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Chapter 19: Real Solutions

Relate the observations that “oil and water doni,vor conversely that “like dissolves like” td
intermolecular forces.

The oceans, blood plasma, the cytoplasm of,dgltdrothermal fluids, and battery electrolytes
are not ideal solutions. Few solutions are ideatleal-dilute. In ideal-dilute solution for the
solute, A-B forces dominate and Henry’s Law is @dalihe concentration dependence of the
chemical potential is adequately determined byntimaber of molecules alone. As the
concentration of the solute increases, B-B foraoine more important and the balance of
intermolecular forces changes. The variation ofcivemical potential in real solutions depends
on the number of molecules, as measured by thesotnation, and the changes in the
intermolecular forces. How do we handle real sohgP The activity of a substance is used
instead of the concentration. The activity of astabce takes into account the concentration
dependent changes in intermolecular forces. Inrgéredectrolyte solutions show larger
deviations from ideality than non-electrolyte sauos. Simple symmetric solution theory, for
non-electrolytes, and continuum dielectric modisglectrolytes, predict the activity of
substances in solution.

19.1 The Activity is the “Chemically Effective” Cancentration

The Activity of the Solvent is Based on Raoult\s:L&he chemical potential for a real solution,
using a Raoult’s Law standard state and assummgdpor is ideal, is given by Eq. 18.2.5:

Ha(Xa) = Ha(l) + RT In Pa/pl (18.2.5)19.1.1
In dilute solution, the solvent is well representbgdRaoult’s Law, Eq. 18.2.5:

Ha(Xa) = Ma(l) + RT Inxa (ideal) (18.2:919.1.2

We used this equation many times in the last cihapténd the properties of ideal and ideal-
dilute solutions. Do we need to derive all thospregsions again for real solutions? To find the
chemical potential for a real solution, G. N. Lewecided to use the same functional form for a
real solution as for an ideal solutibithis choice is based on the same insight that $ esséd

for the definition of the fugacity. The activityrfa substance in solution,as defined using the
relationship:

Ha(Xa) = pa() + RT In & 19.1.3

The activity, a, is the value that gives the exact chemical p@kmthe activity is the
“chemically effective” concentration. By maintaigithe same functional form, we can simply
modify the expressions for ideal systems to appigetl systems. For example, the freezing
point depression of a real solution is found byaeimgxa in Eq. 18.4.15with the activity of
the solvent, &

NMsHa (1 1
In 8y = _% (? _ﬁ:j (cst. RAwsHA) 19.1.4
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All the other relationships for ideal solutions amnilarly modified for real solutions. How can
we determine the activity of a component in soh®icComparison of the arguments of the
logarithmic terms in Egs. 19.1.3 and 19.1.1 shaat the activity of a substance can be quite
simply and directly determined from the partial apressure of the substance above the
solution:

an = Pa/py 19.1.5

This equation rearranges to give the expressioa feal solution that corresponds to Raoult’s
Law:

PA = PE 19.1.6

Once again, to convert an expression from an iole@eal-dilute solution to a real solution we
simply substitute afor xa. We can also relate the activity to the concerunaby defining an
activity coefficient,ya:

aa = Ya Xa 19.1.7

For the activity to be meaningful, we require that- 1 as the solution becomes ideal. For an
ideal or ideal-dilute solution the activity of teelvent is equal to the concentration, with= 1.

We can derive a visual depiction of the actiibgfficient for the solvent. The activity is given
by the ratio of the real partial vapor pressuréhefsolvent to the pure vapor pressure, Eqg. 19.1.5.
For an ideal solvent, the predicted ratio is gilegrRaoult’s Law, Figure 19.1.1a:

PRty pl xa = Pa s (ideal) (18.2/619.1.8

We use the™°“" superscript to remind us that the equation holdy for an ideal solution.

Solving Eq. 19.1.7 for the activity coefficient atien dividing Eq. 19.1.5 by Eq. 19.118r xa
gives:

Ya = aA/XA = PA/P:aoult 19.1.9
P Pa
Ps _7 Pa Ps 7 Pa
r Raoul  ~ C s
e ) NG
\/y\/\ : Pa N \/\/\ : I:’Raoult
// . \\\ kHyB“‘-/-A-,~ Z B \\\
. - s 5 Ty
0 1 0 Henry 1
A > P

B X A B Xa - A

(a). Solvent (b). Solute

Figure 19.1.1: (a) A Raoult’'s Law standard statesied for the solvent wityy = an/xa =
Raoult

PA/P5™™". (b). A Henry's Law standard state is used forgblete withys = as/xg = Ps/P5"".
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In Figure 19.1.1a, we find the activity coefficidoyt dividing the partial vapor pressure of the
substance by the Raoult's Law prediction. In thiarepleya < 1, since R < P

The Activity of the Solute is Based on Henry’s Ldwvan ideal-dilute solution, the solute obeys
Henry’s Law and the chemical potential is givenguy 18.3.10

Us(xe) = ui() + RT Inxg (ideal)  (18.3.1919.1.10
For a real solution, the concentration is replamgthe activity of the solute:

Us(xe) = ui() + RT In & 19.1.11
The Henry’s Law standard state chemical potendigiven by Eq. 18.3'9

Hi(1) = pg(g) + RT InKnp/po (18.3919.1.13

The activity of the solute can be related to itdipbvapor pressure above the solution by
substituting Eq. 19.1.i2nto Eq. 19.1.11:

Ha(Xg) = M3(0) + RT InKiB/po + RT In & = p3(g) + RT Inkx.8 88/po 19.1.13

Comparing this last relationship to the exact tefsaim Eq. 19.1.1, written in terms of the solute,
gives the expression for a real solution correspantb Henry’'s Law:

Hs(Xe) = pg(g) + RT InPs/P° (19.1.1)
)

us(Xe) = H3(9) + RT Inknse 3/po (19.1.13)

Pa = & ki o a=Pel, 19.1.14

This last expression is a simple and direct expradsr determining the activity of a volatile
solute. We can also relate the activity to the eotration by using the activity coefficient,
as =Y Xg. The choice of a Henry’s Law standard state ferdblute and a Raoult’'s Law
standard state for the solvent guarantees thaeasolution becomes more dilute the solvent and
solute both become ideal; as % 0, xa— 1, thenyg - 1 withy, - 1.

We can derive a visual depiction of the actigogfficient for the solute. The solute activity is
given by Eq. 19.1.14 as the ratio of the real phvtapor pressure of the solute to the Henry’s

Law constant. Henry’s Law gives the ideal vapoispuee prediction,gsnry, from the mole
fraction:

PHE = g kg X = Po" i (ideal) (18.37119.1.18
Dividing Eq. 19.1.14 by Eq. 19.1. igives the activity coefficient of the solute as:
VB = aB/XB = PB/Ijélenry 19.1.16

In Figure 19.1.1b, we find the activity coefficigfot the solute by dividing the real partial vapor
pressure by the Henry’s Law prediction. In thisrapée, we can see immediately tlyat> 1,
since B > P, The deviation from ideality is defined with respto the dilute solution
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environment. Using Raoult’s Law for the standaatests called theolvent conventionand
using Henry’s Law for the standard state is callexsolute convention.

Example 19.1.1:Activity from Vapor Pressure

A solution of heptane and 1-bromobutane &5Bas a mole fraction of heptane of 0.7638,
Figure 18.3.1. The partial vapor pressure for hepta 0.1475 bar and for 1-bromobutane is
0.0504 bar. The vapor pressure of pure heptan@®@tis 0.1832 bar and the Henry’s Law
constant for 1-bromobutane in heptane is 0.2445Ba@ample 18.3.2. Calculate the activity and
activity coefficients for heptane as the solverd aroromobutane as the solute.

Answer For heptane as the solvent, using Egs. 19.4d3.8rl.7 withxa = 0.7638:
a = Pa/p] = 0.1475 bar/0.1832 bar = 0.8051 aypd-= aA/XA =0.8051/0.7638 = 1.054

As expected from Figure 18.3.1a the solvent shaggtipe deviations from ideality. For 1-
bromobutane as the solute, using Eq. 19.1.14grdl —x, = 0.2362 gives:

&= PE=/|<H g = 0.0504 bar/0.2445 bar = 0.206 aypgl= aB/XB = 0.206/0.2362 = 0.872

enry

As expected from Figure 18.3.1b the solute showsatiee deviations, sincesK =

Example 19.1.2:Activity from Freezing Point Depression

The freezing point depression is 7.34 K for a 13600y weight solution of ethanol in water.
Calculate the activity and activity coefficient feater in this solution. The enthalpy of fusion of
water at OC is 6.01 kJ mat.

Answer Given 100.00 g of a 15.00 % by weight solution= 85.00 g/18.0153 g/mol =

4.718 mol and §i= 15.00 g/46.07 g mdl= 0.32% mol for a mole fraction af, = 0.9354. Using
Eq. 19.1.4 with the melting point of the solutidn+ 273.15 K — 7.34 K = 265.81 K, and
assuming a constant enthalpy of fusion:

n g = DusHa (1 1 6.01x1G J mol* ( 1
Naw=-"pn ~8.3145 J K mol*265.81 K~ 273
as = 0.9295

The activity coefficient iga = an/Xa = 0.9295/0.9354 = 0.994

T T

1
15 }J =-0.07307

Different Concentration Measures Can be Used ferSblute Our definition of the activity of a
component in solution is based on mole fractionceatrations. For practical problems, we often
prefer to work with molarity or molality. To conudrom mole fraction based standard states,
we simply express Henry’s Law in terms of moladtymolality, Egs. 18.3/318.3.4 and
18.3.11-18.3.12. For a real solution, the concentration of a solsitreplaced by the activity.
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The activities are related to the correspondintyi@gicoefficients defined in terms of mole
fraction, molarity, and molalityly, °y, and™y respectively:

le=p +RTIna & =V Xe
Mg = ‘U3 + RT In“ag ‘ag = Yp CalC®
Ug ="ug + RT In"ag Mag =My Mme/m° 19.1.17

The mole fraction based standard state is sometisted with an ™, with Xug = ug and*ys = Ve,

to distinguish the concentration measure. Luckdy solutions at concentrations less than about
0.1 M, the different activity coefficients are appimately equal, so we don’t need to determine
them separately:

YOYO™y (solutions more dilute than 0.1 M) 19.1.18

In other words, you can use any concentration nredbat is convenient.

