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Chapter 12: The Statistical Definition of Entropy

The process of folding a protein to produce thevactonformation restricts torsions along the
polypeptide backbone and side chain torsions fanaracids that are buried in the interior of the
protein. Calculate the conformational entropy & ¢ide chain of the amino acid valine.

Energy is transferred from a hotter to a colutsty. This energy transfer corresponds to a
dispersal of energy. These generalizations comm &lservations of simple physical
phenomena, such as the heating of a pot of watarstove. Energy dispersal is a part of our
common experience. All processes occur subjedtdd-irst Law of thermodynamics. Internal
energy is conserved for all processes spontangaust,oreversible or irreversible. So the First
Law doesn’t tell us the direction of spontaneouangje. Can we develop a thermodynamic state
function that predicts the spontaneous directiochaimical change based on energy dispersal?
The first step is to quantitatively characterizergy dispersal. We will then use this indicator of
energy dispersal to predict the spontaneous dmeddir all physical processes and the position
of equilibrium. For the example of a bouncing b&kction 10.1, potential energy is converted
into random thermal kinetic energy with each bouftes conversion suggests that statistical
considerations may be central in understandingggrdispersal. The intriguing question is: does
random chance determine the outcome of chemicelioes?

You may have too deterministic an interpretatbbehemical reactions to appreciate that
random chance plays a role in the outcome of chemiocesses. The laws of statistics may
seem to be too devoid of physical relevance tdhbgptedominant factor in determining the
extent of energy dispersal. Batatistical mechanicss the discipline within chemistry that
applies the laws of probability to determine therganeous direction of chemical reactions and
the position of equilibrium.

12.1 Thermodynamic Properties are Average Values

The laws of probability determine the likely cotnes of coin tosses and throwing dice.
According to the laws of chance, on average a tass yields heads 50% of the time and tails
50% of the time. This expectation is more closebt as the number of trials increases. The
larger the number of trials, the simpler the bebiai to predict. Thermodynamics applies to
macroscopic systems that contain large numbersotéaules. The laws of probability allow our
description of systems to be greatly simplified; avdy need to predict the average behavior.

Thermodynamic variables result from averages allehe degrees of freedom of a system as a
function of time. For example, the pressure of siigdhe time averaged force of collisions of
molecules with the walls of the container per anéa, Figure 7.5.1. The degrees of freedom of a
system include translation, rotation, vibrationd &hectronic energies. A given system at some
time may have more rotational energy than vibrai@mergy, and at some later time more
vibrational energy than rotational. However, tlmediaverage energy for a system at equilibrium
gives just one parameter, the internal energyhénmodynamics, just a few variables are
necessary to specify the state of the system xfmmele the temperature, volume, and molar
amounts. Much specific information is lost whenraging over the variables for all the degrees
of freedom to give just a few thermodynamic vamgbHowever, the loss of information is
compensated by a gain of generality, simplicityd predictive power.
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Following the time dependence of a system igcdit, because there are so many variables.
An easier approach is to consider a large numbeleotical systems, each with the same
number of molecules, N, and the same volume, Viddig of identical systems is called an
ensemble Gibbs suggested that averaging a property ovéneakystems in an ensemble at one
instant in time is equivalent to averaging the gropof a single system over time. Such an
average is called ansemble average

Conceptually, the systems in the ensemble ddeim@n insulated constant volume container,
so that the ensemble is isolated from the surrowgsdiFigure 12.1.1. The total energy of the
ensemble is constant. If the systems in the ensearblallowed to come into thermal contact,
they will exchange energy and on average all thgesys in the ensemble will have the same
average energy and temperature. This kind of enleeisiballed aanonical ensembleThe
number of systems in the ensemble is given the eyymiland the total energy of the ensemble is
E. Properties of the ensemble as a whole are wiitttéscript,” (v and€), and properties of a
single system are in the normal font (N, E). EMesugh the average energy of each system is
constant, there are still fluctuations in the egasfieach system. The energy in each degree of
freedom also varies with time. At a particular argtone system may have excess rotational
energy and another may have excess vibrationajgnEnsemble averages are much easier to
calculate than time averages, because the ensendsigge can be accomplished using the laws
of statistics. The average behavior of the systedetermined by the probability of occurrence
of each possible energy state of the system. Erseambrages are valid in the limit of large
numbers of systemgy - c. We will discuss the validity of ensemble averagese completely
in the later chapter on the foundations of statétnechanics and Sec. 12.7. However, keep in
mind that ensemble averages are just an easy wadtthe average energy of a single system.
In essence we just average many simultaneous exgetis on a set of identical systems instead
of repeating experiments on the same system amg do¢ average over time. The ensemble
represents a system for averaging purposes. Weisélha “{* to indicate this representation.
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Figure 12.1.1: An isolated group of identical systethat are in thermal contact is a called a
canonical ensemble. Meaningful thermodynamic aweage taken over the systems in the
ensemble in the limigv —» . The ensemble represents the system for averagimmpses.

The average energy of the system is given bgtisemble average. The ensemble average is
particularly easy to calculate. Even though theg@nef each system in the ensemble may be
different, on_average the energy of a system meighé total energy of the ensemble divided by
the number of systems in the ensemble.#aystems in the ensemble with total energyhe
average energy of a system is just:
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E
(E) =N (canonical ensemble) 12.1.1

where the average is indicated using br&E#sThe central hypothesis of statistical mecharscs i
that the ensemble average energy is equal to émmtdynamic internal energy:

U — U(0) =(E) 12.1.2

The inclusion of the U(0) term allows for differeascin reference points. As noted in Chapter 8,
only differences in the internal energy may be mestand not absolute values, so an arbitrary
reference is chosen. Eq. 12.1.2 can be read asitdraal energy of the system above the
reference point is given by the ensemble averageggrover all the degrees of freedom. As we
stated in Section 7.8, the internal energy is thne ef the average kinetic and potential energy
over all the atoms and molecules that make upysies. We now know how that averaging is
done. The next step is to use the concept of teereble and averaging to develop a measure of
energy dispersal. Determining energy dispersalthedpontaneity of physical processes flows
naturally once we accept the notion that the lafvammdom chance determine the probability of
occurrence of the different energy states of aesyst

12.2 Energy Dispersal is Measured by Changes in Eapy

The dispersal of energy is determined by findlmnumber of ways of arranging the
energy statedor a given amount of energy and the energy statdse ensemble. The number
of ways of arranging the energy states is giversyfmbol1/. Consider a group of three systems,
A= 3, with minimum energy, Figure 12.1.1 top-léfil of the systems are in the lowest possible
energy state giving = 0. There is only one way of arranging the enettgyes of the ensemble,
all systems are in the lowest energy state, givirg 1. For ease of discussion we will assume
that the energy states are equally spaced, as ade for harmonic molecular vibrations, and
that energy is available in packets equal to tlergyndifference between the states. Transfer one
packet of energy to the ensemble from the surrawgsdgivingZ = 1¢, Figure 12.2.1 top-right.
Each of the systems can in turn share that paeketh results in three ways of arranging the
available energy among the systems, Abc, aBc, b@q giving#/= 3 and average enerdfy €.
Each individual energy configuration of the ensesriblcalled anicrostate. The ensemble can
be in only one of the microstates at any time. felattons cause the ensemble to jump from one
microstate to another. The fluctuations are cabsyecbllisions.

