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Chapter 12: The Statistical Definition of Entropy 
 
 
The process of folding a protein to produce the active conformation restricts torsions along the 
polypeptide backbone and side chain torsions for amino acids that are buried in the interior of the 
protein. Calculate the conformational entropy of the side chain of the amino acid valine. 
 
 
   Energy is transferred from a hotter to a colder body. This energy transfer corresponds to a 
dispersal of energy. These generalizations come from observations of simple physical 
phenomena, such as the heating of a pot of water on a stove. Energy dispersal is a part of our 
common experience. All processes occur subject to the First Law of thermodynamics. Internal 
energy is conserved for all processes spontaneous or not, reversible or irreversible. So the First 
Law doesn’t tell us the direction of spontaneous change. Can we develop a thermodynamic state 
function that predicts the spontaneous direction of chemical change based on energy dispersal? 
The first step is to quantitatively characterize energy dispersal. We will then use this indicator of 
energy dispersal to predict the spontaneous direction for all physical processes and the position 
of equilibrium. For the example of a bouncing ball, Section 10.1, potential energy is converted 
into random thermal kinetic energy with each bounce. This conversion suggests that statistical 
considerations may be central in understanding energy dispersal. The intriguing question is: does 
random chance determine the outcome of chemical reactions? 
   You may have too deterministic an interpretation of chemical reactions to appreciate that 
random chance plays a role in the outcome of chemical processes. The laws of statistics may 
seem to be too devoid of physical relevance to be the predominant factor in determining the 
extent of energy dispersal. But statistical mechanics is the discipline within chemistry that 
applies the laws of probability to determine the spontaneous direction of chemical reactions and 
the position of equilibrium. 
 
12.1  Thermodynamic Properties are Average Values 
 

   The laws of probability determine the likely outcomes of coin tosses and throwing dice. 
According to the laws of chance, on average a coin toss yields heads 50% of the time and tails 
50% of the time. This expectation is more closely met as the number of trials increases. The 
larger the number of trials, the simpler the behavior is to predict. Thermodynamics applies to 
macroscopic systems that contain large numbers of molecules. The laws of probability allow our 
description of systems to be greatly simplified; we only need to predict the average behavior. 
   Thermodynamic variables result from averages over all the degrees of freedom of a system as a 
function of time. For example, the pressure of a gas is the time averaged force of collisions of 
molecules with the walls of the container per unit area, Figure 7.5.1. The degrees of freedom of a 
system include translation, rotation, vibration, and electronic energies. A given system at some 
time may have more rotational energy than vibrational energy, and at some later time more 
vibrational energy than rotational. However, the time average energy for a system at equilibrium 
gives just one parameter, the internal energy. In thermodynamics, just a few variables are 
necessary to specify the state of the system, for example the temperature, volume, and molar 
amounts. Much specific information is lost when averaging over the variables for all the degrees 
of freedom to give just a few thermodynamic variables. However, the loss of information is 
compensated by a gain of generality, simplicity, and predictive power. 
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   Following the time dependence of a system is difficult, because there are so many variables. 
An easier approach is to consider a large number of identical systems, each with the same 
number of molecules, N, and the same volume, V. A group of identical systems is called an 
ensemble. Gibbs suggested that averaging a property over all the systems in an ensemble at one 
instant in time is equivalent to averaging the property of a single system over time. Such an 
average is called an ensemble average. 
   Conceptually, the systems in the ensemble are held in an insulated constant volume container, 
so that the ensemble is isolated from the surroundings, Figure 12.1.1. The total energy of the 
ensemble is constant. If the systems in the ensemble are allowed to come into thermal contact, 
they will exchange energy and on average all the systems in the ensemble will have the same 
average energy and temperature. This kind of ensemble is called a canonical ensemble. The 
number of systems in the ensemble is given the symbol N and the total energy of the ensemble is 
E. Properties of the ensemble as a whole are written in “script,” (N and E), and properties of a 
single system are in the normal font (N, E). Even though the average energy of each system is 
constant, there are still fluctuations in the energy of each system. The energy in each degree of 
freedom also varies with time. At a particular instant one system may have excess rotational 
energy and another may have excess vibrational energy. Ensemble averages are much easier to 
calculate than time averages, because the ensemble average can be accomplished using the laws 
of statistics. The average behavior of the system is determined by the probability of occurrence 
of each possible energy state of the system. Ensemble averages are valid in the limit of large 
numbers of systems, N →∞. We will discuss the validity of ensemble averages more completely 
in the later chapter on the foundations of statistical mechanics and Sec. 12.7. However, keep in 
mind that ensemble averages are just an easy way to find the average energy of a single system. 
In essence we just average many simultaneous experiments on a set of identical systems instead 
of repeating experiments on the same system and doing the average over time. The ensemble 
represents a system for averaging purposes. We will use a “{“ to indicate this representation. 
 
 
 
 
 
 
 
 
 

Figure 12.1.1: An isolated group of identical systems that are in thermal contact is a called a 
canonical ensemble. Meaningful thermodynamic averages are taken over the systems in the 
ensemble in the limit N → ∞. The ensemble represents the system for averaging purposes. 

 
 
   The average energy of the system is given by the ensemble average. The ensemble average is 
particularly easy to calculate. Even though the energy of each system in the ensemble may be 
different, on average the energy of a system must be the total energy of the ensemble divided by 
the number of systems in the ensemble. For N systems in the ensemble with total energy E, the 
average energy of a system is just: 
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 〈E〉 = 
E

N
       (canonical ensemble) 12.1.1 

 

where the average is indicated using braces 〈E〉. The central hypothesis of statistical mechanics is 
that the ensemble average energy is equal to the thermodynamic internal energy: 
 

 U – U(0) = 〈E〉          12.1.2 
 

The inclusion of the U(0) term allows for differences in reference points. As noted in Chapter 8, 
only differences in the internal energy may be measured and not absolute values, so an arbitrary 
reference is chosen. Eq. 12.1.2 can be read as: the internal energy of the system above the 
reference point is given by the ensemble average energy over all the degrees of freedom. As we 
stated in Section 7.8, the internal energy is the sum of the average kinetic and potential energy 
over all the atoms and molecules that make up the system. We now know how that averaging is 
done. The next step is to use the concept of the ensemble and averaging to develop a measure of 
energy dispersal. Determining energy dispersal and the spontaneity of physical processes flows 
naturally once we accept the notion that the laws of random chance determine the probability of 
occurrence of the different energy states of a system. 
 
12.2  Energy Dispersal is Measured by Changes in Entropy  
 

   The dispersal of energy is determined by finding the number of ways of arranging the 
energy states for a given amount of energy and the energy states of the ensemble. The number 
of ways of arranging the energy states is given the symbol W. Consider a group of three systems, 
N = 3, with minimum energy, Figure 12.1.1 top-left. All of the systems are in the lowest possible 
energy state giving E = 0. There is only one way of arranging the energy states of the ensemble, 
all systems are in the lowest energy state, giving W = 1. For ease of discussion we will assume 
that the energy states are equally spaced, as is the case for harmonic molecular vibrations, and 
that energy is available in packets equal to the energy difference between the states. Transfer one 
packet of energy to the ensemble from the surroundings giving E = 1ε, Figure 12.2.1 top-right. 
Each of the systems can in turn share that packet, which results in three ways of arranging the 
available energy among the systems, Abc, aBc, and abC, giving W = 3 and average energy 1/3 ε. 
Each individual energy configuration of the ensemble is called a microstate. The ensemble can 
be in only one of the microstates at any time. Fluctuations cause the ensemble to jump from one 
microstate to another. The fluctuations are caused by collisions. 
   Transfer one additional packet of energy to the ensemble. There are now two packets of energy 
available, E = 2ε, and six total ways of arranging the energy among the three systems. There are 
now six microstates consistent with E = 2ε and average energy 2/3 ε. The transfer of energy to the 
ensemble increases the number of ways that the available energy can be arranged among the 
systems. The energy is dispersed among the available energy states. Transfers of energy into the 
ensemble correspond to heat transfers. Heat transfer increases the number of ways of arranging 
the energy states of the ensemble, because there is more energy available. 
   Now consider increasing the number of systems in the ensemble. With N = 4, and minimum 
energy, there is still only one way of arranging the energy states and W = 1. After transfer of one 
packet of energy, E = 1ε, there are four ways of arranging the energy states: Abcd, aBcd, abCd, 
and abcD, or W = 4. The change in energy dispersal for the transfer of one packet of energy is 
greater with four systems than with three since there are more available energy states. W 
increases with the number of systems in the ensemble, for a fixed amount of energy. 
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Figure 12.2.1: There is only one way of arranging the energy states for minimum energy. 
After transfer of one packet of energy there are three ways of arranging the energy states. For 
two packets of energy there are six total ways of arranging the energy states. A lower case 
letter represents a system with 0 packets of energy, a Capital letter represents a system with 
1ε, and an underlined Capital letter 2ε. 

 
 
   Extensive properties increase with the size of a system. We conclude that the thermodynamic 
state function that corresponds to energy dispersal should be an extensive property that is 
increased by thermal energy transfer. The thermodynamic property that characterizes energy 
dispersal is called the entropy. 
   The statistical definition of the entropy of a system in the ensemble is: 
 

 S ≡ 
k
N

  ln Wmax        (ensemble) 12.2.1 
 

where Wmax is the maximum number of ways of arranging the energy states of the ensemble, k is 
Boltzmann’s constant, and N is the number of systems in the ensemble. The maximum in W is 
necessary to ensure that the system is at equilibrium and correspondingly that entropy is a state 
function. Boltzmann’s constant is just the gas constant on a per molecule basis instead of per 
mole, k = R/NA = 1.38066x10-23 J K-1, where NA is Avogadro’s number. The units of entropy are 
then J K-1. In Eq. 12.2.1, division by N determines the ensemble average, just as we did for the 
ensemble averaged energy, Eq. 12.1.1. As the number of ways of arranging the states of the 
system increases, the entropy increases. W increases through transfers of heat and increases in 
the number of systems and the volume. This statistical definition of entropy, which is often 
called the Boltzmann entropy, was developed by Ludwig Boltzmann and first written in this 
form by Max Planck in 1901.1-3 Entropy is a measure of the statistical likelihood of a given 
configuration of energy states of the system. 
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   Instead of an ensemble average, we often consider just one system and find the number of 
ways of arranging the energy states of the molecules within a single system, Wmax. The 
Boltzmann formula is then just S = k ln Wmax for a single system. The practical application of the 
Boltzmann formula requires that we develop an easy method for evaluating W using standard 
statistical arguments. 
 

Averages are Calculated Using Distribution Numbers:   Enumerating all the individual 
configurations of the available energy, as we did in Figure 12.2.1, becomes tedious even for 
small systems. To determine thermodynamic averages, we don’t need to know all the individual 
configurations; we just need to know the number of systems in each energy state. We don’t care 
which specific system has a given amount of energy, we only need to know the number of 
systems that have each possible amount of energy. The number of systems in each energy state is 
specified using a set of distribution numbers, and all averages can be calculated using the 
distribution numbers. For a simple example, assume that the available energy levels are Ei = 0, 1, 
2, 3, 4, or 5 packets of energy. We determine the number of packets of energy in each system in 
the ensemble. Let the measurements for the energy in each system be: 
 

 4, 1, 2, 4, 4, 1, 5 packets 
 

for N = 7 total systems. The average energy is then (4+1+2+4+4+1+5)/7 = 3.0. However, we can 
do the averaging in a different order. We can count the number of times each possible result is 
found; these counts are the distribution numbers. In our example data set, the value 0 is not 
found, the value 1 occurs twice, the value 2 occurs once, the value 3 is not found, the value 4 
occurs three times, and the value 5 occurs once. The set of distribution numbers, {ni} is then 
(0,2,1,0,3,1). The sum of the distribution numbers must equal the total number of trials: 
 

 ∑
i

 ni = N          12.2.2 

 

where the sum extends over all possible energy states, i. The average energy is then calculated 
using the distribution numbers and all the possible experimental values, Ei: 
 

 〈E〉 = 
1
N

 ∑
i

 niEi          12.2.3 

 

For our example: 
 

 〈E〉 = 
1
N

 ∑
i

 niEi  =   
1
N

 (noEo + n1E1 + n2E2 + n3E3 + n4E4 + n5E5) 

      ↑ ↑ 

      ni Ei 
      ↓ ↓ 

 〈E〉 = 
1
N

 ∑
i

 niEi = 
0 (0) + 2 (1) + 1 (2) + 0 (3) + 3 (4) + 1 (5)

7  = 3.0  12.2.4 

 

The distribution numbers can also be related to the probability of occurrence of each possible 
value of the experiment. The probability of occurrence, pi, of value Ei is given by: 
 

 pi = 
ni

N
           12.2.5 
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which is the ensemble average of the occupation of state i. The average value of the energy is 
given by substituting this last equation for each term in the sum of Eq. 12.2.3: 
 

 〈E〉 = U – U(0) = ∑
i

 piEi    \    12.2.6 

 

which is subject to normalization of the probability: 
 

 ∑
i=0

N

 pi = 
1
N

 ∑
i

 ni = 1         12.2.7 

 

which is obtained by dividing Eq. 12.2.2 by N. In other words, the sum of the probabilities must 
equal one. The advantage of using distribution numbers is that the calculation of W becomes 
straightforward without explicitly specifying the individual microstates. 
   The number of ways of arranging the energy states, W, is given by a standard statistical 
formula: 
 

 W = 
N!

no! n1! n2!…
      (distinguishable) 12.2.8 

 

where N is the total number of distinguishable systems in the ensemble, and no , n1¸ etc. are the 
distribution numbers for the energy states. W is the number of microstates for the given set of 
distribution numbers. The “!” indicates the factorial of the number. For example, the factorial of 
the number 5 is defined as 5! = 5·4·3·2·1, while 0! = 1. Non-chemical examples of the use of this 
formula are given in the addendum. W is often called the statistical weight, or degeneracy, of a 
given set of distribution numbers. Degenerate states have the same energy. A set of distribution 
numbers with a larger statistical weight is more probable because the set of distribution numbers 
has more ways of occurring. 
   We can verify Eq. 12.2.8 using some examples. Consider an ensemble consisting of three 
identical systems, N = 3. Assume that three packets of energy are available to distribute among 
the three systems; the total energy of the ensemble is E = 3ε. The average energy of each system 
in the ensemble is then 〈E〉 = E/N = 1ε, Figure 12.2.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.2.2: The number of ways of arranging the energy states, W, for three systems with 
three packets of energy. W is determined by the distribution numbers for the energy states. 
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One way to distribute the available total energy is for each system to hold one packet of energy, 
which corresponds to the distribution numbers (0,3,0,0). There is only one way of arranging the 
states of this “equal sharing” distribution. The complete set configurations for the two additional 
sets of distribution numbers, (2,0,0,1) and (1,1,1,0), are diagrammed in Figure 12.2.2. The 
number of ways of arranging the energy states can also be calculated using Eq. 12.2.8 as: 
 

   W(2,0,0,1)  = 
3!

