given by:

Pig=dgh 1.3.2

where g is the acceleration due to gravity, 9.80868". Calculating the pressure caused by a
column of liquid is a problem that arises oftenysowill show how Eg. 1.3.2 was derived.
Consider a column of liquid with cross section Aaight h, Figure 1.3.3. We will assume that
the liquid has a constant density, in other wohds the liquid is uncompressible.

A A
X

h__

O L
Figure 1.3.3: The pressure of a column of liquithvdensity d and cross sectional area A.

The volume of liquid in the column is Ah. The ma$she liquid is dAh. The force that this
column exerts is f = ma = dgAh. The pressure idehee per unit area,i#= f/A = dgh, giving
Eq. 1.3.2.

Because manometers are commonly used to mga®a®ure, pressures are often listed not in
force based units, but as heights for a given matenfluid. These units include inches of water
and mm Hg. Assuming the density of Hg = 13.595in§ et ®C and g = 9.80665 nm’allows
the conversion to Pa using Eq. 1.3.2. The unifgedsure, then, can be expressed in
atmospheres (atm), torr, millimeters of mercury (#g), and pounds per square inch (Psi):

1 torr= 1/760 atm (exactly)
1.00000 mmHg = 1 torr (afQ)

The conversion between mm Hg and torr dependsmpderature and the local acceleration of
gravity. For example, the density of mercury is5#82 g mL* at 20C giving 1 mmHg = 0.996
torr at 20C at sea level. Atmospheric pressure at sea levdifferent units, is expressed as:

1 atm= 1.01325x10Pa = 101.325 kPa = 1.01325 bar
1 bar = 0.98692 atm

1 atm= 760 torrl] 760 mmHg

1 bar = 750.06 torr

1 atm = 14.696 psi
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We must be careful about significant figures. TE&ifhdicates a definition, so the result is
exact. For example, one atmosphere is exactly 960D torr for as many significant figures as
you need. In addition, when we write an integechsas in 1 atm, the number is taken to be
exact. Stoichiometric coefficients for chemicala@ans are another example of this significant
figure convention.

The pressure is one of many examples of a pipg&at has been “normalized” for the size of
the system. The total force on the wall of a cargabf gas increases with the size of the
container. However, the pressure is the ratio efftince to the surface area over which the force
is measured. Dividing by the area normalizes tiheefto unit area, which is no longer a function
of the size of the system. The pressure, them iatansic measure of the properties of the
system, no matter the size. The interest ratesaivangs account is another example of this kind
of normalization. The interest rate is given by ithgo: ($interest/$principal)x100%. The interest
rate is the same regardless of the amount youihate account. The interest rate makes it easy
to compare the benefits provided by different bafike density of a substance, d = mass/V, is
another example of an intrinsic property of theays Such intrinsic properties are important
because they show how one substance is differemt &nother on a fundamental level.
Properties that are independent of the size ofystem are said to etensive variables
Pressure, temperature, and density are intensaalMes such as mass, volume, heat capacity,
internal energy, and enthalpy are extensive vagllhe values axtensive variablesscale
directly with the size of the system. For examplgou pour 25 mL of 20C water into 25 mL of
of 20°C water, the volume doubles but the temperatuges shee same. Volume is extensive and
temperature is intensive. However, the ratio of axtensive variables for a system is intensive.
For example, per mole quantities, like the molduree, are intensive.

Pressure is an example of a variable that issared indirectly. The reading from a manometer
is the height of a column of liquid. To convert tieight into a useful value, we need to know
the density of the manometer liquid. Temperatudse an example of a property that is
measured indirectly. The temperature is often nmreaisas the height of a liquid in a
thermometer. Pressure and temperature measurearerss convenient and so intuitive, based
on our experience, that we sometimes forget the inglirect way they are measured. A wide
variety of electronic meters and pressure gaugea\ailable, but they must all be calibrated
using measurements based on manometers.

For the tabulation of thermodynamic data, weosleca convenient standard state pressure of
1x10 Pa or 1 bar. Values at this standard state aiesited! by a superscript “0”, as in the
standard state enthalpy of formation for a substakel°. Notice that tables in older sources
may use a standard state pressure of 1 atm, sosuekéo pay attention to the units. One bar
and 1 atm differ by only 1.3%, which is a smalfeliénce compared to ambient pressure
changes caused by changing weather patterns. Dheedbietween 1 bar and 1 atm is a small
shift, and only affects the properties of gasegiitis and solids are unaffected. Because of the
choice of 1 bar as the standard state pressurtharndule as the standard unit for energy, we
strongly suggest that you work gas law problenBanWith pressure in pascals, the volume
should be expressed ir'nThe units of the PV product are (NJm°) = (kg m’* se¢®)(m®) =
kg n? sec®. The units of PV are then seen to be energy imjtules since 1 kg firsec®=1 J.