Transfer one additional packet of energy toghsemble. There are now two packets of energy
available,z = 2¢, and six total ways of arranging the energy ambeghree systems. There are
now six microstates consistent with= 2 and average enerdj €. The transfer of energy to the
ensemble increases the number of ways that thiableaenergy can be arranged among the
systems. The energy is dispersed among the avaiaigrgy states. Transfers of energy into the
ensemble correspond to heat transfers. Heat transfeases the number of ways of arranging
the energy states of the ensemble, because thei@ésenergy available.

Now consider increasing the number of systenteerensemble. Withvy= 4, and minimum
energy, there is still only one way of arranging émergy states aref = 1. After transfer of one
packet of energyEe = 1¢, there are four ways of arranging the energy st#bcd, aBcd, abCd,
and abcD, om/= 4. The change in energy dispersal for the tearsfone packet of energy is
greater with four systems than with three sinceetla@e more available energy states.
increases with the number of systems in the enserfdyla fixed amount of energy.
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Figure 12.2.1: There is only one way of arrangimg eénergy states for minimum energy.
After transfer of one packet of energy there aredhvays of arranging the energy states. For
two packets of energy there are six total ways@raing the energy states. A lower case
letter represents a system with O packets of ener@apital letter represents a system with
1¢, and an underlined Capital lettex. 2

Extensive properties increase with the size ©fstem. We conclude that the thermodynamic
state function that corresponds to energy dispstsalld be an extensive property that is
increased by thermal energy transfer. The thermaayo property that characterizes energy
dispersal is called thentropy.

The statistical definition of the entropy ofystem in the ensemble is:

k
SERf IN Winax (ensemble) 12.2.1

where#max is the maximum number of ways of arranging thegystates of the ensemble, k is
Boltzmann’s constant, antfis the number of systems in the ensemble. Thermaiin /is
necessary to ensure that the system is at equitiband correspondingly that entropy is a state
function. Boltzmann’s constant is just the gas tamson a per molecule basis instead of per
mole, k = R/N = 1.38066x13% J K1, where M is Avogadro’s number. The units of entropy are
then J K. In Eq. 12.2.1, division by determines the ensemble average, just as we ditido
ensemble averaged energy, Eq. 12.1.1. As the nuofilmeays of arranging the states of the
system increases, the entropy increasemcreases through transfers of heat and increases
the number of systems and the volume. This stegistiefinition of entropy, which is often
called the Boltzmann entropy, was developed by ligd8oltzmann and first written in this

form by Max Planck in 19012 Entropy is a measure of the statistical likelih@b@ given
configuration of energy states of the system.
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Instead of an ensemble average, we often cansisteone system and find the number of
ways of arranging the energy states of the molsaulthin a single system, Wdx. The
Boltzmann formula is then just S = k InnA¢for a single system. The practical applicatiomhef
Boltzmann formula requires that we develop an @asthod for evaluatingy/ using standard
statistical arguments.

Averages are Calculated Using Distribution Numbetsnumerating all the individual
configurations of the available energy, as we diffigure 12.2.1, becomes tedious even for
small systems. To determine thermodynamic averagesion't need to know all the individual
configurations; we just need to know the numbesystems in each energy state. We don't care
which specific system has a given amount of enexgyonly need to know the number of
systems that have each possible amount of enehgyniimber of systems in each energy state is
specified using a set distribution numbers, and all averages can be calculated using the
distribution numbers. For a simple example, asstmaethe available energy levels are=B, 1,

2, 3, 4, or 5 packets of energy. We determine threlrer of packets of energy in each system in
the ensemble. Let the measurements for the energgch system be:

4,1, 2,4, 4,1, 5 packets

for &= 7 total systems. The average energy is thent(2+4+4+1+5)/7 = 3.0. However, we can
do the averaging in a different order. We can colb@tnumber of times each possible result is
found; these counts are the distribution numbersur example data set, the value 0 is not
found, the value 1 occurs twice, the value 2 ocouar, the value 3 is not found, the value 4
occurs three times, and the value 5 occurs onaes&hof distribution numbers,ifns then
(0,2,1,0,3,1). The sum of the distribution numbuatsst equal the total number of trials:

Sz 12.2.2
i

where the sum extends over all possible energgsstatThe average energy is then calculated
using the distribution numbers and all the possaleerimental values, E

1
(E) :szll niE 12.2.3
For our example:

1 1
(B) =X NE = . (NoEo + MEx + o + NeEs + s + rEs)
i

Tt

ng

B =9iv2 nE = 00)+2(1)+1(2) ;r 0(3) +3(4) + 1(5) -30 1224

The distribution numbers can also be related tgtbeability of occurrence of each possible
value of the experiment. The probability of occaage, p, of value Eis given by:
_ni

p=iy 1225
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which is the ensemble average of the occupati@tadé i. The average value of the energy is
given by substituting this last equation for eaaimt in the sum of Eq. 12.2.3:

(Ey = U —U(0) =X pE; \ 12.2.6
i
which is subject to normalization of the probalilit
N 1
E)n —9—vi2 n=1 12.2.7

which is obtained by dividing Eq. 12.2.2 by In other words, the sum of the probabilities must
equal one. The advantage of using distribution remfs that the calculation o becomes
straightforward without explicitly specifying thedividual microstates.

The number of ways of arranging the energy statéis given by a standard statistical
formula:

M

= el 1l ol (distinguishable) 12.2.8

whereyvis the total number of distinguishable systemtheensemble, and nm, etc. are the
distribution numbers for the energy stat®sis the number of microstates for the given set of
distribution numbers. The “!” indicates the fac&f the number. For example, the factorial of
the number 5 is defined as 5! = 5-4-3-2-1, whike D! Non-chemical examples of the use of this
formula are given in the addendum.is often called thetatistical weight, ordegeneracy of a
given set of distribution numbers. Degenerate sthéee the same energy. A set of distribution
numbers with a larger statistical weight is morelyable because the set of distribution numbers
has more ways of occurring.

We can verify Eqg. 12.2.8 using some exampless@er an ensemble consisting of three
identical systemg)y = 3. Assume that three packets of energy areabtaito distribute among
the three systems; the total energy of the ensemmble 3. The average energy of each system
in the ensemble is thek) = #/N = 1g, Figure 12.2.2.