2! 0! 0! 1! = 3  and   W(1,1,1,0)  = 
3!

1! 1! 1! 0! = 6   12.2.9 
 

which give the same result as the exhaustive configurations in the figure. 
 
Microstates Have Equal a priori Probabilities:  A fundamental assumption is that each 
microstate has the same probability of occurrence; in other words, each microstate has an equal a 
priori  probability. A set of distribution numbers corresponds to a macrostate. For example, from 
Figure 12.2.2, the set of distribution numbers (2,0,0,1) corresponds to one macrostate that has W 
= 3 corresponding microstates. While each microstate is equally probable; the value of W shows 
that some macrostates are more probable than others. A simple example of this conclusion is 
shown by coin tosses. The possible outcomes of two successive coin tosses are HH, HT, TH, and 
TT, with H = heads and T = tails. Note that HH is just as probable as TH. The individual results 
HH and TH have an equal a priori probability. However, there are two ways of obtaining one H 
and one T, which are HT and TH. So the probability of observing one H and one T, in any order, 
is twice as probable as observing two successive H tosses. In other words, if the distribution 
numbers are arranged by the number of heads and tails (H,T), the macrostate (1,1) is twice as 
probable as (2,0): 
 

 Outcomes:   HH        HT TH TT 
 

 Distribution numbers:  (2,0)    (1,1)  (0,2) 
 Statistical weight:  W = 1    W = 2  W = 1 
 

Greater energy dispersal results from a macrostate with larger W. The most probable 
distribution  is the distribution that has the largest number of ways of arranging the energy 
states, Wmax. 
 
Statistical Weights Multiply for Composite Systems:   In thermodynamics we often discuss 
processes that result from two systems coming into contact to form a composite system. In 
particular, energy dispersal is the result of spontaneous heat transfer between two systems that 
come into contact. Statistical weights and probabilities multiply when, with no other changes, a 
composite is formed. Consider two systems that contain N1 and N2 molecules in volumes V1 and 
V2, respectively. System 1 has a statistical weight of W1 and system 2 has a statistical weight of 
W2. When the two systems are considered as a composite, with no other changes, the statistical 
weight is the product of the two separate weights: 
 

 W = W1 W2          12.2.10 
 

Figure 12.2.3 shows the result for two identical systems, N1= N2, V1= V2, 〈E〉1= 〈E〉2= 1/3 ε. 
Ensembles were chosen with N = 3 to make it easy to list all the microstates. 
   In this example we chose same size systems for convenience in counting the number of 
microstates; in general the systems can be different and Eq. 12.2.10 remains applicable. Now that 
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we know that statistical weights combine by multiplication, we can determine the changes that 
occur upon heat transfer. 
 
 
 
 
 
 
 
 
 
 

Figure 12.2.3: Statistical weights multiply upon forming a composite system, with no other 
changes. 

 
 
Heat is Transferred from a Hotter to a Colder Body:   Our experience tells us that energy in the 
form of heat is transferred from hot objects to cold objects. We can prove that this observation 
results from simple statistical considerations. Consider two systems, system 1 with a large initial 
energy and system 2 with a minimal initial energy, Figure 12.2.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.2.4: Energy is always transferred from a hotter object to a colder object because 
the energy transfer increases the number of ways of arranging the energy states for the 
composite of the two systems. 

 
 
We assume that the two systems are at constant volume and isolated from the surroundings so 
that the only process that can occur is the transfer of energy between the two systems. For 
illustrative purposes, to make the state counting easy, we assume the systems are identical, with 
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the same number of atoms and volume. We represent each system with an ensemble containing 
three duplicate systems for averaging purposes. The statistical weight representing system 1 is 
W1 = 6 and for system 2 is W2 = 1 for a total of 6 ways of arranging the energy states. The two 
systems are brought into contact. One packet of energy is transferred from ensemble 1 to 
ensemble 2. Energy is conserved in the process, but is the energy transfer spontaneous? After the 
transfer, system 1 has a statistical weight of 3 and system 2 has a statistical weight of 3. The final 
total number of ways of arranging the energy states of the composite of the two systems is then 
(3)(3) = 9. The final state has a higher probability of occurrence than the initial state, so the 
transfer is spontaneous. The heat transfer takes place because the final state is more probable 
than the initial state. The laws of probability govern energy transfer. 
   The two systems will exchange additional packets of energy if the result gives a greater W. The 
exchange of energy continues until the maximum number of ways of arranging the states of the 
composite has been attained, Wmax. The resulting state is the most probable state. Once the most 
probable state has been reached, no further spontaneous processes will occur. If there is no 
further impetus for change, then the composite is at equilibrium. The equilibrium state is the 
most probable state. Any additional transfer of energy between the two systems results in smaller 
W. For example in Figure 12.2.4 no further transfer of energy will occur, because the transfer of 
another packet will decrease W. The configuration shown is at equilibrium, W = Wmax. 

   Our example is artificial in several ways. First, we kept the amount of energy and the number 
of systems in the ensemble small to make it easy to count the number of microstates. For real 
heat transfer processes, the energy and the number of systems would be much larger. The result 
would be a vastly greater increase in W for the equilibrium state. Second, because we chose 
identical systems, the equilibrium state corresponded to equal average energy for the two 
systems, 0.333ε. For systems of different sizes, the average energy of the two systems will not be 
equal at equilibrium. 
 
The Equilibrium State is the Most Probable State:  Thermodynamic properties like internal 
energy and pressure are averages over all possible macrostates. However, the most probable 
macrostate plays a predominant role in determining thermodynamic averages. As the number of 
systems increases, the difference between W for the most probable macrostate and the next most 
probable macrostate increases rapidly. For N = 3 this difference is 6 – 3 = 3, Figure 12.2.1. 
For N = 6 this difference is 120 – 90 = 30, Figure 12.2.5. 
 
 
 
 
 
 
 

Figure 12.2.5: The number of ways of arranging the energy states, W, for six systems with 
six packets of energy. Only the macrostates are diagrammed. 
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predominant distribution.4 The most probable distribution is characterized by Wmax ways of 
arranging the energy states, which is an astronomically large number. In fact, with negligible 
error, we can use only the most probable distribution to calculate thermodynamic averages. 
Figure 12.2.6 summarizes the flow of concepts: the time average is replaced by the ensemble 
average, the ensemble average is dominated by the most probable distribution. The most 
probable distribution is the Boltzmann distribution. When the system is at equilibrium the state 
of the system is given by the most probable distribution. If the system is not at equilibrium, it is 
not in its most probable state. 
 
 
 
 
 
 
 
 
 
 

Figure 12.2.6: Thermodynamic averages are taken over the most probable distribution. The 
most probable distribution is the Boltzmann distribution. 

 
 
   The equilibrium state of the system is the most probable state as determined by the laws of 
random chance.5 It is by random chance that the result of many coin tosses gives 50% heads and 
50% tails, because this result is the most probable outcome. A thermodynamic system evolves to 
equilibrium precisely because the equilibrium state is the most likely state. In fact the 
equilibrium state is overwhelmingly likely. There are so many more ways for the equilibrium 
state to occur than any non-equilibrium state that we don’t expect any non-equilibrium state to 
occur, barring kinetic roadblocks. Any shift away from equilibrium takes the system to a much 
less probable state, W << Wmax. A shift away from equilibrium is very improbable, and is only a 
temporary, thermodynamically unobservable, small fluctuation in the system.4,5 Random chance 
provides a common sense explanation for the equilibrium state. We can also use a corresponding 
argument to provide a statistical interpretation of reversible processes. 
   We saw in Sections 1.2 and 7.4 that a reversible process occurs when a given large change is 
made through a sequence of small essentially reversible steps. The process occurs as a constraint, 
such as a moving piston, is displaced in many small steps, Figure 7.4.3. A reversible process 
occurs through a sequence of equilibrium or near-equilibrium states. Therefore, a reversible 
process takes place through a series of intermediate states with each step attaining the maximum 
number of ways of arranging the energy states of the system. That is, a reversible process occurs 
with W = Wmax through each intermediate step, subject to the constraints placed on the system. 
An irreversible process occurs when W < Wmax through at least some portion of the overall 
process. Of course, W is strictly always less than Wmax for an irreversible process, since Wmax is 
the maximum possible value for the statistical weight. Any other W must be smaller. 
   Notice that our specific process, Figure 12.2.4, was specified to be for the transfer of energy 
between two systems that are isolated from their surroundings. The requirement for isolation is 
an important restriction that must not be forgotten. 
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Entropy Always Increases for a Spontaneous Process in an Isolated System:  A spontaneous 
process occurs when the system undergoes a change that increases W. The system reaches 
equilibrium when it reaches the most probable state with W = Wmax. A reversible process occurs 
through a sequence of steps with W = Wmax. The definition of the entropy as S ≡ k/N ln Wmax 
then allows us to predict the direction for spontaneous change. Since W always increases for a 
spontaneous process in an isolated system, the entropy also increases for a spontaneous process 
in an isolated system. Since the entropy is defined in terms of Wmax, when we evaluate the 
change in entropy for a process, the initial and final states must be at equilibrium and the process 
must occur along a reversible path. For initial state 1 and final state 2: 
 

 ∆S = 
k
N

 (ln Wmax,2 –ln Wmax,1)        12.2.11 
 

If Wmax,2 > Wmax,1  the process is spontaneous. If Wmax,2 = Wmax,1, then no spontaneous process 
will occur and the system is at equilibrium. Combining the logarithmic terms then gives: 
 

 ∆S = 
k
N

 ln



Wmax,2

Wmax,1
 ≥ 0     > for spontaneous    = equilibrium     (isolated) 12.2.12 

 

This result is a statement of the Second Law of Thermodynamics and can be phrased as “entropy 
always increases for a spontaneous process in an isolated system.” This result is entirely 
reconciled in terms of the probability of occurrence of the macrostates of the ensemble and the 
definition of entropy, Eq. 12.2.1. However, we have only considered heat transfer. Using Eq. 
12.2.12 as the motivation for the Second Law is specific to processes at constant volume and no 
other forms of work. In the next chapter we show that the Second Law holds for any process in 
an isolated system, which extends these powerful ideas to chemical reactions. 
 
12.3  Entropy is an Extensive State Function 
 

   In Eq. 12.2.1 we simply stated the statistical definition of entropy. In this section we prove that 
the logarithmic form of Eq. 12.2.1 is the only possible functional form for the dependence of 
entropy on Wmax. We first focus on the unique property of logarithmic functions. 
   How can we relate the number of ways of arranging the energy states of the system to 
thermodynamic properties? Statistical weights and probabilities multiply, Eq. 12.2.10, but 
extensive thermodynamic state functions add. Consider again the two systems in Figure 12.2.4. 
The extensive thermodynamic variable that is an indicator of these statistical probabilities must 
be additive, S = S1 + S2, where S1 is a function of W1 for system 1, S2 is a function of W2 for 
system 2, and S is the result for the composite system: 
 

 S(W) ≡ S1(W1) + S2(W2)        12.3.1 
 

The statistical weight for the composite system is given by Eq. 12.2.10. Substituting W = W1W2 
into Eq. 12.3.1 gives: 
 

 S(W) = S(W1 W2) = S1(W1) + S2(W2)       12.3.2 
 

The logarithmic function has this property; ln(ab) = ln a + ln b. Logarithmic functions convert 
products into sums. We can conjecture that S ≡ k ln W, with k a constant. Substituting 
Si ≡ k ln Wi into Eq. 12.3.1 for the composite system and the individual systems gives: 
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 S(W) = S1 + S2 = k ln W1 + k ln W2 = k ln(W1 W2) = S(W1 W2)   12.3.3 
 

as required by Eq. 12.3.2. Now that we have shown that logarithmic functions convert products 
of statistical weights into sums, can we prove our conjecture that S ≡ k ln W? We need to prove 
that a logarithmic function is the only possible functional form that satisfies Eq. 12.3.2.6 
   Take a step back for a moment and assume that we don’t know the functional dependence of 
entropy on W. To find the functional dependence of the entropy on W, find the differential of the 
total entropy for a composite system starting from Eq. 12.3.1: 
 

 dS(W) = dS1(W1) + dS2(W2)        12.3.4 
 

Expressing the differentials in terms of W, W1, and W2 gives: 
 

 
dS(W)

dW
 dW = 

dS1(W1)
dW1

 dW1 + 
dS2(W2)

dW2
dW2      12.3.5 

 

The derivatives are regular one-dimensional derivatives because S is a function of W only, S1 is a 
function of W1 only, and S2 is a function of W2 only. However, from W = W1W2 and the product 
rule, dW = d(W1W2) = W1 dW2 + W2 dW1. Substitution for dW into the left-hand side of Eq. 
12.3.5 results in: 
 

 
dS(W)

dW
 (W1 dW2 + W2 dW1) = 

dS1(W1)
dW1

 dW1 + 
dS2(W2)

dW2
dW2    12.3.6 

 

The coefficients of dW1 and dW2 on both sides of this last equation must be equal, since W1 and 
W2 are for separate systems that are independent of each other: 
 

       
dS(W)

dW
 W2 dW1 = 

dS1(W1)
dW1

 dW1         and    
dS(W)

dW
 W1 dW2 = 

dS2(W2)
dW2

dW2 12.3.7 
 

Dividing the first equation by W2 dW1 and the second by W1dW2 gives: 
 

 
dS(W)

dW
 = 

1
W2

 
dS1(W1)

dW1
    and    

dS(W)
dW

 = 
1

W1
 
dS2(W2)

dW2
      12.3.8 

 

Setting these two equations equal to each other and cross multiplying results in: 
 

 W1 
dS1(W1)

dW1
  = W2 

dS2(W2)
dW2

        12.3.9 
 

However, W1 and W2 are independent of each other; we placed no restrictions on the number of 
molecules and the volume of each of these separate systems. This last equality can hold for any 
arbitrary values of W1 and W2 only if each equation is separately equal to a constant: 
 

 W1 
dS1(W1)

dW1
  = k and W2 

dS2(W2)
dW2

  = k     12.3.10 
 

We can then solve either of these last two equivalent equations for dS. Solving for dS1 from the 
first equation and integrating gives: 
 

 dS1 = 
k

W1
 dW1      and     S1 = 

⌡

⌠ k

W1
 dW1 = k ln W1+ cst    12.3.11 
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which is Boltzmann’s entropy to within an additive constant. These last equations hold for any 
system, so we can drop the subscripts. The constant is the value of S at absolute zero in 
temperature, So, when W is at its minimum value of W = 1 (usually). In general then the entropy 
is defined as: 
 

 S ≡ k ln Wmax + So         12.3.12 
 

noting that W is a maximum for a reversible process. The integral in Eq. 12.3.11 shows that the 
logarithmic function is the only function that satisfies the additivity of entropy for composite 
systems as expressed by Eq 12.3.2. We have not proved that the constant k in Eqs. 12.3.10-
12.3.12 is given by Boltzmann’s constant k for a single system or k/N for an ensemble. We will 
see that k = k/N is required for agreement between the statistical definition of entropy and the 
thermodynamic definition of entropy. The Boltzmann entropy is then seen to follow directly 
from the supposition that processes are governed purely by statistical rules for the distribution of 
energy among the available energy states. 
 