Ideal Gas Equation of State: The equation of state for a substance relaesdhables P, V, T,
and n. Under many circumstances the equation t# &iagases is adequately expressed by the
ideal gas law: PV = nRT. We will introduce more @ate equations of state in a later chapter.
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The value of the constant R must be determined gwperiment. The experimental value of the
molar volume, W, of an ideal gas at a given temperature is neeftetl= 273.15 K (0C) and 1
atm the molar volume of an ideal gas is:

V .
Vm =5 = 22.41410 Lmot atP =1atmand T =273.15K (ideal gas) 134
For equations that are specifically for an ided, gee will place a superscript “0” after the
eguation number to remind us that this is not ag@dmesult. We will also list parenthetically
any restrictions for the equations. At 298.15 K atahdard state pressure of 1 bar:

V°n = 0.0247896 rmol* at P = P=1 bar and 298.15 K (deal gas)  1%3.5

The temperature is given in kelvins, K. The R@duct has units of energy. The function of R
is, then, as a units conversion factor from keltmenergy units. Using P and V in different
units, R is calculated as:

_ PV _1atm (22.41410L)
“nT "~ 1mol (273.15K) —

_PV _1x10 Pa (0.0247896 i _ .
=NT= 1mol(298.15K) - 8-31447J K mol 1.3.7

_PV _1bar(24.7896 L)
~nT ~ 1mol (298.15 K)~

Even though we calculated R using the propertiematieal gas, the definitions of the Kelvin
temperature degree size (the triple point of wigtelefined as 273.16 K) and the joule are
independent of the substance used, so R is a fusrtahtonstant.

0.08205783 L atm Kmol* 1.3.6

R

0.0831447 L bar Kmol* 1.3.8

Example 1.3.1
Calculate the pressure of the gas in the flaskgnré 1.3.2 if the difference in height of the @ui

in the manometer is 20.00 cm. The manometer ligpwdater, the temperature is 28X) and the
atmospheric pressure is 756.2 torr. The densityatér at 25.6C is 0.99705 g mL.

Answer: We need to convert everything to Sl units toehdhe units for g in Eq. 1.3.2:

h = 20.0 cm (1m/100cm) = 0.2000 m
d = 0.99705 g mt (1 mL/1 nT)(1 kg/1F g) = 997.0 kg it
Paxt = Pam = 756.2 torr (1 atm/760 torr)(1.01325%1®a/atm) = 1.008xfPa

The pressure due to the column of water is:
P = d g h = 997.0 kg (9.80665 m $)(0.2000 m) = 1955.4 Pa
Then the pressure in the flask is:

P = Ry + PRy,0 = 1.008x18 Pa + 1955.4 Pa
P = 1.027x10Pa = 102.7 kPa = 1.027 bar
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Notice that 20 cm of water corresponded to 195%a.4HF8r a 10 cm divide by two:
10 cm (HO) =977.7 Pa =0.9777 kPa
A good number to remember is that 10 cm of wateresponds to 1 kPa, to within 2%:

10 cm (HO) = 1 kPa= 0.01 bar

This type of calculation will be very useful whe® wonsider osmotic pressure and membrane
potentials.

Example 1.3.2

A semi-permeable membrane allows some speciess®lpd not others. Consider a membrane
that is permeable to water but not ionic substafmafophane candy wrappers are an example).
The membrane is placed between two compartmengsisdiiled with 1.00x1d M NaCl and

the other pure water, as shown in the Figure befopressure difference builds between the two
compartments as evidenced by a difference in tighhef the solution as compared to the pure
solvent. The pressure difference is called the disnpoessure. Assume the density of this very
dilute NaCl solution is the density of water at®&, 0.997 g m[*. Calculate the osmotic
pressurery, if the height difference is 5.07 cm.

semi-permeable
membrane

solution solvent

Answer: The density of water is 0.997 g it 977. kg nt. The osmotic pressure is:
n=dgh = (977 kg i) (9.80665 m $)(0.0507 m) = 485.8 Pa
To help you get used to pascals, convert this réswaither common pressure units:

1= 485.8 Pa (1 atm/1.01325%1®a) = 4.79x18 atm
1= 4.79x10° atm (760 torr/1 atm) = 3.64 torr

The Barometric Formula Describes the Variation of Pressure with Height: Two important
application areas for physical chemistry are atrhesp environmental chemistry and
meteorology. The barometric formula gives the pres$or a gas as a function of height. This
problem is similar to the pressure for a columiicpfid, Figure 1.3.3, except that we can no
longer assume that the density is constant. Conaidelumn of air of cross-sectional area A,
Figure 1.3.4. The pressure at h = 0 is the fullcejpineric pressure caused by the column up to
infinite height. The pressure at height h is causethe air above that point. To calculate the
pressure at height h, we start at h = 0 with presBuand then subtract the pressure of the gas in
thin slices up to height h, leaving the gas above.
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O _ Po
Figure 1.3.4: The pressure of a column of liquithvdensity d and cross sectional area A.