3e n3:O 3e s ' e N3 = 1
N=3 E 2 =0 E 2 =0
E=3 le [-e—e—o—n; =3 1e n=0
_ 0 N=0 0 | —e—o— --——e— -eo—Ny=2
B)=1Ie ABC Abc aBc abC
1{0,3,0,0) = 1 2,0,0,1) = 3

= O

3e A ns =
E 2e . . . . . — Ny =

1e . . . . . o m=1

0 . . . . . . No=1

ABc AbC ABc AbC aBC aBC
MWma{(1,1,1,0) = 6
Figure 12.2.2: The number of ways of arrangingethergy statesy, for three systems with
three packets of energy/is determined by the distribution numbers forehergy states.
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One way to distribute the available total energipiseach system to hold one packet of energy,
which corresponds to the distribution numbers (3, There is only one way of arranging the
states of this “equal sharing” distribution. Themgaete set configurations for the two additional
sets of distribution numbers, (2,0,0,1) and (1Q),1are diagrammed in Figure 12.2.2. The
number of ways of arranging the energy states Isanbe calculated using Eq. 12.2.8 as:

3! 3l
m2,0,0,1)= TS 3 and (1,1,1,0)= Tuio- 6 12.2.9

which give the same result as the exhaustive cordtgns in the figure.

Microstates Have Equal a priori ProbabilitiesA fundamental assumption is that each
microstate has the same probability of occurremcether words, each microstate has an egual
priori probability. A set of distribution numbers corresgs to anacrostate For example, from
Figure 12.2.2, the set of distribution numbers,(2;) corresponds to one macrostate thatihias
= 3 corresponding microstates. While each micrestaequally probable; the value Bfshows
that some macrostates are more probable than othemnple example of this conclusion is
shown by coin tosses. The possible outcomes oftwoessive coin tosses are HH, HT, TH, and
TT, with H = heads and T = tails. Note that HHustjas probable as TH. The individual results
HH and TH have an equalpriori probability. However, there are two ways of obitagnone H
and one T, which are HT and TH. So the probabdftgbserving one H and one T, in any order,
is twice as probable as observing two successitasses. In other words, if the distribution
numbers are arranged by the number of heads dadHarl), the macrostate (1,1) is twice as
probable as (2,0):

Outcomes: HH HT ™ TT
%ﬁ—/

Distribution numbers: (2,0) (1,2) (0,2)

Statistical weight: w=1 w=2 w=1

Greater energy dispersal results from a macrost#itelarger/. Themost probable
distribution is the distribution that has the largest numbexa&ys of arranging the energy
states Wmax

Statistical Weights Multiply for Composite Systenis thermodynamics we often discuss
processes that result from two systems comingdaiact to form a composite system. In
particular, energy dispersal is the result of sapebus heat transfer between two systems that
come into contact. Statistical weights and prolitédsl multiply when, with no other changes, a
composite is formed. Consider two systems thatatorit; and N molecules in volumes Mand
V2, respectively. System 1 has a statistical wei@ltt/oand system 2 has a statistical weight of
wh. When the two systems are considered as a corapasih no other changes, the statistical
weight is the product of the two separate weights:

W=mr s 12.2.10

Figure 12.2.3 shows the result for two identicaitegns, N= Nz, V1= Vz, (E)1= (E)o= Y3 €.
Ensembles were chosen with= 3 to make it easy to list all the microstates.

In this example we chose same size system®forenience in counting the number of
microstates; in general the systems can be diffeneth Eq. 12.2.10 remains applicable. Now that
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we know that statistical weights combine by muitiation, we can determine the changes that
occur upon heat transfer.

N1 J' E 0 7 AbcDef
Vi . . . AbcdEf
<E>1= l/38 — --——o— - AdeeF
W= 3 -~ Abc aBc abC \Nll \N/z aBcDef

—_ aBcdEf
N, et A A (E)1= Yse KBE)2=Yae < aBodeF
Va < o . . W= (Mrnh) =9 abCDef
(E)z= st I I S abCdEf
wh=3 \ D ef d Ef deF \_abCdeF

Figure 12.2.3: Statistical weights multiply upomrfong a composite system, with no other
changes.

Heat is Transferred from a Hotter to a Colder Bod@ur experience tells us that energy in the
form of heat is transferred from hot objects tadombjects. We can prove that this observation
results from simple statistical considerations. €der two systems, system 1 with a large initial
energy and system 2 with a minimal initial enerfgigure 12.2.4.

System 1 System 2 System 1|System 2
N, V + N, V e N,V N, V
(Ey=7¢ (E)=0¢ (Ey='3e[(E)y =Yz¢

Heat transfer process
for the systerm:

4 A N\ 4 A N\ 4 A N\ 4 A N\
ensemble averages: Ensemble 1 Ensemble 2 Ensemble 1 Ensemble 2
N=3E=2 N=3E=(C N=3E=1xk]| |[¥=3E=1
ABC Abc def Abc Def
Microstates: AbC aBc aBc dEf
aBC abC abC deF
3e 3
Macrostates: E 2 . Eoe |—— E—
le |-o-0— le |-—o -
N b f 0 \‘ g L g > ---0-0— 0 --0— 00—
umber of ways o _
arranging the Znergy nL=6 we=1 wh=3 We=3
states: Wt = (6)(1) =6 Mot = (3)(3)=9

Figure 12.2.4: Energy is always transferred frohotier object to a colder object because
the energy transfer increases the number of wagsrafging the energy states for the
composite of the two systems.

We assume that the two systems are at constanheadnd isolated from the surroundings so
that the only process that can occur is the tramdfenergy between the two systems. For
illustrative purposes, to make the state countagygewe assume the systems are identical, with
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the same number of atoms and volume. We repreaehtsgstem with an ensemble containing
three duplicate systems for averaging purposessidtistical weight representing system 1 is
i = 6 and for system 2 i8% = 1 for a total of 6 ways of arranging the enestates. The two
systems are brought into contact. One packet abgns transferred from ensemble 1 to
ensemble 2. Energy is conserved in the processs the energy transfer spontaneous? After the
transfer, system 1 has a statistical weight ofsrstem 2 has a statistical weight of 3. The final
total number of ways of arranging the energy statése composite of the two systems is then
(3)(3) = 9. The final state has a higher probabdit occurrence than the initial state, so the
transfer is spontaneous. The heat transfer takee flecause the final state is more probable
than the initial state. The laws of probability gov energy transfer.

The two systems will exchange additional packéenergy if the result gives a greater The
exchange of energy continues until the maximum rerbways of arranging the states of the
composite has been attainedyax. The resulting state is the most probable statee@he most
probable state has been reached, no further spatamprocesses will occur. If there is no
further impetus for change, then the composité exjailibrium. The equilibrium state is the
most probable state. Any additional transfer ofrgndetween the two systems results in smaller
w. For example in Figure 12.2.4 no further transfeznergy will occur, because the transfer of
another packet will decreas€ The configuration shown is at equilibrium’,= “ax.