12.4  Larger Number of Ways of Arranging the Microstates Gives Larger Probability 
 

The definition of entropy based on Wmax, Eq. 12.2.1, is useful for understanding the fundamental 
issues linking probability theory and energy transfer. However, evaluating Wmax for practical 
chemical processes is difficult. In addition, neither Boltzmann nor Gibbs used this formula to 
develop the concept of entropy. Instead, the Gibbs and original Boltzmann definitions used the 
probability of occurrence of a given energy state as the fundamental statistical measure. Luckily 
the probability of occurrence of a macrostate is directly proportional to the number of ways of 
arranging the particular macrostate. The more ways of arriving at a given set of distribution 
numbers the more probable the state. The more probable the state the more often it occurs, since 
there are many ways of arriving at that state. How can we recast the entropy of a system directly 
in terms of probability? 
 
Entropy and Probability; S = – k Σ pi ln pi:   The number of ways of arranging the energy states 
of the system is given by Eq. 12.2.5. The logarithm of W is: 
 

 ln W = ln N! – ∑
i
 ln ni!        12.4.1 

 

There is a very useful formula for approximating the factorial of very large numbers called 
Sterling’s formula, which we derive in the addendum. Sterling’s formulas for N! are: 
 

 N! = 


N

e

N
 and     ln N! = N ln N – N    (N → ∞) 12.4.2 

 

Using Sterling’s approximation for the factorials in Eq. 12.4.1 gives: 
 

 ln W = N ln N – N – ∑
i
 (ni ln ni – ni)       12.4.3 

 

Summations can be done in any order; summations are associative, Σ(ai + bi) = Σ ai + Σ bi. 
Carrying the summation sign through the terms in parentheses gives: 
 

 ln W = N ln N – N – ∑
i
 ni ln ni + ∑

i
 ni       12.4.4 
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Using Eq. 12.2.2, the N and Σ ni cancel: 
 

 ln W = N ln N – ∑
i
 ni ln ni = ∑

i
 ni ln N – ∑

i
 ni ln ni     12.4.5 

 

Combining sums and distributing out the common factor of ni, Σ ai bi + Σ ai ci = Σ ai(bi+ci), gives: 
 

 ln W = – ∑
i

 ni (ln ni – ln N)         12.4.6 

 

The difference in the logs is the log of the ratio; ln a – ln b = ln(a/b): 

 ln W =  – ∑
i
 ni ln 

ni

N
         12.4.7 

 

Substitution of ln W from Eq. 12.4.7, with the most probable distribution, into Eq. 12.2.1 for the 
entropy gives: 
 

 S = – k ∑
i
 
ni

N
 ln 

ni

N
         12.4.8 

 

But ni/N is the probability of finding a system in state i, pi = ni/N : 
 

 S = – k ∑
i
 pi ln pi         12.4.9 

 

This last equation is an alternate form for the definition of entropy, in terms of the probability of 
occurrence of each energy state of the ensemble. Does this last equation have the correct 
behavior? When all systems in the ensemble are in the lowest energy state, po = 1, and the 
entropy is zero. There is no dispersal of energy, since all systems are in the lowest state. As 
energy is transferred into the system, more states are accessible and there are more terms in the 
sum, increasing the entropy, Example 12.4.1. Eq. 12.4.9 is closely related to the Boltzmann H-
function, which Boltzmann originally proposed for the definition of entropy.1 For practical 
applications, Eq. 12.4.9 is particularly useful for calculating the residual entropy of crystals at 
absolute zero and the conformational entropy in studies of protein folding and binding. 
 
 
              

Example 12.4.1:  Internal Energy and Entropy from Distribution Numbers 
The occupations for the energy states for 15 systems are given for three different cases in Figure 
12.4.1. Determine the internal energy, in multiples of ε above the reference energy, and entropy 
for each distribution. 
 
 
 
 
 (a).       (b).         (c). 

Figure 12.4.1: The occupations of the energy states for 15 systems at three different 
temperatures.  
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Answer:  (a). The probabilities for each energy state are: po = 15/15, p1 = 0, p2 = 0, p3 = 0. The set 
of distribution numbers is (15,0,0,0) giving W(15,0,0,0) = 1 and U – U(0) = 〈E〉 = 0. The entropy 
using Eq. 12.4.9 is then: 
 

 S = – k (1 ln 1) = 0 
 

(b). The probabilities for each energy state are: po = 12/15, p1 = 3/15, p2 = 0, p3 = 0. The set of 
distribution numbers is (12,3,0,0) giving W(12,3,0,0) = 455. The internal energy, using Eq. 
12.2.6, and the entropy are: 
 

 U – U(0) = 〈E〉 =  ∑
i

 piEi  = (12/15) 0ε + (3/15) 1ε = 3/15 ε 

 S = – k(12/15 ln 12/15 + 3/15 ln 3/15)  = 6.9x10-24 J K-1 
 

(c). The probabilities for each energy state are: po = 9/15, p1 = 4/15, p2 = 2/15, p3 = 0. 
The set of distribution numbers is (9,4,2,0) giving W(9,4,2,0) = 75075. The internal energy, and 
the entropy are: 
 

 U – U(0) = 〈E〉 =  ∑
i

 piEi  = (9/15) 0ε + (4/15) 1ε + (2/15) 2ε = 8/15 ε 

 S = – k(9/15 ln 9/15 + 4/15 ln 4/15+ 2/15 ln 2/15)  = 1.3x10-23 J K-1 

 

This example is schematic; Eqs. 12.2.1 and 12.4.9 are valid only in the limit of large 
occupations. The entropies are small because there are so few systems. 
 
              

 
 
Residual Entropy at Absolute Zero Temperature:  Eq. 12.3.12 gives the entropy of a system 
referenced to the entropy of the system at absolute zero. In Section 13.4 we will discuss the 
Third Law of Thermodynamics in more detail. The Third Law states that the absolute entropy of 
a pure, perfect crystalline solid is zero at absolute zero. In other words So = 0 in Eq. 12.3.12 for 
most substances. However, some substances are difficult to prepare as perfect crystalline solids. 
When a substance freezes at the melting point, the available thermal energy, RT, can be greater 
than the intermolecular forces that determine the orientation of the molecules in the crystal 
lattice. Two examples are C≡O and N=N=O. Crystals of solid C≡O are experimentally found to 
have molecules in random orientations, rather than perfect alignment, Figure 12.4.3. When the 
crystals of the substance are cooled to absolute zero, this orientational randomness is “locked in,” 
because the kinetics of reorientation are too slow. The entropy caused by this randomness is 
called the residual entropy of the substance. The definitions of entropy in Eqs. 12.2.1 and 
12.4.9 can alternatively be used to determine the residual entropy in crystalline substances.7,8 
 
 
 C≡O C≡O C≡O C≡O    C≡O O≡C C≡O O≡C C≡O 
 C≡O C≡O C≡O C≡O    C≡O C≡O O≡C O≡C C≡O 
 C≡O C≡O C≡O C≡O    O≡C C≡O O≡C C≡O O≡C 
 

  perfect crystal             crystal with orientational randomness 
 

Figure 12.4.3: The residual entropy for CO is the result of orientational randomness. 
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   For a molecule like C≡O, there are two distinguishable ways of packing the molecules into the 
crystal lattice: C≡O C≡O and C≡O O≡C. Let the number of ways of arranging a molecule in the 
lattice be w, for a single molecule. If there are N molecules in the system, there are wN total ways 
of arranging the molecules in the crystal. The residual entropy is then given by  
 

 So = k ln Wmax = k ln wN = N k ln w = nR ln w (molecular probabilities) 12.4.10 
 

since Nk can be rewritten as Nk = (N/NA)(NAk) = nR. For C≡O with w = 2 gives So = 5.76 J K-1 
mol-1. The R appears in this last equation because we are using w for a molecule instead of W for 
a full system; we multiply by Avogadro’s number to put the entropy on a per mole basis. 
   Alternatively, Eq. 12.4.9 can also be used as a basis for the calculation of the residual entropy. 
If the intermolecular forces are weak compared to RT, then the probability of placing a molecule 
in the lattice as C≡O and O≡C are equal, p(C≡O) = p(O≡C) = ½ and Eq. 12.4.9 gives: 
 

 So = – R ∑
i
  pi ln pi = – R (½ ln ½ + ½ ln ½ ) = R ln 2 = 5.76 J K-1 mol-1  12.4.11 

 

Once again, the R appears instead of k to put the entropy on a per mole basis. The advantage of 
Eq. 12.4.9 or 12.4.11 is that the probability based equation is useful if there is some partial 
alignment at the melting point; partial alignment occurs when the intermolecular forces are 
comparable to RT. 
 
The Residual Entropy Can also be Calculated as the Entropy of Mixing:  Another method for 
calculating the residual entropy is to find the entropy change as the lattice is formed from a 
mixture of molecules with the allowed orientations.7 The entropy of mixing is also a useful 
concept for understanding mixtures of gases and liquid solutions. Consider a crystalline lattice 
that can have molecules in two different orientations. For convenience, we diagram the two 
orientations as dark and light squares, Figure 12.4.4. The entropy of mixing is the difference in 
entropy of the initial state with unmixed orientations and the final state with each lattice site 
occupied by either orientation at random. 
 

 
 
 
 
 
 

Figure 12.4.4: Entropy of mixing of n1 molecules of orientation 1 with n2 molecules of 
orientation 2. The number of ways of arranging the initial unmixed state is Wunmixed = 1. The 
distribution on the right is only one of a very large number of equally probable random 
configurational microstates. 

 
 
Assume that there are n1 molecules of orientation 1 with n2 molecules of orientation 2. The 
number of ways of arranging the initial unmixed state is one, Wunmixed= 1. There is only one way 
of arranging the blocks of unmixed orientations. Assume the orientation of the molecule in a 
given cell is independent of the orientations of the molecules in the adjoining cells. The number 
of ways of arranging the random distribution of orientations in the mixed state is: 
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 Wmax = 
N!

n1! n2!
  with N = n1 + n2    (independent) 12.4.12 

 

and the entropy of mixing is given as: 
 

 ∆mixS = Smixed – Sunmixed = k ln 
Wmixed

Wunmixed
 = k ln 



N!

n1! n2!
  (independent) 12.4.13 

 

Using Sterling’s approximation for the factorials gives: 
 

 ∆mixS = k (ln N! – ln n1! – ln n2!) = k (N ln N – N – n1 ln n1 + n1 – n2 ln n2 + n2) 12.4.14 
 

Noting the cancellations using N = n1 + n2 and substituting for N in the N ln N term gives: 
 

 ∆mixS = k (N ln N – n1 ln n1 – n2 ln n2) = k [(n1+ n2) ln N – n1 ln n1 – n2 ln n2] 12.4.15 
 

Collecting terms in n1 and n2 results in: 
 

 ∆mixS = – k 



n1 ln 

n1

N + n2 ln 
n2

N      (independent) 12.4.16 
 

Multiplying and dividing each term by N gives: 
 

 ∆mixS = – Nk 



n1

N ln 
n1

N + 
n2

N ln 
n2

N      (independent) 12.4.17 
 

Note that N k = (N/NA)(NAk) = nR. The number ratios are the probabilities of the occurrence of 
the given orientation; that is p1 = n1/N and p2 = n2/N: 
 

 ∆mixS = – nR (p1 ln p1 + p2 ln p2)     (independent) 12.4.18 
 

This equation corresponds to Eq. 12.4.9, but it is written in terms of the probabilities of 
individual molecular states, instead of states of the ensemble. Alternatively the probabilities for 
each orientation are equal to the mole fractions, x1 = n1/N and x2 = n2/N: 
 

 ∆mixS = – nR (x1 ln x1 + x2 ln x2)     (independent) 12.4.19 
 

Applying Eq. 12.4.19 to the residual entropy of C≡O, if the two orientations are equally probable 
the mole fractions of left and right-pointing molecules is equal with x1 = x2 = ½, which gives the 
same result as Eq. 12.4.11, So = ∆mixS. 
   The entropy of mixing given by Eq. 12.4.19 is also applicable to mixtures of ideal gases. The 
requirement for independent occupations can also be satisfied by real gases and solutions that 
have equal forces between all the molecules. For mixtures with more than two constituents, Eq. 
12.4.19 generalizes to a sum over all components: 
 

 ∆mixS = – nR ∑
i

  xi ln xi      (equal forces) 12.4.20 

 
Relating Sums Over Molecular States to Sums Over System States in an Ensemble:  The 
expression for the entropy in Eq. 12.4.9 requires the probability of occupation for each energy 
state of the system. The Boltzmann distribution for the canonical ensemble allows us to calculate 
these probabilities. We will derive the Boltzmann distribution for the canonical ensemble in Sec. 
12.5. The result is that the probability of occurrence, pi, of a system with energy Ei is given by: 
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 pi = 
e–Ei/kT

Q   with Q ≡ ∑
i
 e–Ei/kT            (canonical ensemble)  12.4.21 

 

The ensemble partition function, Q, is the sum of the Boltzmann weighting factors over all 
system energies. Q is the normalization constant for the probability distribution. Notice the 
correspondence to the Boltzmann distribution over molecular energy states, Eq. 8.9.5. The 
Boltzmann distribution over molecular states is derived from the canonical ensemble Boltzmann 
distribution. The first step in determining the relationship between molecular and system 
properties is to assume that the number of molecules in each system and the number of systems 
in the ensemble are so large that the most probable distribution is the overwhelmingly 
predominant distribution. Each system in the ensemble, for the vast majority of the time, is in its 
most probable distribution over molecular states and has the ensemble average energy.9 The 
number of ways of arranging the states of the ensemble is then the number of ways of arranging 
the states of the composite of N identical distinguishable systems, Wmax = W N

max, where Wmax is 
the number of ways of arranging the states of a single system. The ensemble average of the 
entropy, Eq. 12.2.1, reduces to a function of Wmax for a single system: 
 

 S = 
k
N

 ln Wmax = 
k
N

 ln W N

max = k ln Wmax    (system) 12.4.22 
 

as we stated without proof in conjunction with Eq. 12.2.1. (The systems in the ensemble are 
distinguishable, because each system is considered as having a fixed position within the 
ensemble.) All we are saying is that the canonical ensemble represents the properties of a single 
system for averaging purposes, and for a single system S = k ln Wmax. 
   For a system of N molecules, Eqs. 12.4.10, 12.4.11, 12.4.18, and 12.4.19 show examples of 
how to relate properties of an individual molecule to Wmax. In Chapt. 32, we will show in detail 
that the properties of the system as a whole can be related to the properties of individual 
molecules and then the properties of the individual molecules can be related to the separate 
degrees of freedom of each molecule. Anticipating these results, we simply stated Eq. 8.9.5; for 
an ideal gas the Boltzmann distribution applies to individual molecular energy states and the 
corresponding partition function is the sum over the states of single molecules. We can use the 
Boltzmann distribution to describe the occupation of system energy states in an ensemble and the 
occupation of molecular energy states in a system. To make the distinction between single 
molecule properties and system properties, we denote individual molecule energy states as εi and 
the molecular partition function as lower case “q,” while the system energy states are given as Ei 
and the ensemble partition function as Q. The relationships between system and molecular states 
are summarized in Eqs. 12.4.23° and 12.4.24°, for an ideal gas: 
 
 

    Canonical Ensemble, general:      Single System, ideal, internal degrees of freedom: 
    Sum over system energy states, Ei      Sum over distinguishable single molecule states, εi 
 

   pi = 
e–Ei/kT

Q        Q ≡ ∑
i
 e–Ei/kT      pi = 

e–εi/kT

q         q ≡ ∑
i
 e–εi/kT      (internal)  12.4.23° 

    S = 
k
N

  ln Wmax = – k ∑
i
 pi ln pi      S = nR ln wmax = – nR ∑

i
 pi ln pi      (internal)  12.4.24° 
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where wmax is the maximum number of ways of arranging the states for a single molecule. The 
last equation for the entropy makes some assumptions about the distinguishability of the 
molecules in the system. We will focus on this issue in Chapt. 32. For now, note that Eq. 
12.4.24° holds for distinguishable molecules or in general for internal degrees of freedom. The 
details need not concern us for now. Using the Boltzmann distribution to explore the 
contributions of individual molecular degrees of freedom to the entropy is instructive as we 
consider the underlying concepts in chemical equilibrium. 
 