Activities for Non-Volatile Solutes are Obtainedngsthe Gibbs-Duhem Relationshighe

activity of a volatile solute is easily calculatesing & = Rs/ky . However, how can we

calculate the activity coefficients for non-volatgolutes? The Gibbs-Duhem relationship is used
to find the activity for the solute from the actywof the solvent over a range of concentrations
by integrating Eq. 18.1.19. Substituting Eq. 19fbr3the solvent, Eq. 19.1.11 for the solute, and
dividing by the common factor of RT in Eq. 18.1di9es:

XA
1—Xa

dina =- din as (cst. ®P) 19.1.19
However, in dilute solution the activity of the geht is close to one and many significant figures
are necessary for accurate determinations. Iniadgdive often express the solute concentration
in terms of molality instead of mole fractions, lising the conversion Eq. 2.2.15. A solution to
the propagation of errors problem and the unitsemion is to define theractical osmotic
coefficient For a non-electrolyte at concentratiop, itihe osmotic coefficient is defined in terms
of the activity of the solvent:

_ In an
?=""mg (91a/1000 g kg

19.1.20

where@is unitless. For aqueous solutiopss — (55.51 mol kg In ax)/ms. Solving this last
equation for the activity of the solvent gives ttemical potential, the freezing point depression
from 19.1.4, and the osmotic pressure from Eq..28 4s:

In @ = —@mg/(55.51 mol kg) (aq) 19.1.21

Ha(Xa) = Ha(l) = RT@ms/(55.51 mol kg) (aq) 19.1.22
Ay H 1 1

0P=% mB/(55f.u§1Am kP (T —ﬁJ (cst. RAweHa, aq)  19.1.23

nVa = RTmg/(55.51 mol kg) (cst. T,aq) 19.1.24

Clinical and laboratory osmometers are calibrategivte direct determinations of the osmotic
coefficient, taking the non-idealities of the sadatinto account. Osmometers do not read out
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concentration directly. Substitution of Eq. 19.1id® the Gibbs-Duhem relationship with a
s Mg gives:

o-1
dinyg = dp+ pey dmg (cst. EP) 19.1.25
m (p_ 1
IN™s =¢@-1 +J e dmg (cst. EP) 19.1.26
0

Example 19.1.3:Solute Activity from the Solvent Activity
Determine the activity coefficient for sucrose &@QLm. A curve fit of the experimental data for
agueous sucrose solutions at 298.15 K gives:

p—1=am’+bns  with: a=0.00752 kgnol? and b = 0.0804 kg nibdl

Answer Doing the integral in Eq. 19.1.26 with the quaidraolynomial gives:

m 2
|anB=(P—1+j (—anhm+bnb)dms=cp—1+gm2+bm
0 B

For a 1.00 m solution:
0.00752
In™g = (0.00752 ri+ 0.0804 m) L m? + 0.0804 m = 0.1759

giving ys = 1.19 on a molal basis.

Now that we know how to determine activities eximentally, we consider theoretical models
for the prediction of activity coefficients. Accueaexperimental determinations of activity
coefficients are challenging, so theoretical modals fill a critical need. In addition, models
relate the effects of intermolecular forces. Theoof real solutions are based on the definition
of excess thermodynamic propertiesModels of excess properties for non-electrolged
electrolytes are sufficiently different that wedtr¢hese classes of solutes separately. We discuss
simple symmetric solution theory for non-electrel/and continuum solvation treatments for
electrolytes.

19.2 Excess Thermodynamic Properties Focus on Naaeal Behavior

Theexcess Gibbs energy of solutiois the difference between the measured Gibbs grodrg
mixing and the ideal Gibbs energy of mixing. Uskgy 18.2.11:

. [
GF = A G =D G = A, G — NeRT X % In % (cst. BRP)  19.2.1
i=1

The excess Gibbs energy is entirely the resulh@icbncentration dependent changes in
intermolecular forces in solution, since the cdnittion of the statistical mixing has been
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subtracted out. We can relate the excess Gibbggdeectly to the activiEy coefficient for a
constituent by noting that the ideal chemical ptéis given by Eq. 19.1.2as
p%e(x;) = u,(l) + RT Inx and theexcess chemical potentidk the difference:

= Mi(xi) — W™ xi) = [9() + RT Inyix] = [f(l) + RT Inx] = RT Iny, 19.2.2

The chemical potential is the derivative of the lailenergy with respect to the amount of
substance:

oG
Iny = RT(M jTP% 19.2.3

As the concentration of the solute increases, tief&ces become more important, changing
the excess Gibbs energy. The change in the exdbbs @nergy causes deviations from ideal
behavior. The excess Gibbs energy is given by lileenacal potentials:

G™ =k + ne W5 19.2.4

Using Eq. 19.2.2 for the chemical potentials ofrl & in this last equation and n 5z i ng
shows the relationship between the activity coedfits and the excess Gibbs energy:

= (RT Inya) + nB (RT Inys) 19.2.5
GF = nRT(— In ya +B In yB) =nRT Ka INya + X IN yB) 19.2.6

Many models have been proposed to estimate thatgatoefficients in solutions of non-
electrolytes. One of the simplest and most ussfsihiple symmetric solution theory

Simple Solutions Have an Imbalance in the A-A, &8 A-B forces At a basic level, as the
mole fraction of A approaches one, the solutiorobees idealxa - 1,xs — 0,ya — 1, and G
- 0. In addition, as the mole fraction of B appraeghbne, the solution becomes idegl;> 1,
Xa - 0,y8 - 1, and G - 0.The simplest model for the activity coefficiemiat is consistent
with these limits, with a Raoult’'s Law standardatfmr both components, is:

a a .
In ya :R—Txé Inys :ﬁxi (simple) 19.2.7

wherea is a constant that characterizes the imbalansgenmolecular forces and that results in
a non-zero enthalpy of mixing. In short, A devidiesn ideality because of the presence of B,
and conversely, B deviates from ideality becausb@presence of A. The system is said to be
symmetric because the same interaction constant appedrs eguations for both activity
coefficients. Substituting these expressions igo1®.2.6 determines the excess Gibbs energy
as:

naRT :
G ="RT [Xa (6) +Xe (x)] = na[Xe (XaXe) + Xa (XaXa)] (simple) 19.2.8
GF = naxaXe (simple) 19.2.9

sincexa + Xg = 1. Solutions that are well approximated by B§s2.7 and 19.2.9 are called
simple symmetric solutions Simple solutions have ideal entropy of mixing amdenthalpy of
mixing. Eq. 19.2.9 can model a wide range of betrayidepending on the sign of the constant
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Figure 19.2.1. For large positize extreme deviations from ideality result in twonmaa and an
intermediate positive Gibbs energy of mixing. Saghtems separate into two immiscible liquid
phases, since mixing to give a single liquid phas®t spontaneous. Liquid immiscibility for a
large positive imbalance in forces results in theewvation that “oil and water don’t mix,” or
conversely that “like dissolves like.” We show iacS19.6 thaa is related to the forces through:

+
M} (random distribution) 19.2.10

a=z(eAB— 2

wherez is the number of near neighbors for both A andJg,are the A-A forcesgg are the B-

B forces, andas are the A-B forces, withaa, €g8, €as < 0. The deviation from ideality results
from an imbalance in the A-B forces as comparethé¢caverage of the A-A and B-B forces. Eq.
19.2.10 assumes that the solute and solvent aghisothe same size and are randomly
distributed without preference for the type of idigr; A doesn’t have a preference for an A or
B near neighbor, even though the interaction energyfferent.
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Figure 19.2.1: (a). Simple solution theory estimdte the excess Gibbs energy, Gr
different values o#. (b). The corresponding Gibbs energies of mixiag two minima for
very unfavorable balance of forces. (c). The cqwoesling total vapor pressure curves
exhibit azeotropic maxima and minima for large pesiand negative values far

More advanced theories of solvation become asingly mathematically complex and involve
fluctuations in the heat capacity of the sysferompletely satisfactory theories are as yet out
of reach and are an intense area of current rdse@ncalternative, computational approach is
helpful in practical problems and in building insignto solvation at the molecular level.

Solute-Solvent Interactions Can be Studied UsingetMdar Mechanics with Explicit Solvation
In Chapter 8 we discussed gas phase molecular miesi@mputational methods. One
approach to study solvation interactions is toudel explicit solvent molecules along with the
substance of interest in the molecular mechanicsadecular orbital calculation, Figure 19.2.2a.
The difficulty is one of practicality. To model tiselution environment, thousands of solvent
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molecules are necessary, which greatly increasenie required to complete calculations.
Typically around 1000 solvent molecules are usegutactical, everyday calculations.

A4
oD 9
G:S’G%Gé’ o "
d% s> >
080%98%@8 o8
IR — o

(b). (c).

Figure 19.2.2: Molecular mechanics using expliatev molecules. (a). 1,1,1-trichloroethane
is shown in the light shading. (b). Copies of thigioal molecules are arrayed to eliminate
surface effects. (c). If a solvent molecule migsatat of a box side, the coordinates are
translated to force the same molecule to entecahesponding position at the opposite side.
Molecules have free motion, but they always stajpersame box.

With small numbers of solvent molecules, thdagie to volume ratio of the system is large, so
that surface effects dominate. Surface effectaidethe imbalance of forces between the bulk of
the solvent and the vacuum surrounding the solutroplet. This imbalance produces surface
tension. Another surface effect is evaporationt llkes real solutions, water molecules can
escape into the surrounding vacuum and in essep®rate. The best way to avoid surface
effects is to usperiodic boundary conditions The range of coordinates that encompass all the
molecules in the calculation specify a rectanghtat. Exact images of the box are stacked next
to each other in all directions so there are néases to the solution, Figure 19.2.2b. Periodic
boundary conditions eliminate any surface tensftects.

Boundary conditions are enforced in the compaligorithm by first checking if the
coordinates of a molecule lie inside the box. If, ke molecule is translated so that it enters the
opposite side of the box. For example for a cubic with side length a, if the x coordinate of a
molecule is found to be outside the box, x > anttie coordinate is replaced by x = x — a,
Figure 19.2.2c.

Another issue is that the common molecular meickgorce field parameters that work well
for organic molecules don’t work for water. A spai@ed force field is used to generate a
structure for water that has the proper bond angle,der Waals constants, electrostatic
distribution, and liquid phase density. One commparameter set for water is TIP3P; the partial
charge on the H atoms is +0.417, the bond lengdtos7 A, and the bond angle is 104.5
Explicit solvation treatments provide insights fbe development of new solvation models.

Structure Makers Decrease the Entropy of the Seamgr8olvation Spherelons in solution are
categorized astructure makers and s$ructure breakers, or kosmotropesandchaotropes
respectively. The basis of the distinction is tffeat of the ion on the surrounding solvent.
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Molecular simulations have also shed light on thigagion of non-polar molecules in solution,
which is callechydrophobic hydration. The details of these three extremes are undeteeb
but these categories are a good starting poiniriderstanding solute-solvent interactions. Real
molecules are a compromise of these extremes.

Water molecules can form four hydrogen-bondsk Biuater has a tetrahedral network of
hydrogen-bonds that dynamically form and breaktdubermal motion. The presence of a
solute perturbs this hydrogen-bond network. Theatan of an ion in solution can be divided
into three concentric spheres. The boundaries legtwhe regions are diffuse and very dynamic.

Figure 19.2.3. Solvation environment for an ior): faimary solvation sphere, (b). secondary
solvation sphere, (c) bulk solution. The boundabiesveen regions are diffuse.

(a) The primary solvation sphere is a layer of #gBtly associated waters. For alkali metals, the
interactions in the primary solvation sphere arergg ion-dipole interactions. For transition
metal ions the primary solvation sphere may beidensd as directly bonded ligands for the
metal. In the primary solvation sphere, the tetdahlehydrogen-bonding network typical of the
bulk of the solvent is completely disrupted. (b}he secondary solvation sphere, the hydrogen-
bonding network may be more or less ordered tharbtitk. The structure making or breaking
ability of an ion is determined by the nature aizeé ®f the secondary solvation sphere. For
structure makers the secondary solvation sphere is more orderedttieabulk. Fostructure
breakers, the secondary solvation sphere is less ordegadttie bulk. (c) The third region is the
bulk of the solution. The difference between suuetmakers and structure breakers for small
ions can be rationalized using the charge to si#e.rLarge charge to size ratio ions are structure
makers. Good examples are ions that have straaglising interactions with water that
enhance the hydrogen bonding: SCHPQ?, Mg®*, C&”, Li*, OH and HPG*. Small charge to
size ratio ions, such asPQy, HSQ, HCGOs, I, CIL, NOs, NH,', Na', K¥, Cs', and (CH)sN*

are structure breakers. Structure breakers dan't &&rong interactions with water and
destabilize the hydrogen bond network in the seapnsolvation sphere.