Our example is artificial in several ways. Fimse kept the amount of energy and the number
of systems in the ensemble small to make it easpunt the number of microstates. For real
heat transfer processes, the energy and the nwwhbgstems would be much larger. The result
would be a vastly greater increaseifor the equilibrium state. Second, because weechos
identical systems, the equilibrium state correspond equal average energy for the two
systems, 0.333 For systems of different sizes, the average gnefrthe two systems will not be
equal at equilibrium.

The Equilibrium State is the Most Probable Statbermodynamic properties like internal
energy and pressure are averages over all posséisstates. However, the most probable
macrostate plays a predominant role in determithegnodynamic averages. As the number of
systems increases, the difference betwedor the most probable macrostate and the next most
probable macrostate increases rapidly. #er3 this difference is 6 — 3 = 3, Figure 12.2.1.

For o= 6 this difference is 120 — 90 = 30, Figure 12.2.

6 A A
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<E> =1 18 e |0 e (see  [seee— . s00000

M3,1,1,9=120 w=9C w=6C wW=6C W=3C W=3C w=3C wW=2C w=6 w=1

Figure 12.2.5: The number of ways of arrangingethergy statesy, for six systems with
six packets of energy. Only the macrostates agrallamed.

Thermodynamically meaningful averaging correspdondeery largew; on the order of
Avogadro’s number, ~8. The limit asyv - « is called theéhermodynamic limit. For such
very large numbers of systems, the most probabtelalition is the overwhelmingly
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predominant distributioh The most probable distribution is characterizedx ways of
arranging the energy states, which is an astroraliyiarge number. In fact, with negligible
error, we can use only the most probable distrilouto calculate thermodynamic averages.
Figure 12.2.6 summarizes the flow of conceptstithe average is replaced by the ensemble
average, the ensemble average is dominated bydkeprobable distribution. The most
probable distribution is the Boltzmann distributidhen the system is at equilibrium the state
of the system is given by the most probable distitm. If the system is not at equilibrium, it is
not in its most probable state.

N, V|IN, V||N, V], . E, 5¢ ns 1
N, V 4 | o—— - I e——
E(t) | b pow— :><E> =W NE =y
N, VI[N VN VL il Povwumlic i
Es Eo Eo 0 'eeoeee n(1> —K
S —Wh’] Whax
N VIIN VIIN V] .. w
7 max
U-U(0) =B =75
Time Averag Ensembl Average Most Probable Distributic

Figure 12.2.6: Thermodynamic averages are takentbeemost probable distribution. The
most probable distribution is the Boltzmann disttion.

The equilibrium state of the system is the nposbable state as determined by the laws of
random chancelt is by random chance that the result of many ¢tosses gives 50% heads and
50% tails, because this result is the most probalieome. A thermodynamic system evolves to
equilibrium precisely because the equilibrium statdhe most likely state. In fact the
equilibrium state is overwhelmingly likely. Thereeaso many more ways for the equilibrium
state to occur than any non-equilibrium state Weatlon't expect any non-equilibrium state to
occur, barring kinetic roadblocks. Any shift awagrh equilibrium takes the system to a much
less probable statey << “max A shift away from equilibrium is very improbabkmnd is only a
temporary, thermodynamically unobservable, smatitfiation in the systefit Random chance
provides a common sense explanation for the equitibstate. We can also use a corresponding
argument to provide a statistical interpretatiomedMersible processes.

We saw in Sections 1.2 and 7.4 that a reverpitldeess occurs when a given large change is
made through a sequence of small essentially neleisteps. The process occurs as a constraint,
such as a moving piston, is displaced in many sstafis, Figure 7.4.3. A reversible process
occurs through a sequence of equilibrium or neailibgum states. Therefore, a reversible
process takes place through a series of interneesiates with each step attaining the maximum
number of ways of arranging the energy statesesjistem. That is, a reversible process occurs
with %/ = “hax through each intermediate step, subject to thsetcaints placed on the system.

An irreversible process occurs wher< #max through at least some portion of the overall
process. Of coursay/is strictly always less thanmaxfor an irreversible process, sinénaxis
the maximum possible value for the statistical Wweigny otheri/ must be smaller.

Notice that our specific process, Figure 12.@ds specified to be for the transfer of energy
between two systems that are isolated from therosandings. The requirement for isolation is
an important restriction that must not be forgaotten
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Entropy Always Increases for a Spontaneous Pracess Isolated SystemA spontaneous
process occurs when the system undergoes a chaatgadreasesy. The system reaches
equilibrium when it reaches the most probable stéiie 7/ = ¥max. A reversible process occurs
through a sequence of steps with= “hax. The definition of the entropy as=S/N In YWax

then allows us to predict the direction for sportaus change. Sinde’ always increases for a
spontaneous process in an isolated system, thepgrdtso increases for a spontaneous process
in an isolated system. Since the entropy is definddrms ofi4max, Wwhen we evaluate the

change in entropy for a process, the initial andlfstates must be at equilibrium and the process
must occur along a reversible path. For initialesthand final state 2:

Kk
AS =g—v(ln Wnax,2—In Wmax,l) 12.2.11

If Winax,2> Whax,1 the process is spontaneousihax2 = Whax,, then no spontaneous process
will occur and the system is at equilibrium. Comibgnthe logarithmic terms then gives:

_k (Wmax,i) L .
AS =—In >0 > for spontaneous = equilibrium (&ed) 12.2.12
W Wmax,
This result is a statement of the Second Law offileeynamics and can be phrased as “entropy
always increases for a spontaneous process imkated system.” This result is entirely
reconciled in terms of the probability of occurreraf the macrostates of the ensemble and the
definition of entropy, Eq. 12.2.1. However, we hawvey considered heat transfer. Using Eq.
12.2.12 as the motivation for the Second Law is#jggo processes at constant volume and no
other forms of work. In the next chapter we shoat the Second Law holds for any process in
an isolated system, which extends these powerédsdo chemical reactions.

12.3 Entropy is an Extensive State Function

In Eq. 12.2.1 we simply stated the statistiedlrdtion of entropy. In this section we prove that
the logarithmic form of Eq. 12.2.1 is the only pbssfunctional form for the dependence of
entropy onMtmax. We first focus on the unique property of loganth functions.

How can we relate the number of ways of arraggjire energy states of the system to
thermodynamic properties? Statistical weights amadbabilities multiply, Eq. 12.2.10, but
extensive thermodynamic state functions add. Censidain the two systems in Figure 12.2.4.
The extensive thermodynamic variable that is arcatdr of these statistical probabilities must
be additive, S =5+ S, where $is a function ofih for system 1, Sis a function ofis for
system 2, and S is the result for the compositesys

S(W) = Su(nh) + S(nh) 12.3.1

The statistical weight for the composite systemiven by Eq. 12.2.10. Substitutirigf= A1A
into Eq. 12.3.1 gives:

S(M) = S(Mh wh) = SI(Mh) + S(1h) 12.3.2

The logarithmic function has this property; In(abn a + In b. Logarithmic functions convert
products into sums. We can conjecture thatf3n 7/, with £ a constant. Substituting
S =k In uinto Eq. 12.3.1 for the composite system andnideszidual systems gives:
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SM) =S+ S =kIn WA+ EIn Uh = KIN(Wh Wh) = SMA Wh) 12.3.3

as required by Eqg. 12.3.2. Now that we have shdahlbgarithmic functions convert products
of statistical weights into sums, can we proveaanjecture that § £ In #? We need to prove
that a logarithmic function is the only possibledtional form that satisfies Eq. 12.3.2.