Energy is Dispersed by Increasing the Number of Accessible Degrees of Freedom: All molecular 
degrees of freedom contribute to the internal energy and entropy. The energies of translation, 
rotation, vibration, and electronic degrees of freedom add to give the energy of individual 
molecules. The energies of all the molecules in a system add to give the overall internal energy 
of the system. For real gases and condensed phases the total energy of a system also includes 
intermolecular interactions. A specific degree of freedom sometimes plays a predominant role in 
chemical processes. We can determine the influence of specific degrees of freedom if 
intermolecular interactions and interactions between the degrees of freedom are negligible.10 The 
energy of the system is then the sum of single molecule energies, and the energy of a single 
molecule is then the sum of the individual contributions of the degrees of freedom, Eq. 8.7.1: 
 

 Ei (system) = ∑
k

N

 εk with εk = εk,trans + ε k,rot + ε k,vib + ε k,elec    (ideal gas)  12.4.25° 

             all molecules 
 

The contribution of an individual internal degree of freedom to the entropy of the system is 
calculated using Eqs. 12.4.23° and 12.4.24° for a single system. 
   Determining the number of internal degrees of freedom for a system can be a useful way of 
estimating the entropy of a substance. Non-linear molecules have three rotational degrees of 
freedom, while linear molecules have only two. Non-linear molecules, therefore, typically have a 
greater contribution to the rotational entropy of the system than linear molecules (Sec. 8.8). The 
contributions of individual degrees of freedom to the entropy are discussed further in Sec. 10.3. 
 
Only Low Frequency Vibrations Contribute to the Entropy:  In Sec. 8.9 we pointed out that at 
298.2 K only vibrations with wave numbers less than about 500 cm-1 contribute to the internal 
energy of a substance, Figure 8.9.2. The vibrational internal energy and entropy at 298.2 K are 
listed in Table 12.4.1 for different frequency vibrations. 
 
 

Table 12.4.1: Vibrational contribution at 298.2 K to the internal energy and entropy of an 
ideal gas. 
 

Frequency (cm-1) U – U(0)  (kJ mol-1) S298  (J K-1mol-1) 

1000 0.10 0.39 
800 0.21 0.87 
500 0.59 2.75 
200 1.47 8.92 
100 1.93 14.45 
10 2.42 33.52 
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   Counting low frequency vibrations is a useful way to estimate the entropy of a substance. In 
summary then, additional rotational and low energy vibrational degrees of freedom provide more 
accessible energy states for the system and therefore provide for greater energy dispersal. 
 
 
             

Example 12.4.2:  Vibrational Contribution to Absolute Entropy 
Consider the gas phase entropy of propane and benzene, C3H8 and C6H6. Which substance has 
the larger entropy? 
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H
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 (a) propane, C3H8   (b) benzene, C6H6  
 
 

Answer:  Propane has two low frequency torsional vibrations, so the contribution from the 
vibrational degrees of freedom to the overall entropy is greater for propane. A normal mode 
analysis is not required for our purposes. However, the results are instructive. The low frequency 
vibrations are listed in Table 12.4.2. 
 

Table 12.4.2:  Low frequency vibrations for propane and benzene from molecular mechanics 
(MMFF), semi-empirical (AM1), a moderate level ab initio molecular orbital method 
(B3LYP/6-31G*), and experiment.11,12 Doubly degenerate vibrations are marked as x2. 
Torsions are in italics. 
 

 Propane (cm-1)   Benzene (cm-1)  
MMFF AM1 B3LYP Exp. MMFF AM1 B3LYP Exp. 
236 174 221 202 431 x2 371 x2 415 x2 405 x2 
283 203 272 283 534 x2 617 622 x2 606 x2 
433 413 366 375 677 648 x2 693 671 
828 805 759 748 699 748 718 849 

 
The experimental entropy of propane is slightly larger than benzene, S°(propane,g) = 
269.91 J K-1 mol-1 versus S°(benzene,g) = 269.31 J K-1 mol-1, even though benzene has more 
atoms and a higher molar mass. The low frequency torsional vibrations of propane provide more 
accessible energy states than the corresponding bending vibrations in benzene. 
 

             

 
 
Conformational Entropy:  One important degree of freedom especially for studies of protein 
folding and binding interactions is the torsional degree of freedom.10,13 Torsions are low 
frequency vibrations that result from changes in dihedral angles. Figure 8.7.10 defines the 
dihedral angles along the backbone of a protein. The transition from an unfolded, random coil 
geometry to the folded active conformation of a protein requires restricting most of the torsional 
angles along the backbone. The folding process, viewed from the point of view of the backbone 
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conformation, is an entropically unfavorable process. Considering binding interactions, many 
enzyme substrates and pharmaceutically active enzyme inhibitors have torsional flexibility. 
Often when substrates or drugs bind to a receptor site of an enzyme, the torsional degrees of 
freedom are restricted. The “freezing out” of torsional degrees of freedom in the formation of 
molecular complexes is entropically very unfavorable. Consequently, medicinal chemists take 
torsional flexibility into account when designing new drugs. Designing drugs with limited 
conformational flexibility is one way to enhance the binding of drugs to their intended receptor 
sites. This process is called rigidification. One example is the enhanced binding of atrophine to 
the receptor site for acetylcholine in acetylcholine esterase, Figure 12.4.2:14 
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+
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 (a). Acetylcholine  (b). Atrophine 
` 

Figure 12.4.2: The decreased torsional flexibility attained by incorporating important bonds 
in a ring decreases the conformational entropy penalty for binding. 

 
 
   For illustrative purposes, we will focus on a very simple system, butane, CH3CH2CH2CH3. 
Butane has three torsional degrees of freedom. The barrier to internal rotation for methyl groups 
is so small that the –CH3 groups are always in rapid motion, down to temperatures near absolute 
zero. The central C–C torsion, however, is sensitive to the environment of the molecule. A plot 
of the torsional energy as a function of the C–C–C–C dihedral angle is shown in Figure 12.4.2. 
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Figure 12.4.2: Dihedral angle dependence of the steric energy for butane using the MMFF 
forcefield. The anti-configuration is more stable than the gauche by 3.26 kJ mol-1. 
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From a molecular mechanics perspective, the higher energy of the gauche compared to the anti-
conformations is caused by the contribution of a one-fold torsional potential, Eq. 8.7.14, and Van 
der Waals interactions between the terminal methyl groups. The MMFF torsional potential for 
C–C–C–C is given by: 
 

 Etor = 0.051 (1 + cos φ ) – 0.341 (1 + cos 2φ ) + 0.166 ( 1 + cos 3φ )  12.4.16 
 

The reference energy is taken as the anti-conformation. The two gauche states have the same 
energy. States with the same energy are said to be degenerate. Eq. 12.4.24 then gives the 
conformational entropy based on the energy difference between the gauche and anti-states.13 

 
 
             

Example 12.4.3:  Conformational Entropy 
Calculate the conformational entropy for the torsional degree of freedom for butane. The energy 
difference between the gauche and anti-conformers in butane is 3.26 kJ mol-1 using molecular 
mechanics and the MMFF forcefield. 
 
 

Answer:  The plan is to calculate the Boltzmann weighting factors for the conformational states 
and the sum of the weighting factors to find the partition function. The partition function is the 
probability normalization constant. The probabilities of occurrence of each of the energy states is 
then calculated and the sum of (p ln p) is then found over each state. 
   The Boltzmann weighting factor for the anti-conformer is 1, since we chose a reference energy 
of zero for the anti-conformer and e0 = 1. The Boltzmann weighting factor for the gauche-
conformer is: 
 

 e-εgauche/RT = e-3.26x103J/(8.314 J K-1 mol-1 298.2 K) = 0.2681 
 

The partition function, Eq. 8.9.7, is the normalization for the probability distribution: 
 

 q = ∑
i
 e–εi/kT = 1 + 0.2681 + 0.2681 = 1.5362 

There is one anti-state and two degenerate gauche-states. The probabilities for each gauche and 
anti-energy state are then: 
 

 p(gauche) = e-εgauche/RT/q = 0.2681/1.5362 = 0.1745 

 p(anti) = e-εanti/RT/q = 1/q = 1/1.5362 = 0.6510 
 

The conformational entropy as given by Eq. 12.4.9 is for a sum over all the energies for a 
system. In this example, we are dealing with individual molecule energies. To convert to a per 
mole basis starting with the properties of a single molecule, Eq. 12.4.9 is multiplied by 
Avogadro’s number and the sum is over the energy states for a single molecule, Eq. 12.4.24: 
 

 S = – NA k ∑
i
  pi ln pi = – R ∑

i
  pi ln pi  (molecular probabilities) 12.4.17 

 S = – 8.314 J K-1 mol-1 [0.6510 ln(0.6510) + 0.1745 ln(0.1745) + 0.1745 ln(0.1745)] 
    = 7.39 J K-1 mol-1 
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When butane is bound in a restricted environment, most of this entropy is lost. For comparison, 
the difference in entropy between butane and cis-2-butene is 9.29 J K-1 mol-1. cis-2-Butene lacks 
the internal C–C–C–C torsion. Biochemists and medicinal chemists often use an average value of 
19. J K-1 mol-1 for the entropy lost for each free internal rotation.15 Example 10.3.1 is also 
appropriate for your reading at this point. 
 
              

 
 
   The examples of conformational entropy and residual entropy show the intrinsic usefulness and 
power of the concept of entropy and the Boltzmann distribution. We introduced the Boltzmann 
distribution without proof in Chapter 8. Now we have the tools to derive this most central and 
important result. 
 
12.5  The Boltzmann Distribution Gives the Equilibrium State 
 

   The equilibrium distribution of the available energy among the energy states of the ensemble is 
given by the most probable distribution, Figure 12.2.6. What is the most probable distribution? 
Are there some general principles that we can glean from the most probable distribution? The 
most probable distribution maximizes the entropy by maximizing W or Σ pi ln pi. To find the 
most probable distribution, we vary the probabilities of the occupations of the energy states, 
Figure 12.5.1. However, as we adjust the occupations we need to keep the number of systems in 
the ensemble and the total ensemble energy constant, since the ensemble is isolated from the 
surroundings. 
 
  

N = Σ
i
 ni 

 

E = Σ
i
 ni Ei 

sum over all states, i 

  

U-U(0) = 
∑ ni Ei

∑ ni
 

 

for most probable 
distribution 

 
Figure 12.5.1:  To find the most probable distribution, the probabilities of occurrence of the 
energy states are varied, while keeping the number of systems in the ensemble and the total 
ensemble energy constant. 

 
 
States with High Energy Are Less Probable than States with Low Energy:  To maximize the 
entropy we find the differential of the entropy with respect to changes in the probabilities and set 
the result equal to zero. For a general process, the change in entropy using Eq. 12.4.9 and the 
product rule is: 
 

 dS =  – k ∑
i
 (pi dln pi + ln pi dpi)       12.5.1 

 

Using the identity, dln pi = 1/pi dpi, and separating the sums gives: 
 

 dS =  – k ∑
i
 (1 + ln pi)dpi = – k ∑

i
  dpi – k ∑

i
 ln pi dpi    12.5.2 
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Note that Σ pi = 1, by normalization, so that d(Σ pi) = Σ dpi = 0. In other words, if the probability 
of occurrence of one energy state increases, then the probability of some other state must 
decrease since the sum of the probabilities is always constant at 1. The first term on the right in 
Eq. 12.5.2 is then zero leaving: 
 

 dS =  – k ∑
i
 ln pi dpi         12.5.3 

 

The most probable distribution maximizes S: 
 

 dS =  – k ∑
i
 ln pi dpi = 0     (most probable) 12.5.4 

 

However, the changes in the probabilities, as we just noted, are dependent on each other. The 
probabilities must sum to one and the total energy of the ensemble must be constant, since the 
ensemble is isolated: Σ pi = 1 and Σ Ei pi = E. Correspondingly, we must keep Σ dpi = 0 and 
Σ Ei dpi = 0 as we adjust the probabilities of each state to find the maximum entropy. These two 
conditions are called constraints, and this type of problem is called a constrained maximization. 
To be as general as possible, note that constant values multiplying the constraints also give a 
zero result: 
 

 α ∑
i
 dpi = 0   and  β ∑

i
 Ei dpi = 0       (constraints)  12.5.5 

 

Since both of these equations are equal to zero, adding Eqs. 12.5.4 and 12.5.5 still gives zero, 
which maximizes the entropy subject to the constraints: 
 

 dS =  – k ∑
i
 ln pi dpi + α ∑

i
 dpi + β ∑

i
 Ei dpi = 0  (most probable) 12.5.6 

 