Hydrophobic Hydration Results in Structure Makingolecular dynamics simulations and
neutron diffraction studies have shown that norapoiolecules are structure mak&fEhat is,
the hydration sphere is more ordered than the snllkent. The desolvation of non-polar
compounds is entropically favored, and the changmtropy is the major driving force in the
hydrophobic interaction.

lons that form weak interactions with water (Werathan water-water) are structure breakers.
Hydrophobic molecules that form weak interactiornihwater are structure makers. It is clear
that non-polar molecules need to be consideredatghafrom small ionic solutes. The
difference is that non-polar molecules don't haigérttt primary and secondary solvation
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spheres. The water molecules near the surfaceofh-golar solute have a large imbalance in
forces—Van der Waals on the solute side and hydrbgeding on the bulk solution side.

One centrally important insight, based on thiebSiphase rule, is that water in aqueous
solution is a single component. Since water in esd¥ation sphere is in equilibrium with the
bulk, the water in the primary solvation sphereoselary solvation sphere, and bulk of the
solution must all have the same chemical potehtial.

The order or disorder in a region of agueoustswl is a measure of the average number of
hydrogen-bond$ Each water molecule can form four hydrogen-bohidsvever, thermal
motions are constantly breaking and then remalirgd interactions so the average number of
hydrogen-bonds is less than four. In the solvasigimere of non-polar molecules and other
structure makers the increased order is reflectedlarger average number of hydrogen bonds.
The larger number of hydrogen bonds decrettseenthalpy of the solvated water, which is
favorable, and decreast® entropy, which is unfavorable. The net resnlthe Gibbs energy is
small, sincelsoG =AsoH — TAsoiS. This effect is callednthalpy-entropy compensation
Favorable changes in enthalpy are compensatedfayamble changes in entropy, so that the
changes in the chemical potentials are sfh@ilie enthalpy and entropy for water-water
interactions are completely compensated, whilestiiete-solvent interactions are riot.
Enthalpy-entropy compensation does not imply thatsolute has no effect on the solvent.
However, the change in chemical potential of tHeesd is small because of compensation and
the fact that the concentration of the solvenbisnsich larger than the solute. In other words,
small changes in the chemical potential of theeahare important. The net result is that
hydrophobic solutes are structure makers.

The early evidence concerning ionic solvatiors gieaned from partial molar volume,
viscosity, and ionic conductivity measurements. diflerent techniques can disagree and the
behavior of a given ion can be a strong functionasfcentration and ionic strength. Clearly,
experimental and theoretical advances are needeettier understand solvation.

19.3 Pressure Perturbation Calorimetry Characterizs Solute-Solvent Interactions

Pressure perturbation calorimetry, PPC, is tseatiudy small and large molecule solvation,
protein folding, denaturization, and binditfg?PC measures the coefficient of thermal
expansiong, for substances in solution as a function of tenafpee. PPC has emerged as a
definitive technique for the characterization afimsolvation** Figure 19.3.1a showsas a
function of temperature for the side chains of sav@mino acids. Structure makers show an
increase of the coefficient of thermal expansiothweémperature and the structure breakers
show a decrease. Hydrophobic side chains of anuis are shown to be structure makers and
ionic side chains are structure breakers. The emitinic backbone for each amino acid is a
structure-breaker.

In PPC, the heat flow caused by a small changedssure for a solution is measured. The
instrument is a differential scanning calorimeteattis operated in isothermal mode, while
changing the pressure above the sample and reéecelis. The entropy change for a process is
defined by Eq. 13.1.1, dSdg../T. Differentiating with respect to P at constarperature
gives:

(ddg_;v)T = T(g_ijT (reversible, cst. T)  19.3.1
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Figure 19.3.1: (a). Coefficient of thermal expamsior the side chains of several amino
acids as a function of temperatdteslycine was placed in the reference cell to deieerthe
o of the amino acid side chains. (b). Ribonucleas®# a negative volume of unfolding,
positiveas of unfolding, and the surface of the native proisioverall structure breaking.
The melting peak temperature af60s a measure of protein stability.

PPC provides a direct entropy measurement forahasmal change in pressure. Using the
Maxwell relation, Eqg. 16.4.11, for the entropy dative gives:

(ddggv)T =_ T@_\'I{jp (reversible, cst. T)  19.3.2

Substituting the definition of the coefficient diermal expansion, Eq. 7.6.8, gives:

dq .
( dlrf;'v) =—TVa (reversible, cst. T)  19.3.3
N

Integration of this last equation for changes iesgure gives:

[d0ev=—] TVa dP (reversible, cst. T)  19.3.4

Assuming the volume ama are constant for the small pressure perturbativesg

Gev=—TVa AP (reversible, cst. Tgd)  19.3.5

The heat flow gives the thermal expansion coeffici&he fact that an isothermal change in
pressureresults in a determination of the coefficientligrmalexpansion is an excellent
example of the power of Maxwell relationships tiklconcepts that are not obviously related.
Eq. 19.3.5 requires that the process be reversible reversibility of the process is verified by
measuring the heat flow with a positive pressungle and then again while returning back to
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the original pressure. If the process is reversihle heat effects are equal in magnitude and
opposite in sign.

Eq. 19.3.5 applies to pure substances. Forisohithe heat transfer is a function of the
apparent specific volume and apparent specificficoerdt of thermal expansion for the solute.
The apparent specific volumes,\s the apparent volume per gram instead of pdentioe
difference being just the molar mass of the solute:

V=% /918 19.3.6

For organic ionic compounds, such as amino admsapparent specific volume is often quite
close to 0.7 mL @. The specific volume of the pure solvent, :

Vo = Val9lia 19.3.7
From Eq. 18.1.10, the total volume of the soluign
V = Wo Vo + W Vs 19.3.8

where w is the mass of the solvent andis/the mass of the solute. Theralues determined by
PPC are apparent specific coefficients of thermphasion:

[]
1 {9V
) 1839

Qs

The apparent specific coefficient of thermal expamsan be visualized by switching each V for
a in Figure 18.1.2; this experiment determines fiffer¢nce ina caused by the presence of the
solute, on a per gram basis.

Thea values determined by PPC are apparent values $echthe differential nature of the
measuremerl€ The differential mode of operation is requirecthieve sufficient sensitivity to
measure the very small heat transfers. Taking ¢neative of Eq. 19.3.8 with respect to
temperature at constant pressure gives:

]
V) _ (Vo avsj
(GTJP_WO(GTJP+WS(6T o 19.3.10
Substitution of Eq. 19.3.10 into Eq. 19.3.2 gives:
[]
] -
( dP )=~ T(W0 3T F)+ Ws (5T . (reversible, cst. T)  19.3.11
The relationship to the values is facilitated by the manipulation:
] []
o) _ v_(aij i(ﬂj |
( dP )=~ T(W0 YA F)+ WS\D/S aT Jo (reversible, cst. T)  19.3.12

and substitution of the definition of the appargpecifica results in:

dq .
( dlrgv) =—T (W Vo 0o+ Wws Vs Ols) (reversible, cst. T)  19.3.13
T
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whereaq, is the coefficient of thermal expansion of purkvent. Integrating this equation over
the pressure perturbation, assuming that the sp@cdperties are constant, gives:

gedSample) == T (WV, 0o + WS\D/S 0s) AP (reversible, cst. Tmmo,\D/S,as) 19.3.14

For the differential measurement, the solutionlae@d in the sample cell and the pure solvent is
placed in the reference cell. The volume of theemaoivent in the reference cell can be thought
of as being in two parts. The mass of solvent engaample cell for the solution is &nd the
contribution to the totak is w,Vo0,. In the reference cell, pure solvent occupies the
corresponding volume and the associated contribusialso WV .0,. The rest of the sample cell
is filled with solute, which occupies the volumeiy In the reference cell the corresponding
volume is occupied by pure solvent instead of godurtd the corresponding contribution is

wsV 0. The geyfor the pure solvent in the reference cell is then:

Gredref) =—T (W Vo O + WS\D/S 0o) AP (reversible, cst.Towo,\D/S,as) 19.3.15

Notice thata, appears in both terms, since both apply to theesbl The instrument then
determines the difference in heat flae, = Gey(Sample) — gy(ref):

AQev=—T (W \D/s Os— Ws \D/s 0,) AP (reversible, cst.T@wo,\D/s,as) 19.3.16
Solving Eg. 19.3.16 foms gives:
JAY . 0
Os =0 —#:ZZ\D/S (reversible, cst. T\, Vs,0)  19.3.17

PPC is providing valuable insights into solvatidrepomena, especially for solutions of
electrolytes. Most biochemicals are electrolytes;esbiochemistry primarily takes place in
agueous solution, Figure 19.3.1b. Electrolytes plag important roles in energy and
biogeoenvironmental applications. The key to tlelgif solutions of electrolytes is the
chemical potential, just as in solutions in gendtalw do you calculate the chemical potential of
ions in solution?

19.4 The Activities of Electrolyte Solutions and Man lonic Activity Coefficients

For Electrolytes, the Chemical Potentials of thedddd and the Activities Multiply
Calculating the chemical potential of strong elelgte solutions is fundamentally very simple.
We first assume that strong electrolytes disso@aitepletely. Then the chemical potentials of
the constituent ions just add, Figure 19.4.1.

NaCl (aq)— Na' (aq) + Cl(aq) CrCk (aq) — Cr* (aqg) + 3 Claq)
SRS
Na*
Cl’
H(NaCl) =p.(Na") + p(Cl) H(CICl) = ua(CrP*) + 3(CI)

Figure 19.4.1: Chemical potentials add for the tarent ions.
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The chemical potential of an ion in solution isegivby Eq. 19.1.17:
m="u’ +RTIna (19.1.17)
Usually we choose a Henry's Law standard state imolality basis. The ion activity is given by:

_um

° 194.1
m

For a 1:1 electrolyte with general formula MX, siashNaCl, KNQ, and FeSQ the chemical
potential of the electrolyte is given as the sunthefchemical potentials of the cation and anion:
HMX) = s + . =p¢+ RTIna+pu2+RTIna (1:1) 19.4.2

For NaCl,u. is the chemical potential of the Nimns andu. is the chemical potential of the Cl
ions, and we omit the superscrifit for notational convenience. Combining the logamiit
terms:

HMX) = p2+u°+RTInaa (1:1) 19.4.3
We can relate the activities to the concentratigsisg Eq. 19.4.1:
m.y. m.
UMX) = 1S + o + RT |n(y—m‘%) (11) 19.4.4

However, it is impossible to separately determireedctivity coefficients of the cations and
anions. Solutions are electrically neutral; thepgnties of the cations alone or the anions alone
cannot be determined independently. The deviafimms ideality depend on the Coulomb
attractions of the opposite charges and the regndsnf the like charges. Instead, experiments
determine the average over all the ions in solufldre appropriate average is the geometric
average; thenean ionic activity coefficientfor a 1:1 electrolyte is defined as:

Ve = (Vs Y)” or alternatelyy? =y, . (1:1) 19.45
Substituting the mean ionic activity coefficientarEq. 19.4.4 gives:
WMX) = P + p© + RT |n(%j (1:1) 19.4.6

where m is the concentration of the positive ions andsithe concentration of the negative
ions. If we define the standard state chemicalng@tkfor a 1:1 electrolyte with formula MX as
He(MX) = s + e, then this last equation reduces to:

UMX) = p°(MX) + RT In (%) (1:1) 19.4.7

We can now find the overall activity of the eletyte, a(MX), as defined by:
H(MX) = p°(MX) + RT In a(MX) (2:1) 19.4.8
Comparison of Egs. 19.4.3 and 19.4.7 with Eq. 8%hows that the overall activity is given by:

a(MX) =aa = (\é mjzm') = @é ngz) (1:1) 19.4.9

m m°
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The last equality results because in a 1:1 elagg&pthe concentration of the cations and anions

is equal, m = m=m, where m is the analytical concentration of theceblyte. In summary, the

chemical potentials of the ions atirigive the overall chemical potential of the dahse and the

activities of the ions multiplyThe results for more complicated electrolytesaaraogous.
Consider a strong electrolyte with formulgaX{:

MpXq — p M* + g X 19.4.10

where the cations have a charge of z+ and anioresdaharge of z-. The geometric average for
the mean ionic activity coefficient is now:

1
Ve =(PYHP or alternately y! =Py 19.4.11

where the total number of ions in solutiovis p + q. The chemical potential of the electrolyte
is then the sum of the chemical potentials of tmsi

HMpXg) =pH+ +qu-=pue +pRTIna+qu2+qRT Ina 19.4.12
Combining the activity terms and defining the stadstate ag®(MpXgq) = p p2 + qu?, gives:
H(MpXg) = 1 (MpXg)+ RT In(d &) 19.4.13

Substitution of the concentrations using Eq. 19givés:

¥, m?y?md
H(MpXg) = H°(MpXg)+ RT | T 19.4.14
Substitution of the definition of the mean ionidiaity coefficient from Egs. 19.4.11 gives the
final result:

+ 0+

YmPm
U(MpXg) = P°(MpX o)+ RT Ir( - QJ 19.4.15

Comparison of the overall form(M X)) = p°(MpXg) + RT In a(MXg), with Egs. 19.4.13 and
19.4.15 gives the overall electrolyte activity as:

y, mym!
a(MpXg) =& ol =| = 19.4.16
Some authors also define the mean ionic molality as
m. = (m’ m or alternately th =m? m? 19.4.17

Substitution of the mean ionic molality into Eq.4.96 gives:

m. \V
a(MXg) =d dl =y (m;) 19.4.18
However, for our purposes, since we are just legrabout electrolyte solutions, Eq. 19.4.16 is
the preferable, more direct form.

Eq. 19.4.16 is complete once the activity caedfit is determined from experiment. Extensive
tables of mean ionic activity coefficients are #alie in standard references. Adequate estimates
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of the mean ionic activity coefficient can alsodstermined using the continuum dielectric
approximation and the Poisson equation.

Example 19.4.1:

Find the activity in terms of the mean ionic adyngoefficient and the chemical potential in
terms of the standard state chemical potentiahahanolal solution of CrGl Then use a
concentration of 0.100 m to determine typical valtar the activity.

Answer CrCk dissociates completely in solution to give: Gr@q) —» Cr* (aq) + 3 Claq).
For m molar solution, i m and m= 3 m. The chemical potential is the sum of the io
contributionsp(CrCls) = p.(CrP**") + 3.(Cl"). The mean ionic activity coefficient is given it
=ptq=4

Ve = (Ve VD) or alternately yi =y: y?
The overall electrolyte activity using Eq. 19.4i46

4 A
Y, mem2) (Y m(3m)3J (mjzt
_ 3 _ |1+ | 1= _ P
a(CrCk) =a & —( e 7 —( o =27y, m°

Notice that the exponent gf and (m/ni) are always the same and equal to the total nuofber
ions in solution. For the example concentratiof.aD0 m, a(CrG) = 2.70x10° yf . The

chemical potential using Eq. 19.4.13 is:

H(MpXg) = u°(MpXg)+ RT In 27 Vf (;?0)4)

Example 19.4.2:
Write the solubility product equilibrium expressifar Ag,S in water in terms of the mean ionic
activity coefficient. (Neglect hydrolysis of thelsde ion.)

Answer: For the solubility of Agp:
Ksp
Ag:S (s)2 2 Ad' (ag) + S (aq)
In General Chemistry you would writesg& [Ag*1[S?]. This expression corresponds to an
ideal dilute solution. Note that in equilibrium Wwipure water, my+ = 2 my and m- = ms, with

m;s the solubility in moles of Agp per kg of solvent. For a real solution, repldme t
concentrations with activities: = (aAg+)2 (as2-). In terms of the mean ionic activity coefficient:

2
Ksp:\éﬁmﬂ%: 4\6(&)3

+\m°

lonic Activity Coefficients can be Approximatedngsthe Debye-Huckel Approximatioiio
calculate the activity coefficients for small ianssolution, we assume that the deviations of
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dilute electrolyte solutions from ideality are cad$y electrostatic interactions between the ions
and their ionic atmosphere. We assume that thesbig modeled using a spatially constant
relative permittivity and the ions are point chargath no volume. The chemical potential of an
ion using Egs. 19.1.17 and 19.4.1 can be splitartierm corresponding to ideal behavior and the
deviation from ideal behavior:

W =pe +RT Ir(#) =W +RT |r(m),

The deviation from ideality is then approximatedtseselectrostatic work of charging the ion of
interest in its ionic environment. In an ideal $@n, the ion experiences an electrostatic
potential established only by its own charge. teal solution, the ion is surrounded by its “ionic
halo.” The electrostatic contribution to the Gilgdmergy of solvation, relative to the standard
state, and the activity coefficient for ion i ithgiven by:

Aso[Ge|eC= Ge|e((rea|) - @|ec= RT Iny| = NA We|e&rea|) - I\‘\ We|e&|dea|) 19.4.20

The activity coefficient for ion i is then RT 0= AsoGelec With reference to a Henry’s Law
standard state. The result is called Etedye-Hickel approximation We present the results in
this section and derive the relationship in thetneg. 19.5.35:

) + RT Iny; = yi(ideal) + RT Iny; 19.4.19

do 7 : . : . :
Iny: = -1.825x16 |z. z| (83—%3) | (continuum dielectric, point charges, dilute) 1914
r
where d is the density angl is the dielectric constant of the solvent, anglthie ionic strength.
The ionic strength is defined as, Eq. 19.5.25:

m;
mO

=1y 7 19.4.22
The sum is over albns in solution, including buffers and supporteigctrolytes. The ionic
strength is the appropriate measure of the totatancentration in solution. For the special case
of a unipositive-uninegative salt, the ionic strigmig equal to the concentration. For example,
for m molal NaCl: | = % [Zm./m° + Z m/m°] = % [(LY m/m? + (-1 m/m°] = m/m.

The TP term in Eq. 19.4.21 results from the disruptiviuience of molecular motion on the
formation of the ionic “halo” around each ion, asgicted from the Boltzmann distribution. For
water at 25C, d, = 0.99704 g mL® andg, = 78.54, so that Eq. 19.4.21 simplifies to:

Il/z

Iny. =-1.171 |z | I or  logy: =-0.509 |z z|
(continuum dielectric, point sphericahs, dilute aq., 2%&) 19.4.23

The Coulomb attractions of the positive and negativarges on the ions produce strong
negative deviations from ideality. A plot of thepeximental mean ionic activity coefficients for
several electrolytes as compared to the predicthased on Eqg. 19.4.23 is shown in Figure
19.4.2. The Debye-Hickel approximation gives atgtieoefficients higher that the experimental
values at moderate concentrations. Deviations ttmrDebye-Huckel approximation persist
even at low concentrations. The Debye-Huckel appration is a limiting law; the
approximation improves in the limit thatd 0. The mean ionic activity coefficients calculated
using the Debye-Huckel approximation are usefuidaic equilibrium problems.
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Figure 19.4.2: A plot of —log:. versus the square root of ionic strength. The BeBickel
approximation predicts linear behavior for thistpiehile the experimental values
(connected with a dotted line) hayevalues below that predicted by the theory. Theyeb
Huckel approximation becomes exact only in verytedilsolution; when I O.

Example 19.4.3: Debye-Huckel Approximation
Calculate the mean ionic activity coefficient fgquaous 0.100 m Cregat 25C.

Answer Using Eq. 19.4.22 for Crglz. =3,z =-1, nye+=m and ng- = 3 m:

| = 1/22 Z+L =1 [(3F m + (-1F Bm)Yne = 6 minf

For 0.100 m CrGt 1 = 0.600. Using Eq. 19.4.23:

Iny: =-1.171 |z z| I"* = -1.171 |(3)(-1)| (0.608)= -2.722
or  logy:=-0.509 |z z| = -0.509 |(3)(-1)| (0.600)= -1.18s

giving y: = 0.0658, or very strong deviations from ideality.

lonic Strength Changes the Solubility of Sparirgtuble Salts A good example problem that
shows the utility of the Debye-Huckel approximatisrthe ionic strength dependence of the
solubility of sparingly soluble salts. Barium sadt® very toxic, yet aqueous slurries of BaSO
are commonly used in gastrointestinal X-ray imagkgw can such a toxic salt be in common
use for radiological imaging? Consider the soltypitif BaSQ in agueous solution at 25:

BaSQ (s) - B& (aq) + SG* (aq) 19.4.24

In pure water in equilibrium with BaSOMs = mgz+ = Mgz, Where myis the solubility in moles
BaSQ dissolved per kg of solution. In General Chemigimthe ideal dilute solution limit, you
wrote the equilibrium expression as,k [Ba®*][SO,*] = m¢&, with Ks, the solubility product
equilibrium constant. The ideal solubility is:
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me =Ky 19.4.75
For real solutions we replace the concentratiothkyactivity:
Vi Mpa2+ Msoi2- ms 2
Ksp = @Ba2+ Bs0i2- = me2 = V,Z_L (Hz) 19.4.26

Solving for the solubility gives:
— 0 &Q
ms=m \/; 19.4.27

Example 19.4.4
Calculate the K, of BaSQ given that the solubility in pure water at’25is 1.06x1C m. Use the
Debye-Hiuickel approximation to approximate the meaic activity coefficient.

Answer The ionic strength for an m molal solution of32 (aq) is given by Eq. 19.4.22:

= 1/22 218 = 1% [(2F mint + (-2F mint] = 4 minf

The solubility of BaSQis 1.06x1F m, giving the ionic strength as | = 4(1.06X1®/1 m) =
4.24 x10°. Egs. 19.4.23 give the mean ionic activity coédfit as:

Iny: =-1.171 |z z| I* =-1.171 |(2) (-2)| (4.26 xTY" so thaty. = 0.970

. Yzi MBa2+ Mso-
Then the Ky is given by Eq. 19.4.26: s\ng

= (0.970%(1.06x10°)? = 1.06x10".
Had we neglected the activity coefficient, thg Would have been 6% larger:

K'eal= (1.06x10°)% = 1.12x10'. Even in such a very dilute solution, the deviafimm ideality
exceeds normal experimental error.

Example 19.4.5:The Salt Effect
Calculate the solubility of BaS@0n a solution of 0.100 m NacCl.