Take a step back for a moment and assume thdbweknow the functional dependence of
entropy on. To find the functional dependence of the entropyy, find the differential of the
total entropy for a composite system starting fiegq 12.3.1:

dSm) = dS(m1) + dS(1h) 12.3.4
Expressing the differentials in termsf 14, andus gives:

ds®) . dSi(wa) ds(us)
dw W=y A e,

dus 12.3.5

The derivatives are regular one-dimensional dearigatbecause S is a functionmfonly, S is a
function of w4 only, and $is a function ofit2 only. However, fromi/= #4194 and the product
rule, dw = d(minb) = wi dush + ws dua. Substitution for @ into the left-hand side of Eq.
12.3.5 results in:

dsm) dSy(1h) dSZ(’WZ)
dw (WA dus + we dui) = dut dvmh +—— d1h duh 12.3.6

The coefficients of @4 and d#s on both sides of this last equation must be egirade4 and
Wk are for separate systems that are independeacbfaher:

digf) Wh dui = d%{% Dgus  and dig/” WA duh = di{(ﬂ/ 2 1237
Dividing the first equation byt d1i and the second byidus gives:
St _ L dS(wh) o 950 1 dS(w) 12.3.8
dw ~wsr dui dw ~wa dub
Setting these two equations equal to each otheciasd multiplying results in:
a5 _,, 9(0e) 12.3.9

MT . T G,

However, 1 and#s are independent of each other; we placed no castrs on the number of
molecules and the volume of each of these sepsyatems. This last equality can hold for any
arbitrary values o1 and#4 only if each equation is separately equal to astzont:

dSi (1) dS(1h)
WlWll =k and ‘sz =k 12.3.10

We can then solve either of these last two equntagquations for dS. Solving for d8om the
first equation and integrating gives:

ds :W&l dnwi and &= fwfil dvi = kIn wA+ cst 12.3.11
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which is Boltzmann’s entropy to within an additivenstant. These last equations hold for any
system, so we can drop the subscripts. The constém value of S at absolute zero in
temperature, Swhen/is at its minimum value oft’= 1 (usually). In general then the entropy
is defined as:

S=RIN Whax+ S 12.3.12

noting that#/is a maximum for a reversible process. The integrgq. 12.3.11 shows that the
logarithmic function is the only function that sdiees the additivity of entropy for composite
systems as expressed by Eq 12.3.2. We have nagtbat the constaitin Egs. 12.3.10-
12.3.12 is given by Boltzmann’s constant k forragte system or k¥ for an ensemble. We will
see thak = k/wvis required for agreement between the statistieahition of entropy and the
thermodynamic definition of entropy. The Boltzmasmtropy is then seen to follow directly
from the supposition that processes are governeslyploy statistical rules for the distribution of
energy among the available energy states.

12.4 Larger Number of Ways of Arranging the Microgates Gives Larger Probability

The definition of entropy based anax, EQ. 12.2.1, is useful for understanding the funelatal
issues linking probability theory and energy transHowever, evaluating/max for practical
chemical processes is difficult. In addition, neitBoltzmann nor Gibbs used this formula to
develop the concept of entropy. Instead, the Gastasoriginal Boltzmann definitions used the
probability of occurrence of a given energy sta¢he fundamental statistical measure. Luckily
the probability of occurrence of a macrostate isatly proportional to the number of ways of
arranging the particular macrostate. The more wéysriving at a given set of distribution
numbers the more probable the state. The more pi®bze state the more often it occurs, since
there are many ways of arriving at that state. ldaw we recast the entropy of a system directly
in terms of probability?

Entropy and ProbabilityS = — k2 pi In p:  The number of ways of arranging the energyestat
of the system is given by Eq. 12.2.5. The logaritffrm/is:

InW=InM-=> Inn! 12.4.1
i

There is a very useful formula for approximating factorial of very large numbers called
Sterling’s formula, which we derive in the addend@terling’s formulas for N! are:

N

N
NI'= (Ej and InN!'=NInN-N (N> ) 12.4.2

Using Sterling’s approximation for the factoriatskq. 12.4.1 gives:
INnW=NInNV—N=2 (nilnn—n) 12.4.3
[

Summations can be done in any order; summationssaaiativez(a + b) =2 a + Z b.
Carrying the summation sign through the terms mepieses gives:

INW=NInN=N=DnInn+> n 12.4.4
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Using Eq. 12.2.2, therandX n; cancel:

INnwW=wNInNy=Yninn=xnInNy= ninn 12.4.5

Combining sums and distributing out the commondaof n, ~Z abi + ~ ac =X a(bi+c), gives:
INnw==>n(nn-InN) 12.4.6
i

The difference in the logs is the log of the raliva — In b = In(a/b):
- i T
In 9= —Ei) ni In n 12.4.7

Substitution of Ini/from Eq. 12.4.7, with the most probable distribatiinto Eq. 12.2.1 for the
entropy gives:

_ ni N
S=- kzi: Wln N 12.4.8
But n/vis the probability of finding a system in statgiiz n/a:

S=—kYpinp 12.4.9
i

This last equation is an alternate form for thardbn of entropy, in terms of the probability of
occurrence of each energy state of the ensembles s last equation have the correct
behavior? When all systems in the ensemble aigeitoivest energy state; p 1, and the

entropy is zero. There is no dispersal of enerigigesall systems are in the lowest state. As
energy is transferred into the system, more staaccessible and there are more terms in the
sum, increasing the entropy, Example 12.4.1. E@t.22s closely related to the Boltzmann H-
function, which Boltzmann originally proposed foetdefinition of entropy.For practical
applications, Eq. 12.4.9 is particularly useful ¢atculating the residual entropy of crystals at
absolute zero and the conformational entropy idistiof protein folding and binding.

Example 12.4.1: Internal Energy and Entropy from Distribution Numbe

The occupations for the energy states for 15 systagiven for three different cases in Figure
12.4.1. Determine the internal energy, in multigés above the reference energy, and entropy
for each distribution.

3 — =0 ¥ |—— n3=0 3 |——— m=0

Eooe | —  m=o0 E 2 —  m=0 E oo |laa— nz=2
e |— m=0 le |see— m=3 le [#eee  m=4
0 no =15 0 No=12 0 !-esesesess— Nn=9
(a). (b). (c).