The trick of adding in the constraints allows us to treat the changes in probabilities, dpi, as 
independent variables. This constrained maximization method was developed by Joseph Louis 
Lagrange in 1804. The Lagrange method is discussed further in the addendum. The constants α 
and β are called Lagrange multipliers and the method is often called the “method of 
undetermined multipliers.” The important task we now face is to determine the value and 
meaning of α and β. Note that α is associated with the probability normalization and β is 
associated with conservation of the total ensemble energy, which in turn fixes the average energy 
of a system in the ensemble. 
   Combining sums and distributing out the common factor of dpi in Eq. 12.5.6 gives: 
 

 dS =  – k ∑
i
 (ln pi + α + β Ei) dpi = 0    (most probable) 12.5.7 

 

Since the dpi are now independent and can vary from 0 to 1, the only way to ensure that the sum 
in the last equation always gives zero is if the coefficient of each term of dpi is separately equal 
to zero: 
 

 ln pi + α + β Ei = 0      (most probable) 12.5.8 
 

We can solve this last equation to find the most probable distribution: 
 

 pi = e–α e–βEi       (most probable) 12.5.9 
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The probability of occurrence of a given energy state is an exponentially decreasing function of 
the energy. Low energy states are more probable than high energy states; there are few high 
energy systems. The e–βEi term is called the Boltzmann weighting factor for the energy state. 
We can find the value of e–α through normalization using Eq. 12.2.7: 
 

 ∑
i
 pi = ∑

i
  e–α e–βEi = e–α ∑

i
 e–βEi = 1      12.5.10 

 

Solving for e–α gives: 
 

 e–α = 
1

∑
i
 e–βEi

          12.5.11 

 

This factor is just the normalization for the probability distribution. Substitution of this last factor 
into Eq. 12.5.9 gives: 
 

 pi = 
e–βEi

∑
i
 e–βEi

       (most probable) 12.5.12 

 

The sum in the denominator is called the partition function and is often given the symbol Q: 
 

 Q ≡ ∑
i
 e–βEi         (canonical ensemble) 12.5.13 

 

Substitution of this last definition into Eq. 12.5.12 gives the working formula: 
 

 pi = 
e–βEi

Q        (most probable) 12.5.14 
 

The partition function, Q, is the sum of the Boltzmann weighing factors over all the accessible 
energy states of the ensemble. We will have much more to say about Q in the foundations of 
statistical mechanics chapter. However, for now, we will just consider Q as the normalization 
ensuring that Σ pi = 1. We still need to find the value for β. 
 
β = 1/kT:  With the most probable distribution in hand we can now calculate the entropy change 
and average energy change for a process. The Boltzmann distribution applies when the system is 
at equilibrium. Taking the logarithm of the Boltzmann distribution, Eq. 12.5.14, gives: 
 

 ln pi = – βEi – ln Q      (equilibrium)  12.5.15 
 

Substitution of this last equation into the change in entropy, Eq. 12.5.3, gives: 
 

 dS =  – k ∑
i
  (– βEi – ln Q)dpi       (equilibrium, cst.V)  12.5.16 

 

The constant volume constraint results because a system in a canonical ensemble is at fixed 
volume, giving fixed energy states. Distributing through the summation gives: 
 

 dS =   kβ∑
i
 Ei dpi + k ln Q ∑

i
 dpi      (equilibrium, cst.V)  12.5.17 
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Note once again that Σ dpi = 0, giving the last term in Eq. 12.5.17 as zero, which leaves: 
 

 dS = kβ∑
i
 Ei dpi         (equilibrium, cst.V)  12.5.18 

 

Notice that the summation in this last equation is the change in the ensemble averaged energy. 
The fundamental basis for the connection between statistical mechanics and thermodynamics is 
the equality of the internal energy and the ensemble averaged energy, U – U(0) = 〈E〉, Eq. 12.1.2. 
For a change during a process then dU = d〈E〉. The energy states for a system are functions of the 
volume, but for a constant volume process the Ei are fixed. We can find the change in average 
energy for a constant volume process by taking the differential of the average energy, Eq. 12.2.6, 
for fixed Ei: 
 

 dU = d〈E〉 =  ∑
i

 Ei dpi       (cst. V) 12.5.19 

 

At constant volume the change in internal energy is given solely by changes in the populations of 
the energy states. Dividing Eq. 12.5.18 by 12.5.19, which is taken at constant volume, then gives 
one of the most fundamental results in thermodynamics: 
 

 






∂S

∂U V
 = kβ         (equilibrium, cst.V)  12.5.20 

 

where k is Boltzmann’s constant. This last equation is the key to finding the meaning of β. First 
notice the calculations of the change in entropy, Eq. 12.5.18, and the change in internal energy, 
Eq. 12.5.19, require detailed information about the energy states and the distribution of the 
energy among those states. However, the ratio of the changes always results in a number, kβ. 
Remember that β is the Lagrange multiplier that is related to maintaining a fixed average energy 
for the system. Our examples, Figure 12.2.1 and 12.3.4, have shown that the entropy increases as 
energy is transferred into the system giving (∂S/∂U) > 0, which makes β a positive number. 
Summarizing then, β is an important characteristic of the system at equilibrium that is positive 
and characterizes the average energy. We are getting closer to the meaning of β. 
   The ideas that we have developed in this chapter are based on the everyday observation that 
heat is transferred from a hotter to a colder body. Eq. 12.5.20 characterizes thermal energy 
transfer. Consider energy transfer between two constant volume systems 1 and 2. Eq. 12.5.20 
applies to both systems separately and solving for the entropy changes gives: 
 

 dS1 = kβ1dU1  and dS2 = kβ2dU2    (cst. V) 12.5.21 
 

The total change in entropy for the transfer is the sum of both systems: 
 

 dStot = dS1 + dS2 = kβ1dU1 + kβ2dU2     (cst. V) 12.5.22 
 

dStot is positive for a spontaneous process, as we determined in Sec. 12.2. The transfer of energy 
between the two systems is equal in magnitude and opposite in sign, dU1 = – dU2. Substituting 
for dU2 in the last equation and assuming a spontaneous process gives: 
 

 dStot = k(β1 – β2) dU1 > 0       (spontaneous, cst.V)  12.5.23 
 

Now consider three cases for energy transfer; we need to choose the signs of (β1 – β2) and dU1 in 
Eq. 12.5.23 to give an overall positive entropy change: 
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1. If β1 < β2 then (β1 – β2) < 0 and we must have dU1 < 0 to give dStot > 0. For dU1< 0 energy 
is transferred from system 1 to system 2. System 1 must be the hotter system. 
 

2. If β1 > β2 then (β1 – β2) > 0 and we must have dU1 > 0 to give dStot > 0. For dU1 > 0 energy 
is transferred from system 2 to system 1. System 2 must be the hotter system. 
 

3. If β1 = β2 then dStot= 0, there will be no energy transfer and the two systems must be at 
equilibrium. 

 

We find that β is an indicator of the direction of energy flow and equilibrium. We can reconcile 
the three relationships if we set: 
 

 β = 
1

kT           12.5.24 
 

Then, for the three cases above, respectively: 
 

1. If β1 < β2 then (1/T1 – 1/T2) < 0 giving T1 > T2 making system 1 the hotter system, 
 

2. If β1 > β2 then (1/T1 – 1/T2) > 0 giving T1 < T2 making system 2 the hotter system, 
 

3. If β1 = β2 then T1 = T2 and the systems are at the same temperature, 
 

which agree with the previous conclusions. Energy is transferred from the hotter to the colder 
body for cases 1 and 2. Case 3 is particularly interesting. In Section 7.7 we introduced 
temperature as a measure of equilibrium, based on the Zeroth Law of thermodynamics.16 Two 
systems at equilibrium have the same temperature. Case 3 shows that the statistical and 
thermodynamic conceptions of temperature are consistent. The result that β = 1/kT is consistent 
with our everyday conception of hotter and colder. Substituting Eq. 12.5.24 into Eq. 12.5.20 
gives the most fundamental definition of temperature:16 

 

 






∂S

∂U V
 = 

1
T         (equilibrium, cst.V)  12.5.25 

 

We reached the same conclusion on purely thermodynamic grounds in Sec. 10.2, using the same 
process. You may want to read in Sec. 10.2 on the “Thermodynamic Definition of Temperature” 
to help reconcile this definition of temperature with your own personal experience. Temperature 
is an indicator of equilibrium. Systems at equilibrium have a Boltzmann distribution among their 
energy states characterized by the same temperature. We can summarize our results, written now 
in terms of the temperature, by substituting β = 1/kT into Eqs. 12.5.12, 12.5.14, and 12.4.18. The 
equilibrium probability distribution for the energy states of the ensemble is: 
 

 pi = 
e–Ei/kT

∑
i
 e–Ei/kT       (equilibrium)  12.5.26 

 

The Boltzmann distribution written in terms of the partition function is given by: 
 

 pi = 
e–Ei/kT

Q   with Q ≡ ∑
i
 e–Ei/kT   (equilibrium)  12.5.27 

 

The entropy change for a process is given by Eq. 12.5.18: 
 



464 
 

 dS = 
1
T ∑

i
 Ei dpi        (equilibrium, cst.V)  12.5.28 

 

These three equations with Eq. 12.2.6 and 12.3.9 provide a fundamental description of a system. 
Together these equations are used to predict the spontaneous direction for chemical reactions and 
the position of equilibrium. 
 
 
              

Example 12.5.1:  Determination of Temperature from the Boltzmann Distribution 
The temperature is a single thermodynamic parameter that characterizes the distribution of 
systems among the allowed energy states. Determine the temperature for the energy distribution 
given in Figure 12.4.1c. Assume the energy state spacing is for a harmonic oscillator with 
frequency 200. cm-1. 
 
 
Answer:  Taking the log of Eq. 12.4.27 gives a function that is linear in the energy states for the 
system: 
 

 ln pi = – 
Ei

kT – ln Q         12.5.29 
 

The slope of a linear curve fit of ln pi versus Ei gives slope = –1/kT. The units for the energy are 
joules. If the energy is converted to kJ mol-1 then the slope becomes slope = –1/RT. The energy 
state spacing is the fundamental vibration frequency (which you can read directly from the 
corresponding peak in the infrared spectrum) in kJ mol-1, Eq. 8.9.2: 
 

 ε = ∆E = 
hc
λ  = NA hc ν~ 

   = 6.022x1023 mol-1(6.626x10-34 J s)(2.998x108m s-1)(200. cm-1)(100 cm/1 m) 
   = 2393 J mol-1 = 2.393 kJ mol-1 
 

The corresponding data and plot are given below. 
 
 

i Ei (kJ mol-1) ni pi ln pi 
0 0.000 9 0.600 -0.511 
1 2.393 4 0.267 -1.322 
2 4.785 2 0.133 -2.015 

 
slope = –1/RT = -0.3143 kJ-1 mol 
RT = 3.182 kJ mol-1 

 

T = 
3.182 kJ mol-1

8.314x10-3 kJ K-1 mol-1 = 383. K 

 

 

 
              

 
 
 

y = -0.3143x - 0.5305

R² = 0.998
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12.6  Entropy and Heat Transfer 
 

   The entropy is defined through the statistical weights or the probability of occupation of the 
energy states of a system, Eqs. 12.2.1 and 12.4.9. These definitions are crucial in developing an 
understanding of the concept of entropy. However, these formulations are often cumbersome to 
apply in practical situations. A more easily applied definition of entropy in terms of 
thermodynamic variables is necessary. We began our discussion of entropy in Secs. 10.1 and 
12.2 by focusing on the simple idea that heat is transferred from hotter to colder objects. That 
observation was then shown to be the result of the maximization of the number of accessible 
energy states for the two objects. However, we did not yet make a direct connection to heat 
transfer. The statistical definition of heat transfer is the link to the thermodynamic definition of 
entropy. Heat transfer results in a change of average energy and entropy for a system. 
   In general, a change in average energy for a process can result from changes in the occupations 
of the energy states, dni, or a change in the energy states themselves, dEi. Taking the derivative 
of Eq. 12.2.3 for a general process: 
 

 d〈E〉 = 
1
N

 




∑

i

 Ei dni + ∑
i

 ni dEi        12.6.1 

 

We can make this expression look a bit more familiar by realizing that work results from a 
change in volume of the system. Consider a gas confined in a container of volume V. The energy 
states for translation depend on the volume of the container: 
 

 dEi = 






∂Ei

∂V ni

dV         12.6.2 
 

Substitution of this explicit volume dependence back into Eq. 12.6.1 gives:17 

 

 d〈E〉 = 
1
N

 








∑
i

 Ei dni + ∑
i

 ni 





∂Ei

∂V ni

dV        12.6.3 

            heat  work 
 

This last equation is now similar to the thermodynamic formula for the change in internal energy 
for a reversible process, dU = dqrev – P dV. The first term in Eq. 12.5.3 gives the heat transfer for 
a reversible process while the second term gives the work. We can also relate the heat transfer to 
the change in probability of occupation of the energy states using the definition of the probability 
from Eq. 12.2.5: 
 

 dqrev = 
1
N

 ∑
i

 Ei dni = ∑
i

 Ei dpi      (reversible) 12.6.4 

 

The transfer of heat into a system at constant volume results in a change in the occupations of the 
energy states, as we diagrammed in Figure 12.2.1. 
 
The Thermodynamic Definition of Entropy:   For a general process, the change in entropy is 
given by Eq. 12.5.28. Substituting the statistical definition of heat transfer, Eq. 12.6.4, into Eq. 
12.5.28 gives: 
 

 dS = 
1
T ∑

i
 Ei dpi = 

dqrev

T       (reversible) 12.6.5 
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This last equality gives the thermodynamic definition of the entropy change for the system. This 
definition is central and fundamental for the development of the thermodynamic theory of 
spontaneous processes and equilibrium. The result shows the direct relationship between heat 
transfer and entropy. As discussed in Sec. 12.2 and Eq. 12.5.4, the entropy is determined by 
Wmax, which corresponds to a reversible process, so the heat transfer must also be reversible. The 
implications of the thermodynamic definition of entropy are developed in the next four chapters. 
 
12.7  When Are Entropy and Disorder Related? 
 

In general entropy and disorder are not directly related.18-22 Disorder is often used as a way of 
explaining the meaning of entropy; however, this relationship is not valid in many cases. The 
source of the confusion is primarily centered on the issue of indistinguishablity, which we will 
discuss in Chapt. 32.22 One problem is that the scientific definition of disorder is not well 
established. Consider the two systems in Figure 12.7.1; both have 20x15 = 300 tiles. Which 
system is more disordered? There is only one way of arranging the tiles to give the exact 
configuration shown for each system, W = 1. Both of the systems in the figure have the same 
number of ways of occurrence, so they are both equally probable as single configurations. The 
number of ways of arranging the tiles for a random distribution is W = 2300. The most probable 
distribution is half black and half white, Wmost probable = 300!/(150! 150!) = 2.04x1090, where the 
black and white tiles can occur in any position. However, the exact configurations in the figure 
are both equally probable and so are equally “disordered.”21 It is not uncommon for the scientific 
applications of everyday concepts to be more restricted than their everyday usage. Disorder is 
not a scientifically precise concept. 
 