Answer The ionic strength includes all ions in solutidime effect of non-ideality on the
solubility is small so we can approximate the ctwition of dissolved BaS£xo the overall
ionic strength using the pure-water solubility. fitvee add in all the other electrolytes:

m.
| = 1/22 z ml, =1 [(2F mgaz+ + (-2 Msoe + (1 Mya+ + (-1 me-]/me° = 0.100

The ionic strength of the dissolved BaS®negligible compared to the added electrolytee T
mean ionic activity coefficient of aqueous BaS®decreased to:
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Iny: =-1.171 |z z| I"* = -1.171 |(2) (-2)| (0.108) so thaty: = 0.227
Giving the solubility from Eq. 19.4.27:

K [1.06x10™
— 0 Sp _ -
ms = m \/tz =(1m) 02277 © 4.54x10°m

or a factor of 4.3 higher than in pure water. Tokigility of BaSQ is still quite small,
minimizing the toxicity for medical imaging uses.

From the point of view of the solubility prodweuilibrium expression, the added NaCl is a
non-participating electrolyte. However, the solubility of BaS{s greater in 0.100 m NaCl than
pure water, because of the increase in ionic stheddpis effect is called thealt effectfor
electrolyte solubility. The salt effect is importan areas such as soil geochemistry. The
increased ionic strength upon salinization of agtizal land in arid climates can increase the
leaching of nutrients into ground water. Saliniaatresults from extensive irrigation.

Osmotic Pressure Depends on Total Number of lo@olation Another ramification of the
additivity of the chemical potentials for ions etdependence of the colligative properties on
ion number, Sec. 18.4. The osmotic pressure igetifin of all species present in solution, as are
all colligative property based measurements. Fdtiommponent solutions the osmotic
coefficient is given by a sum over all solute spe¢s, in Eq. 19.1.20. The chemically effective
concentration determined in osmometry is callecoraolality, &y,:

In a
s
> 'mi (91a/1000 g kg

i=1

s
¢ Em=2 Mm@ 19.4.28
i=1

For a single electrolyte with analytical concentmatm that dissociates intoions in solution,
> m; =vm and thers, =v m @ The osmolality is the parameter necessary taméate osmotic
equilibrium in living organisms. To make furtheiogress on understanding solution non-
idealities, we need to take a molecular approach.

19.5 The Gibbs Energy of Solvation can be Approxintad Using the Poisson Equation

The Gibbs Energy of Solvation and Electrical Wolk continuum dielectric models, the solvent

is modeled as a continuous, uniform medium withtre¢ permittivity,e.. Since there are no

discrete solvent molecules, specific interactianshsas extensive hydrogen bonding or

directional dipole-dipole interactions cannot hedgtd. However, the continuum dielectric

model does allow the study of the stabilization dastabilization of polar species in solution.
The electrostatic energy of two chargesirgl ¢, separated by a distangdm a uniform

medium with relative permittivitg, is given by the Coulomb energy, Eq. 8.7.18:

aiq;

ATEGE: T, 195.1

e(rij) =

whereg, is the permittivity of free space, which is therpétivity of vacuum. The relative
permittivity for water is 78.54 and hexane is 1.8t25C. The relative permittivity is also
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called the dielectric constant. The Coulomb enésdiie product of the electric potentiqr;),
multiplied by the charge of interest. For i as ¢keatral charge, the interaction with charge j in
terms of the electric potential, using Eq. 19.51,

a4

i . ) _
ATEGE, I (uniform dielectric) 19.5.2

&(rij) = @(ri) g with —@(ry) =
Because the relative permittivity appears in theodenator of the electric potential, the effect of
the relative permittivity of the solvent is to attete the electrostatic interaction. Interaction
energies in water are less than in non-polar stéven

@ @
Q e ° ©
@; (-) I'.|| 3
@ o q ’Oq,-
€ "
o o2 )

uniform
permittivity

@. O . |
Figure 19.5.1: In the continuum dielectric modeé solvent is assumed to be a continuous
medium of constant dielectrig, (a). The solute induces “image” charges in theesd. (b).
An ion is surrounded by a halo of ions of opposliarge. The relative permittivity of the
solvent screens the interactions. The dielectrieesing is symbolized by the gray
background.

The electrostatic distribution in a moleculearr is modeled by point charges that are placed
at each nucleus. The molecule or ion is then platadcavity in the solvent. The size of the
cavity is determined by the Van der Waals surfdda@molecule. The relative permittivity
inside this cavity is taken to be that of vacuapx 1. We will apply the model for two specific
extremes, small polar molecules and small spheioocal We will also discuss applications to
proteins. Consider first a polar molecule. The gneg of partial charges in the molecule
polarizes the solvent, Figure 19.5.1a. These indlabarges, or image charges, effectively
“mirror” the charges on the molecule. For polar ewolles, the electrostatic interaction energy is
the sum of the electrostatic energies of the induiceage charges in the solvent with the partial
charges on the atoms in the molecule or ion.

The Gibbs energy of solvation is approximate&*a$

AsolG = AsolGVdW + Asochav + AsoIGelec 19.5.3

wherelAsoGvgw IS the solute-solvent Van der Waals interactigGeay is the work necessary to

create the cavity in solvent, afg,Geiec IS the electrostatic contribution, Eq. 19.4.20,Gcay IS
approximated by:

AsoGeav = (surface tensigfsurface area) yo 1954
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This term includes the entropy change for rearrarayg of solvent molecules around the
molecule. Thé\soGyvaw andAs.Geay terms are often combined, since both are apprdeisna
proportional to the solvent accessible surface.drea combined Van der Waals and cavity
surface tension in aqueous solution &% 7-10 J/A

Now consider a small spherical ion in solutibhe neighborhood of an ion is predominately
comprised of counter ions of opposite charge, l©d®.5.1b. Near a central cation, the
concentration of anions is greater than the butktae concentration of cations is less than the
bulk. AsoGelecincludes the interaction of central ion i with tlbaic atmosphere of neighbor ions
J. The Coulomb interaction of the central ion wiitis halo is stabilizing, negative in energy. The
permittivity of the solvent and the counter ionteatiate, or screen, electrostatic interactions.

The screening caused by the ionic atmosphetetesmined by the distribution of ions near
the central ion. The distribution function, p(r) drthe probability of finding a counter ion at a
distance r to r + dr from the central ion. Thistiglition is given by the Boltzmann distribution
using the Coulomb energy of the interaction ofaéetral ion i with counterion j(r)q. The
number of ions j at a given point, a distance nfthe central solute ion i, is:

—@(ng
Nj=Noj€& KT 19.5.5

where N is the total number of ions j in solution. The lpability of finding an ion for any angle
at a radius of r from the central ion is tiaglial probability distribution for ion j is:

(g
p(r) dr = 47°N, e KT dr 19.5.6

The 4w?dr is the annular volume at all angles betweerrddaus of r and r + dr. This probability
distribution of the counter ion halo is shown igiiie 19.5.2.

uniform
solvent
permittivity

pi(r)

I'd >r
Figure 19.5.2: The distribution of counter ionsiard a central ion i. The ionic atmosphere
has a probability maximum at the Debye lenggh, r

The Boltzmann distribution takes into account thermal jostling of molecular collisions within
the solvent that disrupt the ionic halo. The expoia¢ decrease of the Boltzmann distribution
and the Tincrease of the annular volume multiply to giveistribution that has a maximum. The
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maximum probability distance is called thebye length rp. The Debye length is a measure of
the thickness of the ionic atmosphere. The Dehysgtlefor very dilute aqueous solutions with
uniform solvent dielectric and unipositive and wegative ions (e.g. NaCl) gives:

305 1 . L . .
15 :(an%Q:E (dilute, aq, 2%C, unipositive-uninegative) 19.5.7

The concentration term, in the denominator is the square root of thediength for a
unipositive-uninegative electrolyte. We discusddatrength in more detail below. The Debye
length is often specified by the reciprocal paramnet The polarization of the solvent and the
ionic halo determine the electric potential at epaimt in the solution. Once the electric potential
is known, the probability distribution of the iooan be calculated. Unfortunately, these
calculations depend on each other. A common appnsao first make a rough guess of the
electric potential and then to solve for the courda distribution. This distribution is then used
to calculate a better guess for the electric paknthis process of successive approximations is
continued until the electric potential no longeacyes.

The electric potential is used to calculdigGereo EQ. 19.4.20. The work necessary to charge
the solute ion within the solution is calculatedhag = z e and zthe charge number on ion i:

weree= [ da 19.5.8

whereq corresponds to a real or ideal solution. The datmns are computationally demanding
SO approximations are often made. We proceed bgidering small spherical ions.

The Gibbs Energy of Solvation is Moderated by Riele and lonic Shielding The electric
potential is calculated from the Poisson equafldre Poisson equation depends on the charge
density within the solution. The charge densitymmitthe solution for a charge ig the charge
multiplied by the probability that the charge igasition (X,y,z):

pi(x.y,z) = q pi(x,y.2) 19.5.9
The charge density is the charge per unit voluniechvin general depends on the polarization
of the solvent and the distribution of ions in tieo around the solute. The Poisson equation

also depends on the spatial variation of the ragtiermittivity,e(r) = & &(r). The Poisson
equation is:

2 _ _pixy,2)
U @(x,y,z) = ~e(x.y.2) 19.5.10
The term on the left is the curvature of the elegiptential. The curvature is given by:
2_09 o @&
0 = 19.5.11

=92t oy o7

The Poisson equation shows that the larger the nuggnof the charge density, the narrower the
range for the electric potential; the slope chamgere with distance, Figure 19.5.3. For a
spherical electric potentiap is only a function of r, the radial distance. Tevature is then

only a function of r, and the Poisson equatiorefepherical potential is:

1% q) _ pin)
roooart T g

(spherical ion) 19.5.12
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ul(y)

Figure 19.5.3: For a positive central ion, the muegative the charge density at small r, the
higher the curvature of the electric potential. Tharge density screens the electrostatic
interactions.

To get a feeling for the Poisson equation we stdh a very simple model. This model is for
electrolyte solutions of small spherical ions. Tasult is the Debye-Huckel model, when applied
to very dilute solutions. The ions are modeled@atharges embedded in a uniform solvent.
In this model, ions do not have a “volume,” andsndface tension term is used. For a uniform
solvent dielectricg(r) = €. The charge density is the sum of the charge tefwsithe positive
and negative ions in solution:

N, —@0a. N[0
p(N=ay € T p(N=ay e 19.5.13
N, SO0 N e
P =p:) +p(N =07y € T +ay et 19.5.14

The concentration of ions is also assumed to begsrmall so thatp(r) << kT and the
exponential term in the Boltzmann distributionxpanded as a Taylor series:
—Q(ng;

r n
e kT :1—% (dilute) 19.5.15

Then the charge density of the ions simplifies to:

=000 -89 o) o2

oi(r) = (m% + o%} _(Nv) (nfng _(%) ‘“fgq? (dilute)  19.5.16

The first term cancels because of charge neutréisynumbers of positive and negative charges
are equal, which gives:

N N. :
pi(r) = —%_l[_l (qfﬁ + qzvj (dilute) 19.5.17
The term in parentheses is the ionic strengtlindfd are several sources of ions, this sum is

extended to include all ions in solution; all i@@ntribute to the ionic atmosphere. The possible
sources include background electrolytes or bufféfish g = z e for ion j, Eq. 19.5.17 is:
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S . ez S N
pi(r) = —% q,-2 = —(“i((r% sz’ (dilute) 19.5.18
=1 =1

<|z

The sum extends over all s ions in solution. Tketie inverse Debye length, is defined as:

2 & : 2 (N
K EsreokT%: z (7) 19.5.19

The N/V terms are the number concentrations wifledjual to the number of ions of type j in
solution, and V the volume of the solution ifi. substitution ofk® and Eq. 19.5.18 into the
Poisson equation, Eq. 19.5.12, gives:
(ra(r
or?