Figure 12.4.1: The occupations of the energy sfatek5 systems at three different
temperatures.
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Answer (a). The probabilities for each energy state pye %15, p1 = 0, p =0, g = 0. The set
of distribution numbers is (15,0,0,0) giving(15,0,0,0) = 1 and U — U(0) &) = 0. The entropy
using Eq. 12.4.9 is then:

S=-k(1In1)=0

(b). The probabilities for each energy state ases /15, pr =315, p2 = 0, B = 0. The set of
distribution numbers is (12,3,0,0) givirng(12,3,0,0) = 455. The internal energy, using Eq.
12.2.6, and the entropy are:

U-U(0)=(E)= Y pE = (%s) Oc + (l15) 1e =315¢
i
S = —kt%15In %15 +315In 315) = 6.9x1074J K1

(c). The probabilities for each energy state age: Yhs, p1 = “/15, P2 = %15, p3 = 0.
The set of distribution numbers is (9,4,2,0) givim{p,4,2,0) = 75075. The internal energy, and
the entropy are:

U-UQ)=(E)= Y pE = (l1s) O + (*15) 1e + (/15) 26 =815¢

|
S = —kb/15In %15+ %15 In Y15+ 2115 In %/15) = 1.3x1073 J K

This example is schematic; Eqs. 12.2.1 and 12 9alid only in the limit of large
occupations. The entropies are small because #nergo few systems.

Residual Entropy at Absolute Zero Temperatusg;. 12.3.12 gives the entropy of a system
referenced to the entropy of the system at absakr@ In Section 13.4 we will discuss the
Third Law of Thermodynamics in more detail. Ther@hiaw states that the absolute entropy of
a pure, perfect crystalline solid is zero at absohero. In other words,S 0 in Eqg. 12.3.12 for
most substances. However, some substances ariliiféi prepare as perfect crystalline solids.
When a substance freezes at the melting poingth#able thermal energy, RT, can be greater
than the intermolecular forces that determine tientation of the molecules in the crystal
lattice. Two examples are<® and N=N=0. Crystals of solidD are experimentally found to
have molecules in random orientations, rather geafect alignment, Figure 12.4.3. When the
crystals of the substance are cooled to absolute #es orientational randomness is “locked in,”
because the kinetics of reorientation are too sldve entropy caused by this randomness is
called theresidual entropy of the substance. The definitions of entropy is.E.2.1 and

12.4.9 can alternatively be used to determinedB&lual entropy in crystalline substanéés.

CesO &0 0O C=0 GO O=C 0 0©=C C=0

CsO &0 0 =0 GO &GO C=C (=C =0

CsO &0 0 =0 cC &GO C=C &0 C=C
perfect crystal crystal with oriemvatal randomness

Figure 12.4.3: The residual entropy for CO is t&uit of orientational randomness.
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For a molecule like €0, there are two distinguishable ways of packirgrtiolecules into the
crystal lattice: @O C=0 and GO O=C. Let the number of ways of arranging a moleculthe
lattice be w, for a single molecule. If there arendlecules in the system, there afétatal ways
of arranging the molecules in the crystal. Thedesl entropy is then given by

S =kIn Whax=kInw=NkInw=nR Inw (molecular probabilities) 12.4.10

since Nk can be rewritten as Nk = (M{Nak) = nR. For GO with w = 2 gives §=5.76 J K
mol?. The R appears in this last equation because evasing w for a molecule instead of W for
a full system; we multiply by Avogadro’s numberpot the entropy on a per mole basis.

Alternatively, Eqg. 12.4.9 can also be used basas for the calculation of the residual entropy.
If the intermolecular forces are weak comparedTotRen the probability of placing a molecule
in the lattice as €0 and G:C are equal, p(€0) = p(C=C) = %2 and Eq. 12.4.9 gives:

S=-RY. plnp=—-R *®%In%+%In%)=RIn2=5.76 3 Kol' 12.4.11
i
Once again, the R appears instead of k to putritrefgy on a per mole basis. The advantage of
Eq. 12.4.9 or 12.4.11 is that the probability basgdation is useful if there is some partial
alignment at the melting point; partial alignmentors when the intermolecular forces are
comparable to RT.

The Residual Entropy Can also be Calculated astiteopy of Mixing Another method for
calculating the residual entropy is to find therepy change as the lattice is formed from a
mixture of molecules with the allowed orientatidriBhe entropy of mixing is also a useful
concept for understanding mixtures of gases anddigolutions. Consider a crystalline lattice
that can have molecules in two different orientagid=or convenience, we diagram the two
orientations as dark and light squares, Figure.42¥he entropy of mixing is the difference in
entropy of the initial state with unmixed orientets and the final state with each lattice site
occupied by either orientation at random.

Figure 12.4.4: Entropy of mixing ofimolecules of orientation 1 withp molecules of
orientation 2. The number of ways of arrangingitiigal unmixed state is \Wmixea= 1. The
distribution on the right is only one of a verydamumber of equally probable random
configurational microstates.

Assume that there are molecules of orientation 1 withr molecules of orientation 2. The
number of ways of arranging the initial unmixedestia one, Whmixe= 1. There is only one way
of arranging the blocks of unmixed orientationsséyse the orientation of the molecule in a
given cell is independent of the orientations @f tholecules in the adjoining cells. The number
of ways of arranging the random distribution okotations in the mixed state is:
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N!

Winax = ny! no!

with N=n +rp (independent) 12.4.12

and the entropy of mixing is given as:

Whixed N! .
AmixS = Shnixed — Sinmixed = K Inm: Kk In(nl! nz!) (independent) 12.4.13

Using Sterling’s approximation for the factoriaises:
AnixS=K(InN!'—=Innal=Inn!)=k(NINN=N-Aalnm+m-rinn+mn) 12.4.14

Noting the cancellations using N = o and substituting for N in the N In N term gives:

DAmixS =K (NInN—-nalnn—reln nz) =k [(m+ ) INN —n.In m — rein ng 12.4.15
Collecting terms in nand r2 results in:
Ny N2 .
AmixS = — k(nl In Nt In W) (independent) 12.4.16
Multiplying and dividing each term by N gives:
NNt Np N ,
AmixS = — Nk(ﬁl In Nl +W2 In Nz) (independent) 12.4.17

Note that N k = (N/IW)(Nak) = nR. The number ratios are the probabilitiethefoccurrence of
the given orientation; that is p /N and p = ne/N:

AmixS=—nR (pInpL + p In ) (independent) 12.4.18

This equation corresponds to Eq. 12.4.9, butwirien in terms of the probabilities of
individual molecular states, instead of statehiefdnsemble. Alternatively the probabilities for
each orientation are equal to the mole fractiens, m/N andx. = n/N:

AmixS = — NR Xz In X1 + X2 In X2) (independent) 12.4.19

Applying Eq. 12.4.19 to the residual entropy &L, if the two orientations are equally probable
the mole fractions of left and right-pointing malées is equal witlxs = x2 = %2, which gives the
same result as Eq. 12.4.1%,=SAmixS.