 
 
 
 
 
 

Figure 12.7.1: Each configuration has an equal probability of occurrence, W = 1 for both. 
Each system has the same amount of “disorder” as compared to all the ways of arranging the 
states of the system with random dark and light squares: W = 2300. 

 
 
   Is disorder a useful analogy for entropy, even if the concept of disorder is only loosely 
associated with measureable thermodynamic properties? Consider the gas phase absolute entropy 
of propane and benzene, C3H8 and C6H6, Example12.4.1. Which substance has the larger 
entropy? Which substance has the greater disorder? Using disorder as an analogy for entropy is 
not helpful in determining the relative entropy of substances. In general you will find few 
analogies in physical chemistry texts. Analogies can often be misleading. However, while the 
concept of disorder is not particularly useful, configurational entropy does play an important role 
in the change of entropy for chemical processes.10,17 

   The conformational entropy of molecular torsions and the residual entropy at absolute zero for 
C≡O are examples in which configurational randomness plays an important role in chemical 
processes. Three things are necessary to associate configurational randomness with entropy: 
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1. The configurational randomness must be associated with the dispersal of energy. 
2. The configurational randomness must lead to distinguishable states. 
3. The system must have some mechanism for randomly accessing each possible microstate of 

the system. 
 

Condition 1 is met if the configurational randomness results in the dispersal of energy in the 
underlying systems or molecules. For example, when considering the residual entropy at absolute 
zero of C≡O, the random orientation of the C≡O molecules is associated with the electronic and 
vibrational energy of each molecule in the crystal lattice. Specifically, configurational 
randomness and entropy are related if the number of ways of arranging the states of the system 
can be factored into two terms, one relating to positional or orientational randomness and the 
other term the remaining degrees of freedom of the system. W can be factored if the remaining 
degrees of freedom are the same for each configuration of the molecule or system.10,17,23,24 

 

 S = k ln(WconfigW ' sys)   (equivalent configurational subsystems) 12.7.1 
 

where Wconfig is the number of ways of arranging the states of the system for the different spatial 
configurations and W ' sys is the number of ways of arranging the energy states for each 
configuration of the system. When finding differences in entropy for a process, the statistical 
weights for the underlying degrees of freedom cancel: 
 

     ∆S = S2 – S1 = [k ln(Wconfig,2W ' sys)] – [k ln(Wconfig,2W ' sys)] = k ln






Wconfig,2

Wconfig,1
  12.7.2 

 

giving the appearance that the configurational change alone is responsible for the entropy 
change. However, there would be no change in entropy were the total statistical weight not 
associated with energy dispersal, as originally given in Eq. 12.7.1. 
   Condition 2 will be a major topic in the later chapter on the foundations of statistical 
mechanics. In general, only distinguishable states contribute to the entropy of a system. For 
example, the two nitrogen atoms in N2 are indistinguishable. To follow the positions of the 
atoms, label the two nitrogen atoms as N'≡N". The configurational change N'≡N" → N"≡N' is 
indistinguishable and therefore does not contribute to configurational entropy. Our development 
in this chapter has focused on the system as a whole by using the canonical ensemble. We will 
discuss how to relate system energies, partition functions, and entropies to molecular properties 
in the subsequent foundations chapter. Indistinguishability plays an important role in the 
relationship of molecular properties to ensemble properties.22 

   Condition 3 is the result of the ergotic hypothesis. The time average of a system may be 
replaced by an ensemble average only if the ergotic hypothesis is satisfied. The ergotic 
hypothesis requires that each possible microstate of the system be accessed at random with equal 
a priori probability. The ergotic hypothesis is satisfied by most chemical systems, except for 
some magnetic interactions. 
 
Energy is Dispersed by Increasing Spatial Dispersion:  For an ideal gas the number of ways of 
arranging the states of the system can be factored into a term that depends on the volume, V, and 
a term that depends on the molecular translational kinetic energy and the internal degrees of 
freedom. The configurational entropy for the location of the ideal gas molecules can then be used 
to calculate the change in entropy for a process for a change in volume using Eq. 12.7.2. 
Consider the isothermal expansion of an ideal gas from volume V1 to a larger volume V2. The 
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result of the change in configurational entropy is the dispersal of molecular kinetic energy and 
potential energy from a small volume to a large volume, which is a favorable process. Suppose 
that N molecules are confined in a piston by a stop, Figure 10.1.2. The piston is isolated from the 
surroundings. The initial pressure of the gas is P1 and the initial volume is V1. The other side of 
the piston is at vacuum. The initial number of ways of arranging the states of a single molecule is 
proportional to the initial volume and for the N molecules. For the system of N molecules then 
Wmax,1 ∝ V1

N. The stop is removed allowing the gas to expand to occupy a new volume V2. The 
number of ways of arranging the states for the final volume are Wmax,2 ∝ V2

N. Using Eq. 12.7.2, 
the change in entropy is given by: 
 

 ∆S = k ln






Wconfig,2

Wconfig,1
 = k ln



V2

N

V1
N  = Nk ln



V2

V1
 = nR ln



V2

V1
    12.7.3 

 

If V 2 > V1 then ∆S > 0, showing that the expansion of an ideal gas into a vacuum is spontaneous 
for an isolated system. 
 
 
12.8 Summary – Looking Ahead 
 

   The development of the concept of entropy is often considered the single most important 
development in physical science in the 19th century. This single concept laid the foundation for 
all modern science. Entropy is the statistical and thermodynamic extensive state function that 
determines the spontaneity of all macroscopic physical processes. The equation S = k lnW is 
inscribed on Boltzmann’s tomb in Vienna, highlighting the contribution of the concept of 
entropy and of Boltzmann to our understanding of the physical universe. 
   We can conveniently combine both the statistical and thermodynamic perspectives on entropy 
by considering Eqs. 12.2.1, 12.5.7, 12.5.28, and 12.6.5 together to gain greater insight into the 
meaning of entropy: 
 

 S = 
k
N

  ln Wmax = – k ∑
i

 pi ln pi      and       dS = 
dqrev

T  = – k ∑
i

 ln pi dpi  12.8.1 

 

Energy in the form of heat is transferred from hotter to colder bodies, which increases the 
number of ways of arranging the states of the composite system. Heat transfer into a system at 
constant volume results in changes in the occupations of the energy states, increasing the number 
of ways of arranging the energy states of the system. The number of ways of arranging the states 
of the system is a measure of energy dispersal. Energy dispersal corresponds to an increase in the 
probability of occurrence of many different energy states of the system. The equilibrium state is 
the most probable state. The most probable state is characterized by a single parameter called the 
temperature. Bodies in contact at equilibrium have the same temperature. Entropy is the 
extensive state function that characterizes energy dispersal. Entropy always increases for a 
spontaneous process in an isolated system because processes progress from states of lower 
probability to states of higher probability.25 

   In the next chapter, we explore the thermodynamic definition of entropy, dS = dqrev/T. The 
thermodynamic definition of entropy is often easier to use in practical problems, especially large 
scale problems. However, we can freely switch between the statistical and thermodynamic 
viewpoints at any point to find the practical solution to a new problem. The statistical definition 
of entropy reinforces the fact that random chance plays a determining role in chemical equilibria. 
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12.9 Addendum: Probability, Sterling’s Approximation, and Constrained Maximization 

 

   Probability theory is used to predict the likelihood of a given set of events. For example, if you 
are a gambler, what is the probability of being dealt a royal flush or of a coin landing heads-up 
four times in a row? Consider N possible single events. For example, for coin tosses there are 
two possible events: heads (H) and tails (T) and N = 2. For dice games, rolling a single die gives 
6 possible events: 1, 2, 3, 4, 5, and 6 giving N = 6. For selecting playing cards there are 52 
different cards or events, N = 52. 
   We will make three important assumptions to establish the probability of occurrence of various 
events; we will assume that each event is independent of any other event, the events are mutually 
exclusive, and each individual outcome has an equal probability.25 The assumption of 
independence means that the results of any single event are uncorrelated with previous events. 
Events are mutually exclusive if the occurrence of event A means that event B cannot occur. A 
coin cannot land with both heads and tails showing; heads and tails are mutually exclusive. We 
also assume that each individual event has an equal a priori probability of occurrence. For coin 
tosses, heads is just as likely to occur as tails. We always promise to use “honest” dice. Let the 
number of ways for a given event to occur be nA. Then the probability of occurrence for the 
event A is: 
 

 pA = nA/N     (independent, mutually exclusive) 12.9.1 
 

For example, for coin tosses let the event be the occurrence of heads. There is only one way for a 
coin to land heads-up, so nH = 1 out of N = 2 possible events, giving the probability for a coin 
landing heads-up as pH = ½. For throwing a die let the event be the occurrence of a 3. There is 
only one way for a single die to land with a 3 showing, n3 = 1 out of N = 6 possible events, 
giving the probability for a die landing with 3 showing p3 = 1/6. The assumption of equal a priori 
probability requires that the probability of a die landing with a 1 showing is also p1 = 1/6. What is 
the probability of selecting a ♥ from a deck of cards? There are n♥ = 13 hearts in every deck, so 
the probability is p♥ = n♥/N = 13/52. 
   Now what happens for multiple events? Multiple events can occur as repeated selections in 
time or space. Flipping a single coin repeatedly is an example of a repeated selection in time. 
Filling several boxes is a multiple event in space. Probabilities for individual events combine in 
two different ways to give the probability of a multiple event.27 

 
Probabilities Add for the Occurrence of Events A OR B:   Consider first a single event that can 
happen in multiple ways. What is the probability of selecting a Queen from a deck of cards? The 
probability of selecting a Q♥, or a Q♦, or a Q♣, or a Q♠ is each individually 1/52. The 
probability of drawing a Queen is the sum of the probabilities of drawing a Queen of any suit: 
pQ = pQ♥ + pQ♦ + pQ♣ + pQ♠ = 4/52. The probability of drawing any Queen is four times as 
probable as selecting any single particular Queen. Now consider multiple events. What is the 
probability of rolling a 6 on a single die in two rolls? The result can occur on the first roll or the 
second roll. The probabilities again add; the probability on the first selection is 1/6 and on the 
second selection is 1/6 adding to give 2/6 overall. Probabilities of single events add when the 
selection can be expressed as an “OR” combination of events.25 
 
Probabilities Multiply for the Occurrence of Events A AND B:   Consider a multiple event in 
time. What is the probability of two successive heads-up coin tosses? The complete list of 
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possibilities for two successive coin tosses is: HH, HT, TH, and TT. The occurrence of two 
successive heads-up, HH, is only one of the four possible outcomes giving a probability of pHH = 
¼. The probabilities for the single events multiply, because we require H on the first toss and H 
on the second toss. The probability of heads on the first toss is pH and on the second toss is pH, 
giving for H and H, pHH = pH

2. Probabilities of single events multiply when the selection can be 
expressed as an “AND” combination of events. The probability of three successive H’s, HHH, is 
one out of eight or pHHH= (½)3: 
 

 HHH HHT HTH THH HTT THT TTH TTT 
 

Notice that the specific arrangement HTH has the same probability of occurrence as HHH, 
pHTH = (½)3. The specific arrangement TTH also has the same probability as HHH. These equal 
probabilities result since the individual events are independent and have equal a priori 
probability. Another example of independence comes from the consideration of the third throw 
of three. Consider three successive coin tosses. Assume that the first two tosses both gave heads, 
HH. What is the probability that the third throw is also H? You might be tempted to say that the 
likelihood of the third throw being H is small, since the first two throws were both H, but this 
assumption is not true. After two successive heads, the probability of heads on the third throw is 
still ½. The individual events are independent. The coin has no way of knowing that the first two 
throws were both heads. This result is shown explicitly by noting in the list of possible results 
that HHH and HHT are equally probable. 
 
Usually Order Doesn’t Matter:  Usually the distribution of events is important, but the specific 
order of multiple events does not make a difference in a physical property. For example, consider 
the three coin tosses. Notice that if order doesn’t matter, HHT, HTH, and THH each have two 
H’s and one T. Taken together, the probability of HHT or HTH or THH is three times more 
probable than any specific arrangement when order is taken into account. Grouping the outcomes 
for three coin tosses then gives the probabilities, irrespective of order: 
 

 HHH HHT HTH THH HTT THT TTH TTT 
 
 pH

3  3 (pH
2pT)  3 (pHpT

2) pT
3 

 

 W(3,0) = 1 W(2,1) = 3  W(1,2) = 3 W(0,3) = 1 
 

The statistical weights, W, multiply the probability products. The weights result from the 
addition of the probabilities of the specific outcomes, in answer to “OR” questions. For example, 
HHT or HTH or THH are equivalent outcomes for our purposes. The statistical weights are 
specific to the distribution of H and T outcomes. The number of H and T results are listed in the 
order, W(nH,nT), as distribution numbers for our coin tossing example. Since pH = pT the 
products of the individual event probabilities for each set of distribution numbers is the same, pH

3 
= pH

2pT, however we find that the probability of 2H’s and 1T, in any order, is three times as 
probable as HHH or TTT. The statistical weights are central to the development of the concept of 
entropy. The explicit enumeration of every possible outcome for multiple events is difficult to 
do, especially for large numbers of events. We need to consider counting problems in general to 
find a way of calculating the statistical weights for large systems. Central to the concept of a 
statistical weight is the idea of a permutation. 
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Permutations are the Rearrangements of the Order of a Series of Events:  We often care about 
the results of a series of events, but not the order in which particular events occur. The concept of 
permutations helps us to count the number of equivalent series of events. Consider selecting 
three balls to place in a given box. The balls are identical, but we will assume they are labeled so 
we can observe the order of the selection events. The balls may be selected in the order: 
 

 1,2,3  1,3,2  2,1,3  2,3,1  3,1,2   or 3,2,1 
 

Each series gives the same result—three balls in the box. Each specific order is called a 
permutation; which is a specific arrangement of the order of a series of events. For three balls in 
one box there are six equivalent permutations. How can we calculate the number of permutations 
for a series of events in general? Consider our present example; for the first selection we have 3 
balls to choose from, leaving two remaining balls. For the second selection we have 2 balls to 
choose from, leaving only 1 ball to choose for the third event. The total number of ways of 
choosing the balls is given by 3⋅2⋅1 or 3!. The 3! = 6 different permutations are shown above. For 
N objects there are N! permutations or ways that the objects may be chosen. For example, there 
are N objects to choose for the first selection, (N–1) objects to choose for the second selection 
and so on till the last object: N! = N(N-1)(N-2)….(1). But what if there are more balls than the 
number to be selected? 
 