Consider a thin slice of the column at height xe Timass of a thin slice of the gas of thickness dx
is d A dx. The force that this slice exerts on¢bkimn is df = —d g A dx and the corresponding
change in pressure is the force per unit area, di’2A— — d g dx. The negative sign is

necessary, to do the subtraction of the slices ften® to h. Because the pressure decreases with
height, the density of the gas also decreases.miaguthat the gas behaves as an ideal gas,

d_%asn_%asp
- V.~ RT

(ideal gas) 1.3°9

wherediyasis the molar mass of the gas. The change in pre$sua change in height is then:

P
dP = —@%—aﬁ g dx (ideal gas) 1.3.10
The right-hand side of this last equation is diffido integrate because P changes with x. To

avoid this problem, we divide both sides of Eq.103by P:

dP_ 9lgasg

p =~ RT X (ideal gas) 1.3.11

Now assuming that the temperature is constantTgsthe integrand on the right in this equation
is constant. The pressure at height h is giverhbyrttegral from 0 to h. The pressure at h=0,is P
and at height h is P:

p dP h g )
e _fo%éf‘ri dx (ideal gas) 1.3.12

The integral on the left is in the form )g% =Inx and the constan®®,,Q/(RT) factor out in
front of the integral on the right:

(infl = —%(xlg (deal gas, cst. T)  1.343

For a quick review of calculus, please see therdld®, Section 1.5. Evaluating at the endpoints
of the integral gives:

h
InP-InR = _%R% (ideal gas, cst. T) 1.3.14
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Combining the In terms gives:

Inl:,B0 = —@K’%Tgh (ideal gas, cst. T) 1.3715
We can solve for P by exponentiating both sidehisfequation and multiplying by,P
S5
p=pe RT (ideal gas, cst. T)  1.36

The pressure decreases exponentially with heidig.r@te at which the pressure decreases is
dependent on RT. We will find that RT is a measfrihe available thermal kinetic energy of

the gas. The greater the thermal kinetic energygtkater is the pressure at a given altitude. The
effective molar mass of air is just the weightedrage of the molar masses for&d N, which

is 20.9 mole % @and 79.1% M and other trace gases:

Mar = 0.209(32.0 g mal) + 0.791(28.0 g md) = 28.8 g mot 1.3.17

The pressure as a function of altitude is plotteBigure 1.3.5 assuming the temperature €20
293 K and the sea level atmospheric pressuyres B bar. Of course, the temperature in the
atmosphere also decreases with altitud&;£8000m, through the troposphere, so this plot is a
rough approximation.

0.9
0.8
0.7
~ 0.6

0.3 -
0.2 4
0.1

0 2000 4000 6000 8000 10000 12000 14000
h (m)

Figure 1.3.5: The pressure as a function of aléitati293 K.

01
Our First General Pattern: Smple Exponential Processes, First-Order Homogeneous

Differential Equations with a Constant Coefficient: The barometric formula, Eqg. 1.3156°, is
certainly an important formula, especially for emvimental applications. But, we have to admit
that we had an ulterior motive. The general formtfe differential in Eq. 1.3.20s very
common. Solving this differential equation gave ymme practice in integration and practice in
dealing with equations of this form. We always wimnmove quickly from pure mathematics to
the chemical understanding of the underlying iddagu can recognize the form of an
equation, then solving the equation becomes stfaigtard and we don’t need to dwell on the
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mathematical details. We can get to the chemisistef. In this text, when we introduce a
particularly useful general form, we will highligtite material as a “General Pattern” that we can
use repeatedly throughout the text. Let’'s summadheesteps we took in general form. The
differential was in the form:

df =—afdx 1.3.18

where a is a constant. This general form is officiealled a first-order homogeneous differential
eguation with a constant coefficient. Since f isaable and not constant, we then divided both
sides of the equation by f:

f
dT:—adx 1.3.19

This step is called the separation of variablesvNappears only on the left-hand side of the
eqguation and x and constants appear only on thé fgxt we determined the integral limits. As
x varies from x to x, then f will vary from { to f,. The integral limits are then specified:

df
ﬂf—:— * a dx 1.3.20

lf X1

The constant, a, factors out in front of the iné¢@n the right. Then integrating:
f2 _ X2
(Inf? = —a( xlxl 1.3.21

Evaluating at the endpoints of the integral gives:
Inf,—Inf = —a (% Xi) 1.3.22

Combining the In terms gives:
fa
Inf—1 = —a (¥ X 1.3.23
Exponentiation both sides and multiplying hyives:

f2 = f]_ e—a(Xz—X]_) 1.3.24

For the special case thatx 0, no confusion results if renamg=xx, h =f, and § =fto give
from Eq. 1.3.23:

f
Inf— = —ax 1.3.25
o]

Solving for f gives:
f=f,e™ 1.3.26

which we recognize as an exponentially decreasingtion, Figure 1.3.6.
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Figure 1.3.6: An exponentially decreasing functigrg®, for f, = 1. The limiting slope at
X =0 is: slope = —af

Let’'s make some general observations on exp@lgdecreasing functions. From the figure,
notice that the decay is faster for larger values ?ow look at the small x and large x limits.

x>0 then @& &€=1 so that 4 f, 1.3.27
1 1
X- o then & = = 0 so that$ 0 1.3.28

In other words f drops from,fthe initial value, to zero, asymptotically. Wencso get a rough
approximation for f by expanding in a Taylor ser@sl keeping the first few terms. Hopefully,
approximating the exponential function this waylgilze you a better feel for the properties of
this important function.