The solution to this equation is in the form:

=K% (rq(r) (continuum dielectric,dilute pointis) 19.5.20

C . . - .
a =" e (continuum dielectric,dilute point iongp.5.21

TheC constant is evaluated using the boundary conditgwving the electric potential as:

4w

ATEE T (continuum dielectric,dilute point ion§p.5.22

@) =

This result is called thecreened Coulomb potentiabr shielded Coulomb potentia) which
takes into account the permittivity of the solvantl the interaction of the solute ion with its
ionic atmosphere. Becaus®€ & 1, the ionic halo decreases the electrostateggnof
interactions in solution. The concentrations amvested into molality using the approximation:

B Ni/Na
M =V (1000 L m®) do

where ¢ is the density of the solvent in kg Lwhich is equivalent to g mt. Substituting this
conversion into Eq. 19.5.19 give$in more useful units:

S
1 L -3 N o I
(2= €(1000 L) do Nam z:zjz% (pointions)  19.5.24
=1

(dilute) 19.5.23

& KT

with m° the standard state molality,’m 1 m. The summation is the basis of the definibbthe

ionic strength:
S

IEl/ZZZJ-Z% 19.5.25
j=1

which is unitless. Substitution of the fundamewgtaistants, the density and relative permittivity

of water at 25C, z. = 1,z=-1,and m = m=m into Eq. 19.5.24 gives the Debye length

specifically for a unipositive-uninegative salt,.B®.5.7.
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To find the deviation from ideality, the electi work of charging the ion in real solution
compared to the work in an ideal standard staigtisal is calculated using Egs. 19.5.22 and
19.4.19. Combining the real and ideal integralesgiv

DsoGelec = Geledreal) — Qrec= RT Iny; = Na w(real) — M w(ideal)

RT Iny; = Na “ [(greal—(niideaj dg (continuum dielectric, dilute point ionsp.5.26
0

The electric potentials are at the central ion, 0. The electric potential in an ideal Henry’s
Law standard state corresponds to an infinitelytdisolution, which has no ionic atmosphere,
K = 0. The difference in electric potentials is then

real ideal _ i r o] g (e‘” — 1)
(ﬂ - (ﬂ - (4T|Eo€r r € ) - (4'”508'. r) - 4T[508r r 19.5.27

Taking the limit as r» 0 using I'H6pital's rule gives the electric poiahat the central ion
caused by the ionic atmosphere as:

real ideah _ G K

[ -a J=0=—7 (continuum dielectric, dilute point ions) .5328
TEGEr

Substituting this expression into Eq. 19.5.26, Witfdg = f/2, andk =1/1p gives:
_Nakc ae __NAzizezK__NAzize2
aret o 39977 B, | 8TEE o
(continuum dielectric, dilute poinhg) 19.5.29

DsoGelec= RT Iny; =

This expression is equivalent to the Coulomb irtigoa of an induced charge,  with the
central charge,ijzseparated by a distance2 This result is the foundation for the concepthaf
“image” charges that we discussed above. Solvinghi® activity coefficient gives:

Iny: = _(ST[EO& oRT Z|2 (electrostatic only, dilute spherical pams) 19.5.30

The mean ionic activity coefficient for anM, salt is given by:

_plny: +qgliny.
Iny: = D+q 19.5.31
Substituting Eqg. 19.5.30, separately for the pesiind negative ions into Eqg. 19.5.31 gives:
_( NA € ) (p Z+q 22)
Iy = —(Smoar oRT)L p+q 19.5.32

Charge neutrality for the solution gives {pzgz) = 0. Multiplying this equation by (z+ z)
gives:

(z. +2)(pz. +qz) = 0 or pz+qzz+pzz+q7Z=0 19.5.33

Solving this last equation for the stoichiometactbr in Eq. 19.5.32 gives:

pZ+q
=2z =2l 19.5.34
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e (1000 L 1) dy Na m°)72 U
(continuum dielectric, electrostatic only,udd point ions) 19.5.35

This expression is theebye Hickel approximationfor the mean ionic activity coefficient.

In summary, the shielded Coulomb potential ant®tor the interaction of an ion with its
ionic atmosphere. As a point of comparison, theldked Coulomb potential reduces to
Coulomb's Law for very dilute solutions:

|1-0,K-0, oo, € -1, @) - Coulomb’s Law (very dilute) 19.5.36

The Born Approximation Takes into Account the 8izke Solute Modeling ions as point
charges with no radius is very approximate. A mallat takes into account the size of the ion
has been developed, which is calledBoen approximation. The ion is modeled as a point
charge in spherical cavity of radiyusThe relative permittivity inside the sphere iattbf a
vacuumg, = 1, and the solvent outside of the ion radiusssumed to be uniform with relative
permittivity &, Figure 19.5.4a. The model applies to very dikleetrolytes or non-electrolyte
solutions. In other words, there are no countes learby, as in the example above. The solution
to the Poisson equation is now more involved bez#us relative permittivity and the charge
density both change with position. We simply présiea results. The electric potential at the
center of a spherical ion of radiysr the Born approximation:is

_ 9

I . . . . .
ATEGE T (very dilute spherical point ion, radiys 09.5.37

@(0) =
The presence of the ion polarizes the solveme. dctual charge density in the bulk of the
solvent remains small, because the polarizatioalégpfor each solvent molecule cancel each
other, except at the boundaries, Figure 19.5Mbwever, a surface charge is induced at the
cavity surface, which is oppositely charged from itn. This surface charge creates an electric
field at the center of the sphere, which is caltesteaction field.? The surface charge behaves
like an “image” charge that is in the bulk of theve@nt opposite the point charge on the 3on.

&§=1

&= 78.54

(a). (b).
Figure 19.5.4: (a). The Born Approximation assumebarge in a spherical cavity of radius
r; with &=1 inside the cavity angl constant for the uniform solvent for r > (b). The ion
polarizes the solvent. The solvent dipoles domitehat the surface of the cavity, giving a
surface charge. The surface charge generates rtipbtd the point charge.
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The electric work in charging the ion is calt¢athusing dw = @ dg;:

1 Zie
4ATELE Y O

wer = f°@ dg = g dg (very dilute spherical ion)  19.5.38
You might wonder why the work is not simply just, since an ion has an integral charge, +1e,
+2e, -1e, etc. The integral takes into account siadf-interaction;” the ion is interacting with its
self-induced charg¥. To do the integral, the charge is visualized asghadded in smalll
increments. Each new increment interacts with nldeiced charges that have built up from
previous increments, Figure 19.5.5, and the integfay dg = qi2/2. This process is also used in

the integral in Eqg. 19.5.29 for the Debye-Hickgiragimation.

3 % o Q-
o+ &+ 5+ & 5 5

Figure 19.5.5: The work integral is done in smtdps for Egs. 19.5.30 and 19.5.38.

The electrical work in solution, from Eq. 19.5.88then:

__ne
Welec = 8Tl£08r I 19.5.39
The total electrostatic contribution to the Gibbgmgy of solvation is calculated using Eq.
19.4.20 for an ideal gas phase standard statenting the difference between the electrical
work necessary to charge the ion in the solventta@dvork to charge the ion in vacuum:

DsoGelec = Na W(real) — Ny w(vacuum) (ideal gas standard state) 19.5.40

where the permittivity of vacuum is jugt The electrostatic contribution to the Gibbs eperfy
solvation is given by Egs. 19.5.39 and 19.5.40 as:
Z ENa ( 1 1) _—ZeNa (1 1)

ASOIGeIeC:—ST[ri a—a—o = TBrELT, _E_r (very dilute spherical ion) 19.5.41

The Generalized Born Approximation is Used for MGaanplex Molecules and lons:

Eq. 19.5.41 is for a simple spherical ion with 2egi radius in the absence of an ionic
atmosphere. Eq. 19.5.29 is for a point ion witharc atmosphere, at a given ionic strength.
The Generalized Bornapproach includes finite size and an ionic atmespfor a molecule or
ion with a complex shape by solving the Poissoraggn numerically. The electrostatic energy
for multi-atom ions and molecules is evaluatedhassum over all the partial charges in the
solute for a molecular surface calculated fromsthleent accessible surfat&To complete the
calculation of the solvation Gibbs energy, the saand Van der Waals terms are added.
Because these terms depend on the solvent aceessifdce area of the solute, the general
formulation of the Born approximation for molecubasd non-spherical ions is called the
Generalized Born/Solvent Accessible surface arpaoagh, oiGB/SA for short'®
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The GB/SA method is rapid and does a reasonalblef modeling non-specific solvation
effects. The screening effect of the relative p#imy of the solvent, the ionic atmosphere, and
solvent polarization are included. The electrosterms primarily affect the enthalpy of
solvation. The entropy changes are roughly appratechby the cavity term.

The GB/SA approach can be used for any solvdrd.relative permittivity of the solvent is
required. In addition, the average solvent molecatius is necessary to calculate the solvent
accessible surface area. Larger solvents cannobagpthe solute as closely as water and the
corresponding solvent accessible surface areagsrlarhe surface tension of the solvent is also
needed. GB/SA treatments are used by organic ckeforsstudies of the solution conformation
of molecules and the stabilization of polar trapsistates and intermediates. Solvation effects
also have an important influence on molecular ratwm.

The Surfaces of Enzymes Interact with Counter donsthe Solvent to Create Shaped Electric
Fields The Generalized Born approximation and more aded electrostatic treatments are
important in modeling the surfaces of proteins andeic acids® The combination of the partial
charges on the amino acids in a protein and thegsponding polarization of the solvent create
strong electric fields near the surface of protéivad may help guide substrates into the active
sites of enzymes and may help orient proteinsffarient protein-protein binding.

Acetylcholine is a quaternary amine. The bindiogket of acetylcholine esterase is lined with
amino acids that have negatively charged side shaihich enhance the interaction with the
positive charge on acetylcholine, Figure 19.5.68/S2 calculations in water with an ionic
strength of 0.1 m show that the electric field n&arbinding pocket extends into the solvent,
Figure 19.5.6b. The polar and charged amino agids® surface of the enzyme polarize the
solvent and create an ionic atmosphere that h@isize the interaction with the substrate. The
strong, specifically shaped electric field may hglpde the substrate into the binding pocket.

£ SIS - ] Surface Potential 000 -2.500 0. 000 2,500 Eu

Figure 19.5.6: (a). The surface of the binding mbak acetylcholine esterase is negatively
charged to enhance binding with acetylcholine. The GB/SA approach in aqueous solution

with an ionic strength of 0.1 m shows electricdiéhes that extend into the solvéht.
(http://bhapp.c2b2.columbia.edu/software/GRASPypes.html)
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19.6 A Lattice Model for Simple Symmetric Solutios'®?