Given N Choose n:  Consider the number of ways of filling a box with n balls chosen from N 
total balls. In other words, given N balls choose n. Try an example first with N = 4 and n = 3. We 
need to choose 3 balls; for the first selection we have N = 4 to choose from, for the second 
selection we have N–1 = 3 to choose from, and for the third we have N–2 = 2 to choose from. 
For example, the three chosen balls might be balls 1, 2, and 3 or any permutation of 1, 2, and 3: 
 

 1,2,3  1,3,2  2,1,3  2,3,1  3,1,2  3,2,1 
 

The 3! total permutations are equivalent from the perspective of a unique selection of the 4 initial 
balls. Balls 1, 2 , and 3 are selected each time, but we don’t care about the order of selection. The 
other possibilities, without listing the corresponding permutations are: 
 

 1,2,4  and the five permutations 
 1,3,4  and the five permutations 
 2,3,4  and the five permutations 
 

There are four unique selections of the 4 balls, choosing 3 at a time. How many unique series are 
there for a general case? Consider the sequence of choices from our example and the number of 
ways of making each choice for the three balls: N(N–1)(N–2). In general the series continues for 
n selections: 
 

 ways of selecting n objects = N(N–1)…(N–n+1) 
 

However, these selections include all the permutations. In general there are n! permutations of 
the n selected objects. The number of ways of selecting n distinguishable objects from N, 
irrespective of the order of the chosen objects is: 
 

 C[N choose n] = 
N(N–1)…(N–n+1)

n!        12.9.1 
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We can check this formula against our example for N = 4 and n = 3. The last term in the 
numerator will be (N–n+1) = (4 – 3 + 1) = 2: 
 

 C[4 choose 3] = 
4(3)(2)

3!  = 
4⋅3⋅2
3⋅2⋅1 = 4       12.9.2 

 

which agrees with our specific enumeration. But, what if there is more than one box to put the 
balls in? 
 
The Number of Ways of Arranging a Set of Distribution Numbers:  Consider N = 7 balls selected 
at random to fill three boxes. Assume that na = 3 balls are in box a, nb = 2 balls in box b, and then 
nc = 2 balls are left for box c. How many different unique arrangements are there? For the first 
box, box a, there are N balls and we need to select na = 3. The number of ways to fill box a is just 
Eq. 12.7.1 for [N choose na]: 
 

 Wa = C[N choose na] = 
N(N–1)…(N–na+1)

na!
      12.9.3 

 

There are (N–na) balls remaining. For our example, (N–na) = (7 – 3) = 4 remaining balls to 
choose from. So for box b, we need to select nb = 2. The numbers of ways is just [4 choose 2] or 
in general [(N–na) choose nb]: 
 

 Wb = C[(N–na) choose nb] = 
(N–na)(N–na–1)…(N–na–nb+1)

nb!
    12.9.4 

 

Now there are (N–na–nb) balls remaining. For our example, (N–na–nb) = (7 – 3 – 2) = 2 
remaining balls to choose from. So for box c, we need to select nc = 2. The numbers of ways is 
just [2 choose 2] or in general [(N–na–nb) choose nc]: 
 

 Wc = C[(N–na–nb) choose nc] = 
(N–na–nb)(N–na–nb –1)…(1)

nc!
   12.9.5 

 

The total number of ways of selecting balls for the boxes is the product of Eqs. 12.9.3, 12.9.4, 
and 12.9.5, Wtotal= Wa Wb Wc: 
 

   W(na,nb,nc) = 
N(N–1)…(N–na+1)

na!
 
(N–na)(N–na–1)…(N–na–nb+1)

nb!
 
(N–na–nb)(N–na–nb –1)…(1)

nc!
 

            12.9.6 
 

where we listed the number of balls in each box as the argument for the number of ways of 
making the selections, W. You will note from our discussion in Sec. 12.2 that the values  
(na, nb, nc) are called the distribution numbers for the occupations of each box. Notice that the 
numerator of Eq. 12.9.6 is really just the product of the complete series of numbers from N down 
to 1; the numerator is just N!: 
 

 W(na,nb,nc) = 
N!

na! nb! nc!
     (distinguishable) 12.9.7 

 

which is the number of ways of selecting distinguishable objects subject to the given set of 
distribution numbers, but irrespective of order within each box. The factorials in the denominator 
are the number of permutations of the balls in each box, to ensure that the count is irrespective of 
the order in each box. For our specific example, with N = 7 and distribution numbers (3,2,2), 
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W = 7!/(3! 2! 2!) = 210 ways of arranging the balls among the boxes with the given set of 
distribution numbers. The number of ways of selecting a set of objects and the number of ways 
of arranging the objects for a given set of distribution numbers are equivalent views of the same 
counting process. Eq. 12.9.7 can be applied to the distribution of energy among the systems in an 
ensemble. The balls in our example are the systems in the ensemble and the boxes are the 
different energy states of the ensemble. Finding the distribution that gives a maximum in W 
determines the most probable state and the corresponding entropy. 
 
Sterling’s Approximation for the Factorial of a Distribution Number is Valid for Large Systems:  
The enormous number of systems in an ensemble allows us to focus on the average properties for 
the ensemble instead of looking at the details of each system in the ensemble. The average 
behavior becomes the overwhelmingly predominant behavior in the thermodynamic limit. The 
thermodynamic limit also allows the factorials to be approximated with no significant error. The 
logarithm of N! can be written as the sum: 
 

 ln N! = ∑
i=1

N

 ln i  for example ln 3! = ∑
i=1

3

 ln i = ln 1 + ln 2 + ln 3 = ln(3⋅2⋅1) 12.9.10 

 

For very large N, we can approximate the summation as an integral and then using Table 1.4.1: 
 

 ln N! = ∑
i=1

N

 ln i ≈ ⌡⌠1

N
 ln i di = [ i ln i – i |N1   = N ln N – N + 1 ≈ N ln N – N  12.9.11 

 

which is the form of Sterling’s approximation that we introduced in Eq. 12.4.2. An 
approximation that is more accurate for small numbers is: 
 

 ln N! = N ln N – N + ½ ln 2πN  or   N! = 2πN 


N

e

N
    12.9.12 

 

However, for very large numbers, the ½ ln 2πN term is small compared to the first two terms and 
Eq. 12.9.11 is sufficient. Several homework problems explore the validity of these equations. 
The use of Sterling’s approximation for the factorials in calculating W using Eq. 12.9.7 allows 
the calculation of Wmax. 
 
The Method of Lagrange Multipliers is Used for Constrained Maximization:  The maximization 
or minimization of a function that is subject to constraints is a common problem in many areas of 
science, mathematics, statistics, and maximizing profits in economics. We will do a simple 
mathematical example in this section to highlight the method. Consider the bowl shaped function 
in Figure 12.9.2. The functional form is: 
 

 f(x,y) = 1 – x2 – y2         12.9.12 
 

The total differential of f as we vary x and y to find the maximum is: 
 

 df = 






∂f

∂x y
 dx + 







∂f

∂y x
 dy 

 

 df = – 2 x dx – 2 y dy = 0      (maximum) 12.9.13 
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Figure 12.9.2: Constrained maximization of f(x,y) = 1 – x2 – y2. 
 
 
The unconstrained maximum for this function is calculated by setting df equal to 0, giving x = 0 
and y = 0 for the maximum, fmax = 1. However, what happens if we have a constraint? Assume 
that x and y are constrained to lie along the straight line y = 1 – x, as shown in Figure 12.9.2. The 
constraint function, c, is then obtained by rearranging the constraint to give an equation equal to 
zero: 
 

 c = 1 – x – y = 0       (constraint) 12.9.14 
 

As x and y are changed to find the maximum, the differential of the constraint gives: 
 

 dc = – dx – dy = 0       (constraint) 12.9.15 
 

This equation can be multiplied by a constant, λ, and still give zero; the constant is the Lagrange 
multiplier: 
 

 λ(– dx – dy) = 0       (constraint) 12.9.15 
 

Adding Eq. 12.9.13 and Eq. 12.9.15 still gives zero: 
 

 – 2 x dx – 2 y dy + λ(– dx – dy) = 0     (constrained) 12.9.16 
 

or collecting terms in dx and dy: 
 

 (– 2 x – λ) dx + (– 2 y – λ) dy = 0     (constrained) 12.9.17 
 

We can now treat dx and dy as independent of each other. The assumption of independence is 
important. The reason is that dx can vary over its full range without regard to the changes in y 
and dy can vary over its full range without regard to the changes in x. When dx and dy are 
independent variables, the only way for Eq. 12.9.17 to always equal zero is if the coefficients of 
dx and dy are both always equal to zero: 
 

 (– 2 x – λ) = 0  and (– 2 y – λ) = 0    (constrained) 12.9.18 
 

We now have two equations in two unknowns, which solve to give x = y. The maximum in our 
function occurs when x = y. We can solve for the values of x and y for the maximum by using 
the original constraint equation. Setting x = y in Eq. 12.9.14 gives x = ½ and then y = ½. The 
value of f at the constrained maximum is then obtained from Eq. 12.9.12: 
 

 f(½,½) = 1 – (½)2 – (½)2 = ½      (constrained) 12.9.19 
 

as shown in the figure. Problem 23 uses the Lagrange method for an example from economics. 
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Chapter Summary 
 

1. Energy is dispersed from a hotter to a colder body. 

2. Thermodynamic variables are time averages over all degrees of freedom of a system. 

3. Much specific information is lost when averaging over the variables for all the degrees of 
freedom to give just a few thermodynamic variables. 

4. A group of N identical systems is called an ensemble. An ensemble average is equivalent to a 
time average in the limit N →∞, and subject to the ergotic hypothesis. 
5. The ensemble is isolated from the surroundings; the total energy of the ensemble is constant. 
In a canonical ensemble the systems are in thermal contact, exchange energy, and have the same 
average energy and temperature. 

6. The ensemble represents a single system for averaging purposes. 

7. The fundamental postulate of statistical mechanics is: for N systems in an ensemble with total 
energy E, the ensemble average energy is equal to the internal energy of the system: 

 U – U(0) = 〈E〉 = 
E

N
 

8. The dispersal of energy is determined by finding the number of ways of arranging the energy 
states for the ensemble, W. 

9. Each individual configuration of the systems among the energy states is called a microstate. 

10. The statistical definition of the entropy for a system in the ensemble is: 

 S = 
k
N

  ln Wmax   (ensemble)  S = k ln Wmax  (single system) 

where Wmax is the maximum number of ways of arranging the energy states in the ensemble and 
Wmax is the number of ways of arranging the energy states within a single system. 

11. The number of systems in each energy state is specified by a set of distribution numbers, 
{n i}, and averages are calculated using the distribution numbers. The average energy is: 

 U – U(0) = 〈E〉 = 
1
N

 ∑
i

 niEi   with normalization   ∑
i

 ni = N 

12. The probability of occurrence, pj, of energy state Ej is given by: 

 pj = 
nj

N
  and then  U – U(0) = 〈E〉 =  ∑

i

 piEi with normalization: ∑
i=0

N

 pi = 1 

13. The number of ways of arranging the energy states for distinguishable systems is: 

 W(no,n1,n2,…) = 
N!

no! n1! n2!…
 

14. A fundamental assumption is that each microstate has equal a priori probability. 

15. A set of distribution numbers corresponds to a macrostate. Greater energy dispersal results 
from a macrostate with larger W. Thermodynamic properties are averages over all accessible 
macrostates.  

16. Statistical weights and probabilities multiply when a composite is formed, with no other 
changes: W = W1 W2. 
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17. The most probable distribution is the distribution that has the largest number of ways of 
arranging the energy states, Wmax. For thermodynamically meaningful numbers of systems, the 
most probable distribution is the overwhelmingly predominant distribution. Thermodynamic 
averages are determined by the most probable distribution. 

18. A spontaneous process occurs when the system undergoes a change that increases W. The 
equilibrium state is the most probable state, with W = Wmax. A reversible process occurs through 
a sequence of steps with W = Wmax. 

19. Entropy always increases for a spontaneous process in an isolated system. 

20. A logarithmic function is the only possible form for the dependence of entropy on Wmax, 
since entropy is an extensive state function. 

21. Given the probability of occurrence of each energy state of the ensemble: 

 S = – k ∑
i
 pi ln pi 

22. The molar residual entropy at absolute zero is given by: 

 So = R ln w  So = – R ∑
i
  pi ln pi  So = ∆mixS = – R ∑

i
  pi ln pi 

23. The ideal entropy of mixing for an ideal gas or a mixture of molecules with equal 
intermolecular forces is ∆mixS = – nR Σ xi ln xi. 

24. The probability of occurrence of a system in the ensemble with energy Ei is given by: 

 pi = 
e–Ei/kT

Q   with Q ≡ ∑
i
 e–Ei/kT            (canonical ensemble) 

25. For systems with negligible interactions between distinguishable molecules or for internal 
degrees of freedom, the entropy in terms of the number of ways of arranging the states of the 

constituent molecules is S = nR ln wmax, and the sum over molecular states: S = – nR ∑
i
 pi ln pi. 

26. Energy is dispersed and entropy is increased by increasing the number of accessible degrees 
of freedom. Vibrations with frequencies less than about 500 cm-1 contribute to the internal 
energy and entropy, at room temperature. 

27. The change in entropy for a process is: dS =  – k Σ ln pi dpi 

28. The most probable state is characterized by a single thermodynamic parameter called the 
temperature. Bodies at equilibrium have the same temperature. The most fundamental definition 
of temperature is: 

 






∂S

∂U V
 ≡ 

1
T   giving  β = 1/kT 

29. At constant V: dU = d〈E〉 =  ∑
i

 Ei dpi   and    dS = 
1
T ∑

i
 Ei dpi 

30. For a reversible process:  dqrev = ∑
i

 Ei dpi   and dS =  
dqrev

T  

31. To associate configurational randomness with entropy: the configurational randomness must 
be associated with the dispersal of energy, the configurational randomness must lead to 
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distinguishable states, and the system must have some mechanism for randomly accessing each 
possible microstate of the system. 

32. The time average of a system may be replaced by an ensemble average only if the ergotic 
hypothesis is satisfied; each possible microstate of the system must be accessed at random with 
equal a priori probability. 

33. Energy is dispersed by increasing spatial dispersion; the change in entropy for the isothermal 
expansion of an ideal gas is: ∆S = nR ln(V2/V1). 
34. Probabilities add for the occurrence of events A or B. Probabilities multiply for the 
occurrence of events A and B. 

35. For N objects there are N! permutations or ways the objects may be chosen. 

36. The number of ways of selecting n distinguishable objects from N, irrespective of the order: 

 C[N choose n] = 
N(N–1)…(N–n+1)

n!  = 
N!

n! (n–r)! 
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Problems: The Statistical Definition of Entropy 
 

1. Calculate the number of ways of arranging the energy states and find all the microstates 
consistent with the distribution numbers (2,2,0,0). Find the average energy for the distribution. 
(Assume distinguishable systems.) 
 