Remember that the Taylor series allows us tocgdmate the value of any function, near a
given point %, arbitrarily well through the power series:

_ df i x=x) (de) X = %)
f -~ f(XO) + (dX)X:XO(X - )Q)) + (&Z)X:XO 2 + &3 X=X, 3| +... 1.3.29

For a quick review of Taylor series, please seatttendum, Section 1.5. Keeping just the first
two terms corresponds to approximating the funcéism straight line. The Taylor expansion for
an exponentially decreasing function for small:x is

X2 X3
e‘ale—ax+é§—a3€+... 1.3.30

Using the Taylor Series expansion f6f and keeping only the first two terms gives the
approximation for Eq. 1.3.26 as:
f=f,—1f, ax (small x) 1.3.31

and for Eg. 1.3.24, expanding aroundas
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fo=f1 — fila(xe- xq) (% = Xq) 1.3.32

To summarize, for small x, f 5 €% decreases linearly with x with a slope of ,(&f. If you

look at Figure 1.3.6, you will notice that for simglthe curve approacheslinearly with a
negative slope as expected from Eq. 1.3.31. Alterelg, you can just evaluate the derivative at
X = 0, to determine the limiting slope:

df d(f,e®
dx :_%2 =—fa e_axlx:O =-fha 1.3.33

Hopefully, recognizing the general form of Eq..18 and having a good appreciation for the
general behavior of & will make life simpler later on.
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Example 1.3.3

Calculate the pressure at a height of 400.0 meratmosphere using the exact equation and
using the Taylor series approximation, keeping flstfirst two terms to give a linear
approximation. Assume that the sea level pressutebar and the temperature is 2Q.0

Answer: Applying the linear form of the Taylor seriespexsion for €, Eq. 1.3.31, to Eq.
1.3.16:

(—@wzgasgh) .
p=pe RT =P0—Po(%f)

Substituting withdiig.s= 28.8 g mal (1 kg/1000g) = 28.8x1dkg mol* and T=293.2 K gives:

(@rcgasg h) _ 28.8x10° kg mol™* (9.807 m €)(400.0 m) _ 0.04634
RT )~ 8.314 J motk™* 293.2 K -
o L -0.04634
Substitution into the exact formula gives: P = Lt ®a = 0.9547 bar

and the linear approximation gives: P = 1 bar + {0#4634) = 0.9537 bar
or only 0.1% error.

1.4 Summary — Looking Ahead

The Reach of Chemistry: From the Beaker to Interacting Global Systems: The written form of
the chemical reaction:

NO +%Q - NO, 141

describes processes on a single molecule level,moale scale, or on a scale of millions of
kilograms. Chemical reactions are inherently scadependent. Chemical insights can therefore
be extended from the molecular level to the schigabal systems. This scale independence is
the basis for the utility of structure-functionagbnships.
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Scale independence has two different forms. Qe of scale independence is simply based
on the physical size of the system: from molectdegrams to tons. However, another aspect of
the scale of a system is the possibility of inteoas. One example is the coupling of the
oxidation of NO, Eq. 1.4.1, with the productionNd® and the consumption of N@hrough the
reactions:

12N, +120, - NO NO+%20, - NGO, ANO,+H,O - 2HNOz;+NO 1.4.2

This sequence of reactions is responsible for tinie acid that forms in raindrops, which
contributes to acid rain. New types of interactiand behavior result from increasing the scale
of systems. Another example arises from biochegistetabolism results from the interactions
of proteins and small molecules, metabolism drm@gesses in living cells, living cells
comprise organisms, organisms form communities,neonities interact within ecosystems, and
ecosystems interact to form global systems. Thepeetive of chemistry is that the functioning
of complex systems is a result of molecular inteoas. We can design and synthesize
compounds to manipulate and control the interastisithin complex systems.

The various theories of chemistry have diffesrdle dependence. Quantum mechanics is
applicable at all chemical scales. However, quantuethods become intractable beyond the
level of a few biopolymers. Thermodynamics andsitzd chemical kinetics don’t apply to the
single-molecule level, but are scale independentrii@acroscopic systems. Thermodynamics
applies at the level of picomolar enzyme-substrgractions and to the scale of global climate
change. The scale independence of thermodynamihsmereasing system complexity includes
expanding hierarchies of molecular and systemawterns. For example, the concepts of
temperature, pressure, and chemical equilibriumat@pply to single molecules. However,
starting with small systems containing billionsheblecules, temperature, pressure, and
equilibrium relationships are well defined. Smaitems tend to have a uniform temperature and
pressure. As the scale enlarges, systems beconeecmmiplex. For an example of a complex
system, processes in the stratosphere occur widti@ase in temperature and pressure with
altitude. The temperature of the atmosphere alaagds with latitude and the seasons. The
extreme cold in the stratosphere during the Antawveinter allows solid nitric acid hydrates to
form, which act as a sink for reactive nitrogencspe

HNO;(g) + x H:O (g) » HNOsX H,0 (s) 1.4.3

In the Antarctic spring, the nitric acid hydratetease a pulse of nitric acid into the gas phase,
which through photochemical reactions catalyzesfhentaneous destruction of ozone. Quantum
mechanics, statistical mechanics, thermodynamizschemical kinetics allow the
characterization of the interrelationships thateprocesses across multiple scales.