Consider a lattice of equivalent sites thatareupied with @ moles of A and gmoles of B
with n = m + ng total sites, Figure 19.6.1. Each lattice siteuiasar neighbors. For example, on
a purely geometrical basis, for a 3D-cubic latteach lattice site has 6 near neighbors. Assume
that the A and B molecules are approximately tmeessize, so that space within the lattice is
efficiently filled, and the lattice site volumeseaall equivalent. The energy of interaction of an A
molecule with another A moleculedga. The number of possible interactions farmoles of
pure A isz na/2. The factor of two results because two molecafes give one interaction. The
energy of pure A is fJ=z na €aa/2. The energy of interaction of a B molecule vétiother B
molecule isgg. The energy of pure B isglE z ng ggg/2. Written in terms of moles fractions,
with na = nxa and i = nxg, the pure substance internal energies are:

2 =ZNXpEanl2 B =ZNXgé&pp/2 (pure components) 19.6.1

Now consider the mixed lattice. The energy of iatéion between an A and B molecules.
Assume that the lattice sites are filled purelyd@nly. In other words, assume that A has no
preference for the identity of each of its neiglh@ven though the A-A, B-B, and A-B forces
may differ. The probability of a given lattice shieing occupied by an A molecule is given by
the fraction of A molecules in the systemzma/nwt = Xa. The probability of occurrence of two
adjacent A molecules, assuming random mixingais#x2. The probability of two adjacent B
molecules is g5 = ¢, and the probability of an adjacent A and B pgimi = xaXe. The number
of A-A interactions is the probability of an A-A panultiplied by the number of possible A-A
interactions, giving Nt x2/2. The number of B-B interactionszsy, X2/2, and the number of A-
B interactions iz no: XaXs. The total energy of the system after mixing is:

U =znx2ean/2 +ZNXCpp/2 +Z NXaXg Enp 19.6.2
AlB[B[B|[B|]A]B[B _ _
B|A[A|JA|[B|[A|A]A AlA N = 2, interactions = 1
AlB|B|B|A|[A|[B|A

AlAlB|[B|A]B|]AA . ) _
BIBIAIAIBIAIB A AlB Na = 1, interactions = 1
A|lA]B|A|B|A]A]|B

B|B|A|[B|A[B|A]A

AlAlB|A|B|B|B|B

(a). (b).

Figure 19.6.1: Lattice model for solution interaats. (a). Simple solution theory assumes
that molecules are similar in size and sites as#iduted randomly, even though the A-A, B-
B, and A-B forces may differ. (b). The possiblesi@ictions for g moles of pure A ig na/2.

The internal energy of mixing is given by the diéiece of Eq. 19.6.2 with Egs. 19.6.1:
AmixU = Z Moy (X2 €anl2 + X5 EaB/2 +XaXe Eap — Xa Eaa/2 —Xg €pp/2) 19.6.3
Noting thatxa = (1 —xg) andxg = (1—xa) in the first two terms allows cancellations thedult in:

AnixU =zn (XA(l —XB) Eanl2 + XB(l —X/_\) €8e/2 + XaXg EaB —Xa EaA/2 —XB SBB/Z)
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Epn T E
AnixU =zn (EAB —%} XaXB 19.6.4
Assuming that the change in volume of the lattiperumixing is zero, theAPV = 0 and

AnmixH = AnixU. To find the Gibbs energy of mixing, we note #ssumption of complete
randomness for the distribution of A and B in thttite. The entropy of mixing is then the ideal
entropy of mixing. The entropy term in the excedsbS energy then cancels to give:

GE = AmixG —AnmixG % = [AmixU+ APV — TAnixS%) — [TAmixS® = AmixU

which gives the result in Eq. 19.2.10. This modsiemes that there is no change in volume
upon mixing. J. Hildebrand definedegular solution as a solution with an ideal entropy of
mixing and a non-zero enthalpy of mixing. Howevegular solutions may have a small change
in volume upon mixing. Solutions that don’t havedfic interactions, such as hydrogen
bonding, are often well approximated as regulantsmis.

19.7 Summary — Looking Ahead

To modify the expressions for ideal systemspiolyato real systems, we simply replace the
concentration by the activity. The activity andiaty coefficients for volatile species are easily
determined from the partial vapor pressure of tliesstance. The activity of the solvent is easily
determined using vapor pressure, boiling pointaiew, freezing point depression, or osmotic
pressure. The activity of non-volatile solutes maestdetermined indirectly using the Gibbs-
Duhem relationship. Theories of solvation are basethe excess Gibbs energy and excess
chemical potential. Approximations are necessamadel solute-solvent and solvent-solvent
interactions in solution. Regular solutions havedsal entropy of mixing and a non-zero
enthalpy of mixing. The simple symmetric model @jular solutions, in addition, has no volume
change on mixing. The deviation from ideality igpdrdent on the imbalance in forces in
solution. The activity coefficients for ionic sobstare dominated by electrostatic interactions of
the ion with its ionic atmosphere.

No area of Physical Chemistry has as importantgact on practical applications of chemical
equilibria as the theory of solvation. The solutemvironment plays a central role in the
stabilization or destabilization of species in cleahequilibria. The prevalence of enthalpy-
entropy compensation, especially in water, requimasboth enthalpy and entropy changes must
be considered; neither enthalpy or entropy chaatgese are sufficient. Careful evaluation of the
enthalpy and entropy changes caused by solutergpb@ute-solute, and solvent-solvent
interactions are necessary for prediction of Giatsrgies of solvation and activity coefficients.
For example, hydrogen bonding and some contribstiorprotein folding are solvent entropy
driven. Small changes in the chemical potentidhefsolvent have a large effect on the position
of equilibrium. Consequently, the theory of soleatand the development of new experimental
methods to study solvation are two of the mostvadireas of current research. The development
of accurate theories of solvation will have an indimge impact on medicinal, environmental,
biochemical, separations, and geochemical appbicsdti

Your patience in dealing with the complexitiésolution theory will now pay off. The stage is
set for your informed understanding of chemicalildajia, which we study in the next two
chapters. Few solutions are ideal.
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Summary

=

. Activity is the “chemically effective” concetion, because the activity includes the effects
of intermolecular forcegia(xa) = pa(l) + RT In & with a Raoult’s Law standard state.

. The activity coefficient is defined usinga &ya Xa.

. The activity is determined from the partial sapressure of the substance above the solution:
an = Pa/Py for a Raoult’s Law standard state ard=eRs/ky s for a Henry’s Law.

Raoult’s Law for a real solution is B g, P5. Henry’s Law for a real solution issP & k.

w N

S

. For a Raoult's Law standard statg:= 3/y, = Pa/ preoutand Henry's:yg = B8/y = PB/p;enry.

»

. Using Raoult’s Law for the standard state Ifedathesolvent conventionand using Henry’s
Law for the standard state is calkb@ solute convention.

7. Different concentration measures can be usethéosolute:
U = Xug + RT In*ag a8 ="Vs Xa with ng = ug andys = Vs
Mg = ‘U3 + RT In‘ag ‘ag = Yp CalC®
Mg ="H3 + RT In"ag "ag ="y mg/m°

8. For solutions at concentrations less than abdum: "y 1% 1"y.

9. For non-volatile solutes, the Gibbs-Duhem retethip relates the activity of the solute to the
activity of the solvent: th as = — ka/1 —Xxa) dIn aa

10. Because the activity coefficient for the salvis usually very close to one, the practical
osmotic coefficient is defined to avoid propagatofrerrors inaccuracies in the Gibbs-Duhem
relationship and to convert to molal concentratidriee osmotic pressure and the osmotic
coefficient for a single electrolyte with ion nunmlye= p + q are given as:

B ) In an
1V = RTvV m@/(1000 g kg/ora) =~V m ©@a/2000 g kg

11. The Gibbs-Duhem relationship on a molalityifieet constant temperature and pressure,
gives the activity coefficient for the solute frahe integral over the full concentration range:

m
-1
In™ys = @m) — 1 +J =2 4mg
o Ms
12. The excess Gibbs energy of solution is themihce between the real Gibbs energy of
mixing and the ideal Gibbs energy of mixing: AmG —AmG % = A1, G — NRTE X; In X.
13. The excess chemical potential is the diffeegp®= pi(x;) — pi®(x;) = RT Iny;, with:

Iny: = L (G—GE)
RT  on T,P. 0
14. The excess Gibbs energy in terms of the &gtoaefficients is:
G"=a Mk + N 45 = NRT {a I ya +Xg IN Vi)
15. The simple symmetric solution model for thevaty coefficients with a Raoult’'s Law
standard state for both components is defined by Gaxaxg with:

a o a »
InyA:ﬁ.xB InyB:ﬁxA

16. Assuming a random distribution of near neighpfor a simple symmetric solution the
deviation from ideality results from an imbalannghe A-B forces as compared to the
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average of the A-A and B-B forces=z [eag — (Eaa *+ €88/2)], Wherez is the number of near
neighbors for both A and B.

17. (a) The primary solvation sphere is a layet-8ftightly associated waters; the tetrahedral
hydrogen-bonding network typical of the bulk of g@vent is completely disrupted. (b) For
structure makers the secondary solvation sphemis ordered than the bulk. For structure
breakers, the secondary solvation sphere is |elsant than the bulk.

18. Hydrophobic hydration is structure making.

19. Water in the primary solvation sphere, secondalvation sphere, and bulk of the solution
must have the same chemical potential, which resuknthalpy-entropy compensation.

20. Structure makers show an increase of theicaaft of thermal expansion with temperature
and the structure breakers show a decrease.

21. A pressure perturbation results in a heasfeanwhich for a pure substance at constant
temperature is;g, =— TVa AP.

1 (aV
22. The apparent specific coefficient of thermadansion for the solute isos EV (O_TS]
P
S

23. For pressure perturbation calorimetry, PP€pastant T with a reference of pure solvent,
the differential heat transfer i8gev = — T (W Vs 0s— Ws Vs 0o) AP, where V is the apparent
specific volume of the solute,sws the mass of the solute, amglis the coefficient of thermal
expansion of pure solvent.

24. The chemical potentials of ions add to givedtierall chemical potential of the substance
and the activities of the ions multiply(MpXq) = p s + qu. = p°(MpXg)+ RT In(d ).

25. The mean ionic activity coefficient ig: = (y° ") ¥ or alternately =y° y* giving the
overall electrolyte chemical potential and actiasy

mP

Vi AL
W(MpXg) = °(MpXo)+ RT IF( _m°V cj and a(NXg) =& & :( _moV qj

26. Assuming the deviation from ideality is onlfuaction of the electrostatic work of charging
the ion of interest in its ionic environment: Ry = Na Weedreal) — Ny weedideal).

27. The Debye-Huckel approximation assumes dpotet charges in a solvent with a
continuum dielectric of relative permittivigy and density g

do V% .
Iny: = -1.825x16 |z, z| (—3 °3) |
T

28. The ionic strength, 1, is the appropriate mea®sf the total ion concentration in solution:

| = %3 7Z# (m/m°). The sum is over albns in solution, including buffers and supporting
electrolytes. For a pure unipositive-uninegativie, $& m/m°.

29. For an aqueous solution af@5d, = 0.99704 g mL, &, = 78.54, and:
Iny. =-1.171 |z z| I* or  logy: =-0.509 |z z| I
30. The salt effect results because a non-paaticig electrolyte increases the ionic strength,
thereby decreasing the activity coefficients arateasing the solubility of insoluble salts.
31. For multicomponent solutions the osmotic doefht and osmolalitym, is given by a sum
of all species, s (see also Summary 10, above):
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S

s na, om = Z m; @
> m; (91a/1000 g kg =1
i=1

32. The electric potential and electrostatic epdog two charges,iqnd g, separated by a
distancejy in a uniform dielectric with relative permittivigy are @(ri) = g/(41eg€; rjj) and
&(rij) = @(ri) g

33. The Gibbs energy of solvation is approximateds,G = AsoGvaw + AsolGeav + AsolGelea
wherelAsoGvaw IS the solute-solvent Van der Waals interacti®gGeay is the work necessary
to create the cavity in solvent, ahgGeleciS the electric work necessary to transfer the ion
from ideal solution into the real solution.