The entropy of mixing given by Eq. 12.4.19 iscaépplicable to mixtures of ideal gases. The
requirement for independent occupations can alsabsfied by real gases and solutions that
have equal forces between all the molecules. Fetungis with more than two constituents, Eq.
12.4.19 generalizes to a sum over all components:

AmixS = - nNRY, X In X (equal forces) 12.4.20

Relating Sums Over Molecular States to Sums OwterfyStates in an EnsemblEhe

expression for the entropy in Eq. 12.4.9 requinesprobability of occupation for each energy
state of the system. The Boltzmann distributiontii@ canonical ensemble allows us to calculate
these probabilities. We will derive the Boltzmansitidbution for the canonical ensemble in Sec.
12.5. The result is that the probability of occane, p, of a system with energy  given by:
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p="0 with QEZe_E/kT (canonical ensemble) 12.4.21

The ensemble partition function, Q, is the sunmhefBoltzmann weighting factors over all
system energies. Q is the normalization constarthprobability distribution. Notice the
correspondence to the Boltzmann distribution ovelecular energy states, Eq. 8.9.5. The
Boltzmann distribution over molecular states is\wd&t from the canonical ensemble Boltzmann
distribution. The first step in determining theateénship between molecular and system
properties is to assume that the number of moledaleach system and the number of systems
in the ensemble are so large that the most prololtigoution is the overwhelmingly
predominant distribution. Each system in the endenibr the vast majority of the time, is in its
most probable distribution over molecular states lags the ensemble average enérijge
number of ways of arranging the states of the ebtem then the number of ways of arranging
the states of the compositesidentical distinguishable systemi&nax = W, v, where Whax is

the number of ways of arranging the states of glsisystem. The ensemble average of the
entropy, Eq. 12.2.1, reduces to a function efa\Wor a single system:

k k
S =5/ In Winax=7In W, % = K In Winax (system) 12.4.22

as we stated without proof in conjunction with Eg.2.1. (The systems in the ensemble are
distinguishable, because each system is consi@srbdving a fixed position within the
ensemble.) All we are saying is that the canorecakemble represents the properties of a single
system for averaging purposes, and for a singlesys = k In Whax

For a system of N molecules, Egs. 12.4.10, 12,412.4.18, and 12.4.19 show examples of
how to relate properties of an individual molecid&Vmax. In Chapt. 32, we will show in detail
that the properties of the system as a whole caelbted to the properties of individual
molecules and then the properties of the individonalecules can be related to the separate
degrees of freedom of each molecule. Anticipatiregé results, we simply stated Eq. 8.9.5; for
an ideal gas the Boltzmann distribution appliemtiividual molecular energy states and the
corresponding partition function is the sum over shates of single molecules. We can use the
Boltzmann distribution to describe the occupatibeystem energy states in an ensemble and the
occupation of molecular energy states in a systemmake the distinction between single
molecule properties and system properties, we @andtvidual molecule energy statescaand
the molecular partition function as lower case ‘gliile the system energy states are givenias E
and the ensemble partition function as Q. Theigelahips between system and molecular states
are summarized in Egs. 12.4°28hd 12.4.24 for an ideal gas:

Canonical Ensemble, general: Single Syst#eal, internal degrees of freedom:
Sum over system energy statas, ESum over distinguishable single moleculeestat
e—Ea/kT e—si/kT
P="% Q=Y e BT P=""g =Y e okT (internal) 12.4.23
[ i
Kk .
S=y INn Whax=—k>. p In p S=nRIn Wa=-nNRY piIn p (internal) 12.4.24
[ [
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where whax is the maximum number of ways of arranging theestéor a single molecule. The
last equation for the entropy makes some assungpéibaut the distinguishability of the
molecules in the system. We will focus on this éssuChapt. 32. For now, note that Eq.
12.4.24 holds for distinguishable molecules or in genéainternal degrees of freedom. The
details need not concern us for now. Using theZBadinn distribution to explore the
contributions of individual molecular degrees a&ddom to the entropy is instructive as we
consider the underlying concepts in chemical egpilm.

Energy is Dispersed by Increasing the Number oessible Degrees of FreedoAll molecular
degrees of freedom contribute to the internal enargl entropy. The energies of translation,
rotation, vibration, and electronic degrees ofdi@®a add to give the energy of individual
molecules. The energies of all the molecules ipséesn add to give the overall internal energy
of the system. For real gases and condensed piestgal energy of a system also includes
intermolecular interactions. A specific degreereeflom sometimes plays a predominant role in
chemical processes. We can determine the influehspecific degrees of freedom if
intermolecular interactions and interactions betwie degrees of freedom are negligitdi&he
energy of the system is then the sum of single cutdeenergies, and the energy of a single
molecule is then the sum of the individual conttibs of the degrees of freedom, Eq. 8.7.1:

N
Ei (system) 2 ek Wwith & = &ktrans* Ekirot + € kvib + E kelec (ideal gas) 12.4.25
k

all molecules

The contribution of an individual internal degréddreedom to the entropy of the system is
calculated using Eqgs. 12.428nd 12.4.2%for a single system.

Determining the number of internal degrees eéfiom for a system can be a useful way of
estimating the entropy of a substance. Non-linealeoules have three rotational degrees of
freedom, while linear molecules have only two. Nimear molecules, therefore, typically have a
greater contribution to the rotational entropyhs system than linear molecules (Sec. 8.8). The
contributions of individual degrees of freedomhe entropy are discussed further in Sec. 10.3.

Only Low Frequency Vibrations Contribute to thergpy. In Sec. 8.9 we pointed out that at
298.2 K only vibrations with wave numbers less thbout 500 cm contribute to the internal
energy of a substance, Figure 8.9.2. The vibratiomernal energy and entropy at 298.2 K are
listed in Table 12.4.1 for different frequency \@hbons.

Table 12.4.1: Vibrational contribution at 298.2dthe internal energy and entropy of an

ideal gas.
Frequency (cr) U —U(0) (kJ mob) Sxos (J K'mol?)
1000 0.10 0.39
800 0.21 0.87
500 0.59 2.75
200 1.47 8.92
100 1.93 14.45

10 2.42 33.52
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Counting low frequency vibrations is a usefulv@ estimate the entropy of a substance. In
summary then, additional rotational and low enerigyational degrees of freedom provide more
accessible energy states for the system and thmenefovide for greater energy dispersal.

Example 12.4.2: Vibrational Contribution to Absolute Entropy
Consider the gas phase entropy of propane and ben@g#ls and GHes. Which substance has
the larger entropy?

H H H
H H
H by H H
H H H
(a) propane, §Hs (b) benzene, és

Answer Propane has two low frequency torsional vibraticso the contribution from the
vibrational degrees of freedom to the overall gmgris greater for propane. A normal mode
analysis is not required for our purposes. Howether results are instructive. The low frequency
vibrations are listed in Table 12.4.2.