You are encouraged to think across multipleescak you learn more about chemistry. Even if
your interests are primarily on the single-moledaieel, the motivation and context for your
work lie in more complex systems. Even if your retds lie in global processes, structure-
function relationships at the quantum level arekiéneto understanding the interactions that
govern all chemical processes. Our study of physiwamistry begins with chemical kinetics
and thermodynamics, which explore the interrelaigos within and between systems of any
macroscopic scale.

Our example of the formation of nitric acid ainm combines gas phase, solution phase, and
mass transport processes. In the next chaptersgassi concentration measures, concentration
determination, and transport processes.
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1.5 Addendum: A Very Brief Review of Calculus

Derivatives. In many ways, the calculus that we will useaisly basic; you just need to practice
your calculus skills so that you can do problemisidy. Do keep your calculus text handy for
reference. A basic table of derivatives is giveifable 1.5.1. The basic derivatives are straight
forward. The difficulty often comes with using theoduct rule and the chain rule.

Table 1.5.1 Basic Derivatives and Integrals (regquhiackwards).

f(x) df
dx
X" n X"t
1 -Nn
In x 1
X
x In x -x In x
e g
sin X COoS X
COS X —sin X
Example 1.5.1:

Find the derivative O)f(lﬁ with respect to x, using the fact thaf'dx = n X",

Answer: Rewrite the function as"then use the normal rule for powers of X)dx = n X

dx" e —m
vl —mx™? = v

Notice that you just proved the second relationghipable 1.5.1.

Product Rule: For two functions f and g:

d(fg) _ dg , df

Quotient Rule: For the quotient of two functions f and g, calesif/g = f g* and use the product
rule to find the derivative. From Table 1.5.1 nthtat the derivative of 1/g = -#g
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d(flg) _d(fg? g'  adf ( )_9 1df
dx — dx fdx "9 ux =f F)dx " gadx 152
To add the two terms, usé@s the common denominator:
dg
dflg ' ax* gdx
dX - gz 153

In other words, you can just use Eq. 1.5.3 as araéprule for the quotient or you can always
use the product rule for both products and quatiestwe did in deriving Eq. 1.5.3.

Example 1.5.2:
Find the derivative of h(x) = x In x — X, with pect to x.

Answer: The derivative of the sum is the sum of thedsives:
dh  d((xInx—=x) d(xInx) dx

dx ~ dx - dx o dx
Use the product rule for the (x In x) term:
d (x In x) dInx dx 1

dx = XTyx +Inxd—X:x;+Inx:1+Inx

Now substituting:

@_d(xlnx—x)_d(xlnx) dx
dx — dx - dx dx 1+Inx-1=Inx

Notice that you just proved the fourth relationsimable 1.5.1

Example 1.5.3:

: o g
Find the derivative of h(x) T2 with respect to x, for ¢ a constant.

Answer: We'll factor out the constant and then use trwglpct rule with f = #and g = %
dh _ 1d(Enx®) _ 1dEx?) _ (exdﬁ 2 de’

dx ~ ¢ dx ¢ dx dx X dx
Using Table 1.5.1, dédx = & and d&&/dx = -2/¢ gives:

dh 1 eX 2¢

dx (eX—g +X ex) ol e

or you could use the quotient rule to get the seesalt.
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The Chain Rule: The chain rule is based on finding a simplifysupstitution for a complex
derivative. For example, to find the derivativef of € with respect t&, we can make the
substitution z = -&. After substitution f = Then the chain rule for differentiation is:

df df dz
dx ~ dz dx 154
For our specific problem:
de® d¢ dz
dx = dz dx 155

The derivative d&dz is just €and also substituting back in z =sgives:

de<’ dz . d(=c?) 2
Ix " €ax - €% g ~—2cec 1.5.6
You can even make multiple substitutions, for exi@ipd the derivative of:
1

f(x) = 16 1.5.7
Let g = —cx and r = 1 ¢ then the chain rule would be:

df _ df dr dg

dx ~ dr dq dx 158

Effectively, on the right-hand side, you can thofldr or dg as a kind of variable, and these
terms cancel to give just df/dx. For our examplg, E5.7:

1y 1
daf _ d(l_e-cx) _ d(r) d(1l- é) d(—=—x) -1 g .= &% Les
dx ~ dx ~ dr dq ax - P C€)0) =y 5.

Of course, we often don’t bother to do explicit stitiutions; rather, we just do the chain rule “in
our heads.” For example, the derivative 8f ean be taken as the result of the substitution-z =
ax, with dé/dz = é. More colloquially,

df d gvhatever d(whatever) _ax(d(-a _
&szewhatever( de v jz e ax( dXX = _g@ ax 1.5.10

Example 1.5.4:

Find the derivative of m with respect to b, for c, g, and v constants.

c
q-vb

Answer: We’'ll use the chain rule using explicit subgiitn. Let z = q — v b, then m = ¢(1/z) and
using the chain rule:
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dm d(1/z (dz —C —C cvV

- (E Z T aom O e w

Substitution: The substitution trick we used in discussingdhain rule is also generally useful.
For example, find the derivative Gfith respect to 1/j:

df
d(1f) -

This derivative looks tough, until you make the stithtion z = 1/j. Rewriting3in terms of z
gives f = 1/7

dif  d?d)

Doing the substitution z = 1/j into Eq. 1.5.11 givke final result:
djf _ —2
) f

Inversion: For the derivative:
dv
a1 = ? 15.13

The substitution trick, z = 1/V, also works welverting z gives V = 1/z and substitution into
1.5.13 gives:

dv_ d(1/2)
daN) = dz _Z =Y. 1.5.14

Notice however, we could have just inverted the ilirivative, done the differentiation, and
then inverted the result:

1/v 2 V2
d(l/V) —Z =2 < T{=- 1.5.15

The agreement between Eq. 1.5.14 and 1.5.15 stdsvshtortcut to be valid. You can show that
this inversion trick is always valid for any deriiivee. Inversion can be useful whenever you want
to take the derivative of something easy with respesomething difficult. The derivative with
respect to 1/V will occur when working with the &dé&as law and other equations of state.