 
 
 
 

E 

• • 
0 

1ε 

2ε 

3ε 

• • 
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2. Calculate the number of ways of arranging the energy states and find all the microstates 
consistent with the distribution numbers (2,1,0,1). Find the average energy for the distribution. 
(Assume distinguishable systems.) 
 
 
 
 
 
3.  Given the following microstates: 
 
 
 
 
 

(a). Find the set of distribution numbers. 
(b). Specify the macrostate. 
(c). Find the number of ways of arranging the energy states for the system for the set of 

distribution numbers. Is the given set of microstates complete? 
(d). Find the statistical weight for the macrostate. 
(e). Find the degeneracy for the macrostate. 
(f). Find 〈E〉 and U – U(0). 
(g). Find the probability of occurrence of the first microstate, within the given macrostate. 
(h). Find another macrostate with the same number of systems and the same energy. Which is 

more probable, the given macrostate or the new macrostate? 
(i). What is the most probable distribution and Wmax subject to N = 5 and E = 2ε? 
(j). What is the equilibrium distribution? 

 
4.  Assume a system has equally spaced energy states with spacing ε. (a). Find N, E, 〈E〉, and 
U – U(0) for the distributions (26,14,9,5,3,2,1) and (25,16,8,5,3,2,1). (b). Which distribution is 
the more probable macrostate? (c). Find the difference between the two macrostates in the 
number of ways of arranging the energy states for the system. (d). One of the two is the most 
probable distribution. Which macrostate corresponds to the equilibrium state? 
 
5.  Calculate the residual entropy for a crystalline solid like N=N=O assuming the energy 
difference for the two crystalline alignments is 0.300 kJ mol-1. Assume that the distribution of 
alignments is “frozen in” at the melting point. Assume the melting point is -90.8°C. Compare the 
result to Eq. 12.4.10. Why is there a difference? 
 
6.  The goal of this problem is to help you become more comfortable with partition functions. 
Consider the residual entropy of N=N=O. Define the lowest energy alignment as having energy 
εo and the higher energy alignment at ε1. A reasonable way to assess the degree of alignment is 
to calculate the fraction of molecules in the low energy state, fo, and the fraction of the molecules 
in the high energy state, f1: 
 

 fo = 
no

no+ n1
  f1 = 

n1

no+ n1
 

 

E 

• 

• 

0 

1ε 

2ε 

3ε 

• • 

• 
• • • • • 

• • • 
• • 

• • 
• • • 

• • • 
• • 

• • 
• • • 

• • 
• • 

• • • • • 

E 

0 
1ε 
2ε 
3ε 
4ε 

• 
• • • 
• • • 

••• 
• • 

••• 
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where no is the number of molecules in the low energy alignment and n1 is the number of 
molecules in the high energy alignment.1 Of course, fo + f1 = 1. (a). The number of molecules in 
a specific energy state is proportional to the Boltzmann weighting factor, ni ∝ e–εi/kT. Use this 
proportionality to find the fractions fo and f1. (b). Alternatively, the probability of finding a 
molecule in a specific energy state, εi, is given by Eqs. 12.4.13 (Eq. 8.9.5). Show that your 
answers to part (a) are consistent with Eqs. 12.4.13. 
 
7.  Calculate the number of ways of arranging 10 distinguishable balls in three boxes with 3 in 
the first box, 5 in the second box, and 2 in the third box. 
 
8.  (a). Calculate the number of ways of arranging 3 distinguishable balls among 3 boxes with 2 
balls in the first box, 1 ball in the second box, and 0 balls in the third box. (b). Calculate the 
number of ways of arranging the energy states of the system with 3 molecules given that 2 
molecules are in the first energy level, 1 molecule is in the second energy level, and 0 molecules 
are in the third energy level. Draw the arrangements. 
 
9.  Find the set of distribution numbers that maximizes the number of arrangements for 3 balls in 
3 boxes. 
 
10.  (a). Starting with N! ≈ (N/e)N show that  ln N! ≈ N ln N – N. (b). Starting with 
N! ≈ 2πN (N/e)N show that  ln N! = N ln N – N + ½ ln 2πN. (c) Compare the exact value of 
 ln N! and the two approximations for the largest number your calculator can use. 
 
11. Show that the percent error using Sterling’s approximation for ln(N!) decreases with 
increasing N. (Excel has a larger range for valid N than most calculators.) 
 
12.  In Problem 4 the most probable distribution was determined, choosing from 
(26,14,9,5,3,2,1) and (25,16,8,5,3,2,1). Verify that the most probable distribution is a Boltzmann 
distribution. 
 
13.  The fundamental vibration frequency for I2 is 214.50 cm-1. Assume the vibrational states are 
equally spaced with spacing 214.50 cm-1. Iodine vapor is held in an oven at elevated temperature. 
The relative occupations of the vibrational states were found to be 1.000 : 0.467 : 0.222 : 0.100. 
Calculate the temperature. 
 
14. Is the following system at thermal equilibrium? Give the approximate temperature, assuming 
the unit of energy, ε, is 10.0 cm-1. 
 
 
 
 
 
 
 
 

E 

0 

2ε 

6ε 

12ε n3 = 2 
 
 
n2 = 3 
 
n1 = 4 
no = 11 

• • • • 

• • • 

• • 

• • • • • • • • • • • 
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15.  The conformational entropy for butane was determined in Example 12.4.3 using the gauche-
anti-energy difference from molecular mechanics. Use a molecular orbital calculation to estimate 
the energy difference and determine the corresponding conformational entropy. How sensitive is 
the conformational entropy to the value of the energy difference? Your instructor will assign a 
molecular orbital method from the following list depending on the resources available: AM1, 
PM3, HF 3-21G(*), HF 6-31G*, B3LYP/6-31G*, MP2/6-311G*//HF 6-31G* (single point 
energy at MP2/6-311G* for the geometry calculation at HF 6-31G*). 
 
16. Determine the conformational entropy for 1,2-dichlorobutane. Your instructor will assign a 
molecular mechanics or molecular orbital method from the following list depending on available 
resources: MMFF, PM3, HF 3-21G(*), HF 6-31G*, B3LYP/6-31G*, MP2/6-311G*//HF 6-31G* 
(single point energy at MP2/6-311G* for the geometry calculation at HF 6-31G*) 
 
17.  The process of folding a protein to produce the active conformation restricts torsions along 
the polypeptide backbone and side chain torsions for amino acids that are buried in the interior of 
the protein. Calculate the conformational entropy of the side chain of the amino acid valine at 
298.2 K. Use molecular mechanics with the MMFF force field in the gas phase for the zwitter-
ionic form to determine the low energy side chain conformations and the corresponding energies. 
 
18. Assume that the gauche-energy states for a 1,2-disubstituted ethane, X–CH2–CH2–Y, are at 
energy ε above the anti-state. The anti-state is set at the reference state. Show that the 
conformational entropy for the C–C bond in disubstituted ethane compounds is given by: 
 

 S = – 
R

(1 + 2 e-ε/RT)
 










ln






1

1 + 2 e-ε/RT
 + 2 e-ε/RT ln









e-ε/RT

1 + 2 e-ε/RT
 

 
19.  Show that the maximum conformational entropy for freely rotating sp3 hybridized bonds is 
given by S = R ln 3. In other words, assume that the energy differences between the three 
conformational states is much less than RT. You also need to assume that the three 
conformations are distinguishable, as in the central butane dihedral or the side chain of valine but 
not –CH3 torsions. 
 
20.  Calculate the conformational entropy for the C(sp3)–C(sp2) bond torsion leading to the 
phenyl ring in the side chain of the amino acid phenylalanine. Use molecular mechanics with the 
MMFF force field for gas phase energies. To obtain values that are appropriate for protein 
folding studies, build a protein in the alpha-helical form with 11 residues: five alanines followed 
by phenylalanine followed by five alanines. Acetylate the N-terminus and amidate the C-
terminus to help stabilize the alpha-helix. Once the lowest energy structure is found, fix (or 
freeze) all of the atoms except those in the phenyl side chain. Then determine the low energy 
conformers as you rotate around the Cα–Cβ(sp3)–Cring(sp2)–Cring dihedral. You will find four low 
energy conformers. However, the conformers are in two equivalent pairs. The conformers in 
each pair differ by rotation of the phenyl ring by 180°. The phenyl ring is symmetrical with 
respect to rotation by 180°, so the conformational states that differ by 180° are indistinguishable. 
The counting of states for calculation of the entropy is over distinguishable states. To correct for 
symmetry, then, calculate the entropy by summing over only the two unique, distinguishable 
states. The structure and the required dihedral are illustrated below, Figure P12.1. 
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Figure P12.1: An alpha-helical 11-mer with phenylalanine in the center. The required 
dihedral is depicted with the angle of -48.0°, giving the lowest energy conformer. The dotted 
lines show the hydrogen-bonding pattern. The distortions in the hydrogen-bonding pattern 
are caused by the shortness of the peptide. Your model may differ in the conformations of the 
terminal residues. 

 
21.  The Boltzmann distribution is often derived directly by maximizing W instead of 
maximizing the entropy using Eq. 12.4.9. In this problem, we derive the Boltzmann distribution 
in several steps directly from the statistical weights. (a) Starting with Eq. 12.4.1, show that 
without constraints: 

 d(lnW) = ∑ 




∂lnW

∂ni
 dni 

 

(b). Add in the constraints to give: 
 

 0 =∑ 






∂lnW

∂ni
 dni + α ∑ dni – β ∑ Ei dni 

 

(c). Show that the constrained maximization results in: 
 

 






∂lnW

∂ni
 + α – β Ei = 0  

 

(d). Note that the summation variable in Eq. 12.4.5 is an arbitrary index. We can also write: 
 

 ln W = N ln N – ∑
j

 nj ln nj 

Show that the derivative of ln W with respect to ni while holding all the other distribution 
numbers constant gives just one term, which is: 
 

 





∂lnW

∂ni
 = – (ln ni + 1) ≈ – ln ni 
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(e). Substitute this last result into the result from part (c) and solve for ni to find: 
 

 ni = eα – βEi = eα
 e–βEi 

 

(f). Use normalization to find the Boltzmann distribution: 
 

 
ni

N
 = 

e–βEi

Q  

 
22.  Consider the bowl shaped function, f(x,y) = 1 – x2 – y2. Maximize the function subject to the 
constraint y = 0.5 using the Lagrange method of undetermined multipliers. 
 
23.  A scientific instrument company produces two different widgets. Let the number of widgets 
produced by the factory per day of the two different widgets be n1 and n2, respectively. The profit 
obtained by selling type-one widgets, P1, and type-two widgets, P2, is given as: 
 

 P1 = 40 n1 – n1
2   P2 = 20 n2 – 0.5 n22 

 

The negative terms in the profit equations result because as the production increases, the cost of 
labor increases (extra people need to be hired) and the marketing costs increase. The factory can 
make at most 25 widgets per day. Find the optimal level of production for the two widgets to 
maximize the overall profit. Compare the constrained result to the unconstrained result assuming 
the factory can produce any number of widgets per day. 
 
24.  Thermodynamic state functions can be written directly in terms of the partition function, Q, 
which adds to the importance of this central concept. Using Eqs. 12.4.9, 12.4.12, 12.2.6, and 
12.1.2, show that the entropy can be written as: 
 

 S =  k ln Q + 
U – U(0)

T  

 
25.  What is the probability of selecting an Ace in 10 total cards? To avoid statistical 
complications, assume that after each selection the card is returned to the deck, so that each 
selection is made from a full deck of 52 cards. 
 
26.  The next five problems concern the relationship between statistical weights and the 
probability of occurrence of a particular set of events. The number of ways of selecting n objects 
from N, which we called C[N choose n], is also called the binomial coefficient and given the 
symbol ( )N

n . Using Eq. 12.9.1 show that the binomial coefficient can be expressed as: 
 

 


N

n  = C[N choose n] = 
N!

n!(N-n)! 

 
27. In the last problem we showed that the binomial coefficient ( )N

n  can be defined as: 
 

 


N

n  = C[N choose n] = 
N!

n!(N-n)! 
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The binomial coefficient ( )N
n  is the numerical coefficient for the nth term in the Nth-order 

polynomial (1 + x)N. For example: 
 

 (1 + x)3 = (1 + 2x + x2)(1 + x) 
   =   1     +  3x   +   3x2   +    x3 

   = 


3

0  1 + 


3

1  x + 


3

2  x2 + 


3

3  x3 

 

Verify the corresponding result for (1 + x)4. 
 
28.  Assume that 3 distinguishable balls are selected at random for placement into two boxes. 
The volume of box 1 is V1 and the volume of box 2 is V2. The probability of a single ball landing 
in box 1 is proportional to its volume, p1 = V1/(V1 + V2). The probability of a single ball landing 
in box 2 is proportional to its volume, p2 = V2/(V1 + V2). What is the probability that all 3 balls 
land in the first box? There is only one way for all 3 balls to land in box 1 giving the probability 
as p(3,0) = p13. There is only one way for all 3 balls to land in box 2 giving p(0,3) = p23. Find the 
probability of 2 balls landing in box 1 and the remaining ball landing in box 2. Relate the results 
to the statistical weight W(2,1). 
 
29.  Show that for a two-category problem with N distinguishable objects the binomial 
coefficient and statistical weight are related by: 
 

 W(n1,n2) =  


N

n1
 

 

An example is the previous two-box problem. The result also holds for any molecular system 
that has only two energy levels. Use the result of the last problem as a specific example. 
 
30.  Assume that 3 distinguishable balls are selected at random for placement into two boxes. 
The volume of box 1 is V1 and the volume of box 2 is V2. The probability of a single ball landing 
in box 1 is proportional to its volume, p1 = V1/(V1 + V2). The probability of a single ball landing 
in box 2 is proportional to its volume, p2 = V2/(V1 + V2). There is only one way for all 3 balls to 
land in box 1 giving the probability as p(3,0) = p1

3. There is only one way for all 3 balls to land 
in box 2 giving p(0,3) = p23. The probability of 2 balls landing in box 1 and the remaining ball 
landing in box 2 is p(2,1) = 3(p1

2p2), because there are 3 ways of arranging the set of distribution 
numbers. Likewise p(1,2) = 3(p1p2

2). Show the relationship of the probabilities p(3,0), p(2,1), 
p(1,2), and p(0,3) to the terms in the expansion of the polynomial (p1+ p2)3 . 
 
 
 
Literature Cited: 
 

1. E. I. Kozliak, “Consistent Application of the Boltzmann Distribution to Residual Entropy in Crystals,” 
J. Chem. Educ., 2007, 84, 493-498. 

2. W. J. Hehre, A Guide to Molecular Mechanics and Quantum Chemical Calculations, Wavefunction, 
Inc., Irvine, CA, 2003. p. 276. 