34. NsoGeay IS approximatedisoGeay = (surface tensigfsurface area) ¢ 0. TheAsoGygw and
AsoGeav terms are often combined giving the totéth aqueous solution at 25 as 7-10 J/A

35. The Boltzmann distribution of ions j at a giyeoint at a distance r from the central ion i and
the corresponding radial probability distributiar the ions are:

—@(Ng; —@(Ng;
Nj=Nge K p(r) dr = 4T°Ny e KT dr

36. The Debye length is the thickness of the iatmsosphere. The Debye length for dilute
agueous solutions with uniform solvent dielectnd ainipositive and uninegative ions at
25°C is: b = 305 pm/(m/M)”and p= 1k.

37. The charge density within the solution foharge gis the charge multiplied by the
probability that the charge is at position (X,y,zpi(X,y,z) = q p(X,Y,Z)

2 .
38. The Poisson equation for a spherical pote'm;tiffha (ra(r%(r)) = —2'((:)) with g(r) =&, &(r).

¢

39. The charge density is the sum of the chargsitefor the positive and negative ions:
N, —a(g. N LA
p) =p«n) +p(N=a7y, € ¥ +ay e

i K

40. For a continuum dielectric with dilute poiohs the electric potential igi(r) = ATEE T e
oCr

2 € (1000 L m®) dy Na m°
€& KT

41. The inverse squared Debye lengtikis: I

S
42. The ionic strength is the appropriate meastitke total ion concentration=%2 ZZJZH‘E
=1

43. For a continuum dielectric with dilute poiahs, electrostatic work only, and a Henry’'s Law
standard state, the Gibbs energy of solvation psegmated by:
NAaZE€K NaZ €&

DsoGelec = Getedreal) — Grec= RT Iny; = — 8TEE, = T8TELE 1o
44. For a continuum dielectric with dilute poiohs and electrostatic work only with a Henry’s

Law standard state, the Debye-Hickel approximasion
S (eﬁ (1000 L n®) dy Na m°j1/2 ar
NYe=— 32 el 6° KTC |z |




698

45. The electrostatic contribution to the Gibbergy of solvation, with respect to an ideal gas

phase standard state, &50Gelec = Na W(real) — N\ w(vacuum)

46. For a continuum dielectric with an infinitedijlute spherical ion of radiug the electric
potential at r = 0 and the correspondi;zg 2solvaﬁa(iinbs energy in the Born approximation is

__ G _ZZ€Nar 1
2O =g BeolGerec="grg 1 (l _Er)

47. The total energy of a random lattice of na=Hmg molecules, assuming a simple symmetric
solution, is: U =z nx; eaa/2 +z NG €a/2 +Z NXaXa Eag, Wherez is the number of adjacent
lattice sites for both A and B and the probabitifyan adjacent A and B pairxsxs. The
lattice sites have equal volume for A and B occigpat

48. A regular solution is a solution with an ideatropy of mixing and a non-zero enthalpy of
mixing. Regular solutions may have a small changelume upon mixing.
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Problems: Real Solutions

1. A solution of solvent A and solute B has relatiorces A-A, B-B < A-B. Are the activity
coefficients for the solvent less than one or gnetitan one?

2. The partial pressure of acetone over a soluti@cetone in ether at 30°C is 0.120 bar at
Xacetone= 0.200. The partial pressure of ether at thisesaomcentration is 0.713 bar. Calculate the
activity coefficients for ether and acetone givieattvapor pressure of pure acetone is 0.377 bar
and of pure ether is 0.861 bar.

3. The pure vapor pressure of substance A is 28.2Ttbe mole fraction of A in the vapor above
a solution is 0.0432 while the mole fraction ofrAthe solution is 0.672. Calculate the activity
coefficient for A in this solution on a Raoult’'s\wébasis. The total vapor pressure is 760.0 torr.

4. Under what circumstances can the activity coedficof the solvent be greater than one, but in
the same solution, the activity coefficient of #wute be less than one (or visa versa)?

5. (a). Using the following vapor pressure curves;udate the activity coefficient for B ai
=0.667 with a Raoult's Law aradHenry's Law standard state. (b). Characterieedlative
forces,eag versus §aat+ €gg)/2. (C). Find the vapor pressure of pure B andHbery’s Law
constant for B from the plot. Find the Raoult’'s Land Henry’s Law predictions for the vapor
pressure of B atg =0.667.
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6. The patrtial vapor pressure of heptane abovéuti@o of heptane and 1-bromobutane was
0.0885 bar for a heptane mole fraction of 0.4 vapor pressure of pure heptane is 0.187
bar. The Henry’'s Law constant for heptane was detexd in Problem 18.13 to lkg,heptane =
0.265 bar. Calculate the activity coefficients antihba Raoult's Law and Henry's Law basis.

7. The freezing point depression for a 10.00 % leygiv solution of acetone in water is 329
Calculate the activity, activity coefficient, andmootic coefficient. Calculate the osmotic
pressure of the solution atZ5assuming the activity coefficient and osmoticfioent are
constant over the given temperature range andati@lmolar volume of the solvent is the pure
molar volume. The molar mass of acetone is 58.0®k. The enthalpy of fusion of water is
6.008 kJ mot.

8. The freezing point depression for a 10.00 % kyght solution of MgGlin water is 7.93C.
Calculate the activity, activity coefficient, andmootic coefficient. Calculate the osmotic
pressure of the solution atZ5assuming the activity coefficient and osmoticfioent are
constant over the given temperature range andati@pmolar volume of the solvent is the pure
molar volume. The molar mass of Mg@ 95.23 g mét. The enthalpy of fusion of water is
6.008 kJ mot.

9. Egs. 18.4.818.4.18, and 19.1.4 assume the phase transition enthéline solvent is
constant. For careful determinations of the agtiwiith large freezing point changes, the
temperature dependence of the enthalpy of fusionldibe taken into accountissHa(T) =
AfusHA(T,:) + AnsCpa (T — T,:). Use this temperature dependence to find a bapi@oximation to
Eq. 19.1.4 by completing the following steps.

(a). At equilibrium for a solid-liquid phase tratisn, the equivalence of the chemical potentials
givespa(s) =pa(l) + RT Inxa, which is the analog to Eq. 18.4.Zonvert the last equation into
the corresponding equation for a real solution. Gitebs energy of fusion for the pure solvent is
AusGa = Ha(l) — pa(S). Use the Gibbs-Helmholtz relationship, Eq. 1823to show:

(6 In aA) _ AygHa
0T Jp~ RT

(b). Use the temperature dependence of the enthalpyegrate Ehis last equation from  T.
Note that a = 1 and In @ = 0 at the pure standard melting point The result is:
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AusHA(TA) —DusCoaTaY (1 1) A
InaA:_( = R e (T_TJ+—LUT? = In(T/r7)

10. Freezing point depression and boiling point @len are used to determine the activity of
the solvent at the measured phase transition texyverfor the solution. We usually need to
know the activity at 28C. Find an expression for the temperature depemrdeihe activity of a
substance by completing the following steps. (&g themical potential of the solvent in
solution ispia(Xa) = ua(l) + RT In &, Eq. 19.1.3. The partial molar Gibbs energy ofioh for
the solvent if\soGa = Ha(Xa) —Ha(l). Use the Gibbs-Helmholtz relationship, Eq. 1623 to
show:

(a In aA) _ AsoIHA

oT Jp~ ~ RT?

whereAssHa is the partial molar enthalpy of solution. (b)telgrate this equation from, o To.
Assume the enthalpy of solution is constant overt@émperature range. Show that the result is:

oS-
an(T1) R J\T2 T
11. The osmotic coefficient for aqueompropanol solutions isp— 1 = a g + b ms® + ¢

with: a=-4.73 kimol®, b =2.21 k§mol? and c =-0.365 kg mdlat ®C, where rg is the
molality of n-propanol. Determine the activity coefficients fepropanol and water at 0.100 m.

12. Find the overall solution activity in terms dktmean ionic activity coefficient and the
solution molality, m, for: (a). KNg (b). CaC}, (c). LaC}, (d). CuSQ.

13. Find the ionic strength in terms of the molality, for the following strong electrolytes
dissolved in pure water: (a). CaQlb). LaC}, (c). CuSQ (neglect any hydrolysis).

14. Write the solubility product equilibrium expresss for the sparingly soluble salts: (a).
Ag2CrO;, (b). Cr(OH}, (c). Ca(PQy)e.

15. Calculate the mean ionic activity coefficient £60.100 m aqueous solution of Cagal
25°C using the Debye-Huckel approximation.

16. Mercury pollution is an increasing problem irrthern lakes. The source of the mercury is
primarily coal combustion. Mercury compounds carcéeied long distances by atmospheric
aerosols. Calculate the solubility of mercury(ljride, HgCl,, in pure water and in 0.0100 m
KNOs, Ksp = 1.2x10'%. Remember that the dissociation is given by:

HgCl, (s) - Hg,?  + 2 CI
17. Write the acid dissociation equilibrium express in terms of the concentration of the

undissociated acid, g, the H concentration, g, and the mean ionic activity coefficient, for
the weak acids: (a). GBOOH, acetic acid (HOAc), (b).A3 (for the first dissociation only).
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18 Using Egs. 19.5.12, 19.5.18, and 19.5.19, ddfyel9.5.20.

C —«r. ,
19. Show thatp(r) =€ “"is the solution to the Eq. 19.5.20

20. (a). Starting with Eqg. 19.5.19, for an aquealstfon containing one pure electrolyte, show
that:

2_ezloooLnr'r’*olc,lxlAm°(2@ 2&)
K™= o Y4 o
& KT +m -m

(b). Given the definition of ionic strength in EkP.5.25, show from Eq. P19.20.1 that:
\/2 € 1000 L n° dy Na m° w2

P19.20.1

ee kT P19.20.2

(c). Starting with Eq. P19.20.2 angl¥ 1k, prove that Eq. 19.5.7 gives the Debye length for
agueous solutions of unipositive-uninegative etdgtes, at concentration m molal, at 298.15 K.
In Eq. 19.5.7 the constant is given as 305 pmpur yanswer give the constant to at least four
significant figures.

(d). Find the Debye length for a 0.0100 m and 0.f0solution of KCI.

21 Taking the limit as - 0 of Eqg. 19.5.27 using I'HOpital's rule, provetttiee electric
potential at the central ion caused by the iomecsiphere is given by Eqg. 19.5.28.

22. Plot the screened Coulomb potential for a 0.0h0fnd 0.100 m NaCl solution.

23. (a). Show that the charge density for the s@d&oulomb potential can be written in terms

of K as:
2

= GK
pl(r) - ATTY €
(b). Find the maximum of the radial probabilitytditsution for the charge densityrp;, in

terms ofk.

24. Determine if the following statements are trueassé. If the statement is false, describe the
changes that are necessary to make the statemenif possible. If the statement is true but too
restrictive, give the more general statement.

(a). The ionic halo of an ion contains only iofi®pposite charge.

(b). For a simple symmetric solution, the actiapefficient of the solute depends only on the mole
fraction of the solvent. The deviations from idgatire dominated by changes in solvent-solventefarc

(c). For afixed ionic strength, as the relatieerpittivity of the solvent increases, the Debyegtin
increases, because the counter ions in the iotacane less tightly held.