Integrals. By the Fundamental Theorem of Calculus, TalBellis also a table of integrals. We
just read from right-to-left. For example,

f%dlenx Jedx =¢& JInxdx =xInx-x

There are extensive tables of integrals in handbdk& theHandbook of Chemistry and
Physics,? and many Internet sites. You can save a lot of tiyybecoming familiar with these
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resources. You are also encouraged to use syndmhiputational programs likdathematica
or Maple.

Taylor Series. The Taylor series expansion allows us to apmnaxe the value of any function,
near a given pointyxarbitrarily well through the power series:

_ df ) (x—x)* (dsf) (X = %)° (d_”f) (X —X)"
F=10x0) + (dx)xzxo(x —%)* (&"‘)X:XO 2 tadhey, 3 T i
1.5.16
Keeping just the first two terms corresponds torapipnating the function as a straight line.
Keeping the first three terms corresponds to a i@i@dapproximation. We will rarely need
terms beyond the cubic term. For example, findTiagor expansion for the exponential

function in Eq. 1.3.26,&. We first need to find the derivatives using thaia rule. Using Eq.
1.5.10 as a guide:

g_de_axj_ _axd—aX_ —ax
[dx)_( dx )~ € ( dx ]-—ae 1.5.17

For the second derivative, starting from the fistivative:

o) (d —ae‘a’j L, ax

(d—z) =T /=€ 1.5.18
Expanding aroundsx0, we note that:
an e (dzf) _ 2 (d?’f) e
[dxjx% - _ag o= _4 G2 o d e d G0 - A e =4

1.5.19
Then substituting into Eq. 1.5.16 gives:
2 3
e¥=1_ax+ly-dg+.. 1.5.20

Let's check to see how well the approximation work$er to Table 1.5.2, where for
convenience we have chosen a = 1. The underlineédsaorrespond to 2-3% error.

Table 1.5.2. Taylor Series Approximation foXeUnderlined entry gives 3% error.

X e*exact 1-x 1-x+%2  1-x+X/2-X[6
0.1 0.9048 0.9 0.905 0.9048
0.2 0.8187 0.8 0.820 0.8187
0.5 0.6065 0.5 0.625 0.6042
0.8 0.4493 0.2 0.520 0.4347

1.0 0.3679 0 0.500 0.3333
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As you can see, the Taylor Series does very wél anly a few terms. For 3% error, fof & 1
— X we can go up to x = 0.2 and fof=l-x + »%/2, x can be as large as 0.5.

Taylor series expansions for functions that vileuge are listed in Table 1.5.3. The infinite
series &= 1+ x +x%2+x%/6 +...+x"/n!, as you might remember, is actually the deifiniof the
exponential function. Handheld calculators and cotes use this Taylor series to calculate the
value of é.

Example 1.5.5:
The “e” in € is just a number, 2.7183. Use the Taylor serigsesion of & to calculate the
value of “e”. You can work with just four termstime expansion.

Answer: To use the Taylor series expansion@f @ust set a = -1 and x = 1. Then up to the cubic
term, the expansion giveS'

—ax_ X _

e “V=1-ax +é - a3 = 1-(-1)@Q)+ (—f (-1)3

1 1
= 1+1 t5+5 = 2+0.5+0.167 = 2.667

which isn’t too far off from 2.7183 given that walg used four terms.

Table 1.5.3. Taylor Series Expansions

expand around for x = X, for x very close to x
2 3
Xo=0 eX=1+x+XE+X€ &=1+Xx
2 3 )
Xo=0 e—ale_aXJréXE_a%% e¥=1-ax
2
- X ~
Xo=0 |n(1 _ X): —X _E In(l - X)~ —X
2
Xo=1 Inx=(x - 1) = ﬁX_ll Inx=(x-1)
Xo=0 1 1
0 Tx=1Hx+X Tx=1+X
2
Xo=0 Mx =~ X X -1 X
Xo =0 1 1 1 1
1-6™" ax — (axj2 1-6™7 ax
Xo =0 Sin x= X %+% sin x= X
Xo =0 x X :

X
cosx~1—2+4! cosx~1—2
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Example 1.5.6

Give the Taylor series expansion for In(1-x), wheiie a small number. Just use the first two
terms in the expansion. Test your approximatiox er0.100. We will use this approximation
often.

Answer: We need to do the expansion aroupé K. The first derivative using the chain rule is:
din(1-x) _ 1 d(1-x)_ -1
dx "~ 1x dx " 1-x
Evaluating the derivative at x O gives just —1. Substitution into the Taylori8e gives:
In(1-x) = In(1-0) + (-1)(X) = — x (small x)

For x = 0.100, the exact value for In(1 — 0.108PA05 and our approximation gives -0.100, for
a 5% error.

Chapter Summary

. The system is the simplest part of the univéraedisplays the process of interest.

. The surroundings are everything that is not piitthe system.

. The state of a system is specified by V, P,, Brfdl moles, inor concentrations;,dor each

chemical constituent i.
. A process is the transfer of energy to or framgystem in the form of heat, work, or changes
in concentration.

. A spontaneous process is a process that ocdrsuivany outside influence.

. A non-spontaneous process will not occur, witlveork input from the surroundings.

. The reverse of a spontaneous process is a rmomMag@ous process.

. Equilibrium processes show no tendency for chang

. The reverse of an equilibrium process is alsqatlibrium.

10. Equilibrium processes are reversible. Revexgbbcesses are at equilibrium.

11. An equilibrium state is a stable state.

12. For a given perturbatiody, if dV(x + &x)>0 the state is at equilibrium.

13. Meta-stable systems are at equilibrium for sotenges, but unstable for large changes.

14. Steady states are time-invariant, but not atliegum, and can only be kept in a steady state
away from equilibrium by the constant input of ejyeor material.

15. Spontaneous processes are irreversible. Isileprocesses are spontaneous.

16. A reversible process occurs through a sequeihneguilibrium states.

17. A reversible process can be returned to itelrstate with no net change in the
surroundings.

18. Kinetics is the study of the approach to efytiiim. Thermodynamics applies only to
systems at equilibrium.

19. Thermodynamics and kinetics are complementaaydgsjoint (except that &=ki/k).

20. Kinetically favorable processes are not necggshermodynamically favorable.
Thermodynamically favorable processes are not sacégkinetically favorable.

21. Non-equilibrium thermodynamics combines therymaanics and kinetics.

B WN -

©O© 00 ~NO Ul



29

22. Pressure is defined as f/A, which is normalimedhe size of the system.

23. The pressure of a column of liquid is; B d g h, where d is the density and h the height.

24. Intensive variables are independent of thedlizke system. Examples are P, T, and d.

25. Extensive variables scale directly with the ©fthe system. Examples are mass, V, S
(entropy),AU (internal energy), andH (enthalpy).

26. The ratio of two extensive variables for a giggstem is intensive. Examples are per mole
guantities like the molar volume & V/n, and enthalpy per mol&H;, = AH/n.

27. The ideal gas equation of state is PV = nRTh ®i= 8.31447 J Kmol™, using P in pascals
and V in m.

28. é¥=1-ax for small x.

29. The function f =fe * approaches,fas x- 0 with a constant negative slope = xa f

30. In(1-x)= — x for small x.

O 1. The general solution of a differential equatiorthe form df = —a f dx is:
f,=f,6 2 X) o f= e if the initial x = 0.
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Problems: Chemical Reactivity

1. Consider a bowl of sugar. Sugars are our prirmawyce of energy, so the oxidation of sucrose
in our body must be thermodynamically favorablewHan a bowl of sugar exist in the open
atmosphere for very long times?

2. Consider a salt shaker balanced on one edgar,eHRiL.1. This state is often possible if a few
salt grains are sprinkled on the table. Charaaédhe state of the system with respect to change
in position. If the system is not at equilibriuntate the equilibrium position. Describe any
spontaneous processes that might occur if thgsalts were gently blown away.

Figure P1.1: A balanced salt shaker.

3. Our bodies, at rest, can be considered as loemgteady state. Describe the incoming flows
that keep us away from equilibrium. What are thigomg flows? What is the equilibrium state
for our bodies?
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4. Are spontaneous processes always irreversiblealbxpl

5. (a). In what way is a steady state and an dxjwifn system similar? (b). In what ways are a
steady state and an equilibrium system different?

6. Determine if the following processes are spo@bas, non-spontaneous, or reversible.

(). 1J of heat is transferred from a hot cupodfee to the table top.

(b). Sugar is added to a cup of coffee and tigaisdissolves.

(c). Water decomposes inte Bhd Q from a cup of coffee.

(d). A small amount of ice melts in a cup ofda®offee at OC.

(e). A small amount of ice melts in a cup offeefat 8C.

(. A small amount of water freezes in a cupcefd coffee at @C

(g). A small amount of water freezes in a cupaffee that is placed outdoors at *CO

(h). Too much sugar is added to a cup of caffeelucing a super-saturated solution. After
bumping the cup on the table, some of the sugataltizes out of solution.

7. Prove that if the reverse of a spontaneousessois also spontaneous, it is possible to
construct a perpetual motion machirfe.

8. Calculate the molar density, in mof’rand the mass density, in kg’rand g L, for an ideal
gas at standard pressuré,=1.00 bar, and 298.15 K. Assume the gas is dir an effective
molar mass given by Eq. 1.3.17.

9. Calculate the number of moles of an ideal gasvnlume of 1.000 L for a pressure of
1.000 bar and a temperature of 298.15 K. Do thleblpm using three different sets of units and
the corresponding value for R: (a) using L atm,u&ing Pa M and (c) using L bar.

10. The density of a mixture of,ldnd Q is 0.982 g [* at 298.2 K and 1.00 bar pressure.
Calculate the mole fraction ofsHh the mixture.

11. Two containers, which are separated by a setdpa@re held in a constant temperature bath
at 298.2 K, Figure P1.2. The first container haslame of 24.80 L and the second 12.39 L. The
two containers are filled with 2.00 mol and 1.00l mfodeal gas, respectively. Calculate the
intial pressures. After the stopcock is opened;udate the final volume and pressure. Of P, V,
and n, which are intensive and which are extensive?

Figure P1.2: Two closed containers are openedrto éocombined system.

12. Classify the following variables as intensoreextensive:

(a). molar concentration of a solution.
(b). molar density.
(c). density (mass density).
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(d). surface area of an interface between twardiks phases. The air-water, olive oil-water,
and olive oil-glass interfaces are three examglbs.interface can be the planar interface
between two bulk samples or the surface of a dtople

(e). surface tension, which is defined as the gban surface energy of an interface divided

by the change in surface arga dU/do.
(f). temperature.
(g). coefficient of thermal expansion at consfamessure, which is defined as:

_ ;(a_v)
==viaT)p

where 0V/0dT)p is the rate of change of the volume of a sampth teimperature, while
holding the pressure constant.

13. Calculate the pressure inside your mouthwioatid be necessary to drink a soft drink
through a straw of length 20.0 cm. Assume the dnisxk the density of water at 200) 0.9982 g
mL™ and the atmospheric pressure is 1.000 bar.

14. Calculate the height of a column of water a0 in a closed end manometer for an
atmospheric pressure of 1.000 bar. Assume thedligas a constant density. The density of
water at 20C is 0.9982 g mL. The vapor pressure of water at 2@0s 2.338 kPa.

15. Long’s Peak in the Colorado Rocky Mountain3962. m high. What is the predicted
pressure on the top of Long’s Peak? Assume a adristaperature of 20°C. Compare the
molar density on top of Long’'s Peak with the malansity of air at sea level.

16. Calculate the altitude in the atmosphere ¢batesponds to a pressure of 0.500 bar if the
surface pressure is 1.000 bar. Assume the tempeilataonstant at €.

17. For liquids with moderate changes in presdheedensity is given by:
d=d[1+kr(P-R)]

wherekr is the isothermal compressibility, i the density of the liquid at the surface pressu
P, and d is the density at final pressure P. (a)wSihat the formula for the pressure as a
function of depth is given by:

I +kr (P-R)=chgh

(b). Calculate the pressure in the Mariana Trenehdepth of 10911 m (35798 ft) given =
4.587x10'"° Pa® at 20C. Use the density of pure water, 0.9982 g'nat 1 bar, for this problem,
instead of the density of sea water. Assume thiaseipressure is 1.000 bar.

18. (a). Find the derivative of the atmospher&spure with respect to altitude from the
barometric formula, Eg. 1.3.16(b). Show that this derivative satisfies the o) differential
equation, Eg. 1.3.20

19. Chemical kinetic equations are good examgdiésst-order homogeneous differential
equations with a constant coefficient. The ratel@nge of the concentration of a substance A
with time in a first-order chemical reaction is givas:
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d[A] _
G = kI

where k is the rate constant. (a). Show that tkiigesssion is a first-order homogeneous
differential equation with a constant coefficiefft). Integrate the equation from an initial
concentration of [A] at time t = 0 to a final concentration of [A] ahe t.

20. Do the Taylor expansion fdrl—x for x= 0, keeping terms up tdfx
21. Using a Taylor series expansion, what is theali approximation for Ingff,) for f, = f;.

22. Determine the number of terms in the Tayloieseexpansion of In(1 — x) that are necessary
for 1% and 0.1% accuracy, if x = 0.100.

23. Calculate the derivative of h(x) £41-¢), with respect to x for ¢ equal to a constant.

. . nRT  n°
24. Find the derivative of Pm— ay,z, with respect to V. Assume that n, R, T, a, and b

are all equal to a constant.

25. Determine if the following statements are wudalse. If the statement is false, describe the
changes that are necessary to make the statemenitftthe statement is true, but too restrictive,
give the more general statement.

(a). For a spontaneous process, no work can be lopthe surroundings on the system.

(b). Fast processes are spontaneous.

(c). On an average day at sea level, supportoaanmn of mercury in a closed tube higher
than 760 mm requires more force per unit area thamtmosphere can provide.

(d). Your mouth provides a partial vacuum thatgalsoft drink into your mouth through a
straw.

(e). The derivative of the potential energy wigspect to a displacement in a system is zero
for a system at equilibrium.

26. (Challenge Problem) Three definitions of a reversible process are:

(a). A reversible process is one in which th&tey never deviates from equilibrium by more
than an infinitesimal amount.

(b). A reversible process is not a real proclessa hypothetical succession of equilibrium
states.

(c). Areversible process is one for which thgtem can be returned to its initial state with no
net change in the surroundings.

Consider the melting of 1 mole of ice &0as an example. Show how each of the three

definitions is equivalent.
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