Table 12.4.2: Low frequency vibrations for propame benzene from molecular mechanics
(MMFF), semi-empirical (AM1), a moderate le\a# initio molecular orbital method
(B3LYP/6-31G*), and experiment:*2 Doubly degenerate vibrations are markes2s
Torsions are intalics.

Propane (cm) Benzene (cm
MMFF  AM1 B3LYP  Exp. MMFF AM1 B3LYP EXxp.
236 174 221 202 | 431x2 371x2 415x2 405x2
283 203 272 283 | 534x2 617 622x2 606x2
433 413 366 375 677 642 693 671
828 805 759 748 699 748 718 849

The experimental entropy of propane is slightlgé&rthan benzene;y@ropane,g) =

269.91 J K mol? versus gbenzene,g) = 269.31 Jnol?, even though benzene has more
atoms and a higher molar mass. The low frequensyotwal vibrations of propane provide more
accessible energy states than the correspondirdirfgevibrations in benzene.

Conformational Entropy One important degree of freedom especially fodies of protein
folding and binding interactions is the torsionabcee of freedont:13 Torsions are low
frequency vibrations that result from changes hredral angles. Figure 8.7.10 defines the
dihedral angles along the backbone of a proteie.tfdnsition from an unfolded, random caoil
geometry to the folded active conformation of at@irorequires restricting most of the torsional
angles along the backbone. The folding processjeddrom the point of view of the backbone
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conformation, is an entropically unfavorable pracé&3onsidering binding interactions, many
enzyme substrates and pharmaceutically active emayhibitors have torsional flexibility.
Often when substrates or drugs bind to a recefitontan enzyme, the torsional degrees of
freedom are restricted. The “freezing out” of torsl degrees of freedom in the formation of
molecular complexes is entropically very unfavoealifonsequently, medicinal chemists take
torsional flexibility into account when designingw drugs. Designing drugs with limited
conformational flexibility is one way to enhance thinding of drugs to their intended receptor
sites. This process is called rigidification. Oxamaple is the enhanced binding of atrophine to
the receptor site for acetylcholine in acetylchelasterase, Figure 12.42:

T
CH, +
CHi /+ H/N
-N 5 Q
CH; '\
0 o)
-
o 0 OH
(a). Acetylcholine (b). Atrophine

Figure 12.4.2: The decreased torsional flexib#itiained by incorporating important bonds
in a ring decreases the conformational entropy Ipefa binding.

For illustrative purposes, we will focus on aysimple system, butane, GEH.CH>CHa.
Butane has three torsional degrees of freedomba@heer to internal rotation for methyl groups
is so small that the —GHyroups are always in rapid motion, down to temijpees near absolute
zero. The central C—C torsion, however, is seresitivthe environment of the molecule. A plot
of the torsional energy as a function of the C—O=@#hedral angle is shown in Figure 12.4.2.

CH,
C\HgCH3 $H3 |C ?Hg C\HSCH3
H.C C / C
C/C 3 N 7/ (|: C//CH3 C/C
CH,
20 ~

E,o (kJ molt)
= =
o v

1 1

w
1

0

0 3I0 GIO 9I0 léO léO léO 2:;.0 2;10 2%0 3(I)0 3é0 360

dihedral angle
Figure 12.4.2: Dihedral angle dependence of thecseergy for butane using the MMFF
forcefield. Theanti-configuration is more stable than ti@ucheby 3.26 kJ mot.
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From a molecular mechanics perspective, the highergy of thegauchecompared to thanti-
conformations is caused by the contribution of e-twid torsional potential, Eq. 8.7.14, and Van
der Waals interactions between the terminal meghglips. The MMFF torsional potential for
C-C-C-C is given by:

Eior = 0.051 (1 + co®) — 0.341 (1 + cos@) + 0.166 ( 1 + cos) 12.4.16

The reference energy is taken asdah&-conformation. The two gauche states have the same
energy. States with the same energy are said dedgpenerate. Eq. 12.4.24 then gives the
conformational entropy based on the energy diffezdretween thgaucheandanti-statest?

Example 12.4.3: Conformational Entropy

Calculate the conformational entropy for the tamsiadegree of freedom for butane. The energy
difference between thgaucheandanti-conformers in butane is 3.26 kJ malsing molecular
mechanics and the MMFF forcefield.

Answer: The plan is to calculate the Boltzmann weightingdes for the conformational states
and the sum of the weighting factors to find theipan function. The partition function is the
probability normalization constant. The probal®ltiof occurrence of each of the energy states is
then calculated and the sum of (p In p) is themébaver each state.

The Boltzmann weighting factor for thati-conformer is 1, since we chose a reference energy
of zero for theanti-conformer and %= 1. The Boltzmann weighting factor for thauche
conformer is:

-Egauchd RT

o -3.26x10J/(8.314 J K mot* 298.2 K) _ 0.2681

The partition function, Eq. 8.9.7, is the normdiiaa for the probability distribution:

q=> €Kkl =1 +0.2681 + 0.2681 = 1.5362
i
There is onanti-state and two degenerafauchestates. The probabilities for eagaucheand
anti-energy state are then:

p(gauche) €=¥RT/q = 0 2681/1.5362 = 0.1745
p(anti) =€%"RT/q = 1/q = 1/1.5362 = 0.6510

The conformational entropy as given by Eq. 12.4 @i a sum over all the energies for a
system. In this example, we are dealing with irdlial molecule energies. To convert to a per
mole basis starting with the properties of a simgtdecule, Eq. 12.4.9 is multiplied by
Avogadro’s number and the sum is over the ene@gstor a single molecule, Eq. 12.4.24:

S=-NkY plnp==RY. plnp (molecular probabilities) 12.4.17

| |
S =—8.314 J Kmof [0.6510 In(0.6510) + 0.1745 In(0.1745) + 0.174@®I0745)]
=7.39J Kk mol?
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When butane is bound in a restricted environmenstrof this entropy is lost. For comparison,
the difference in entropy between butane eise-butene is 9.29 J'Kmol. cis-2-Butene lacks

the internal C—C-C—C torsion. Biochemists and medichemists often use an average value of
19. J K mofr? for the entropy lost for each free internal ratafi® Example 10.3.1 is also
appropriate for your reading at this point.

The examples of conformational entropy and rediéntropy show the intrinsic usefulness and
power of the concept of entropy and the Boltzmaistridution. We introduced the Boltzmann
distribution without proof in Chapter 8. Now we leathe tools to derive this most central and
important result.

12.5 The Boltzmann Distribution Gives the Equilibium State

The equilibrium distribution of the availableegzgy among the energy states of the ensemble is
given by the most probable distribution, Figure2l@. What is the most probable distribution?
Are there some general principles that we can diean the most probable distribution? The
most probable distribution maximizes the entropyrtaximizing® orZ piln pi. To find the
most probable distribution, we vary the probalasitof the occupations of the energy states,
Figure 12.5.1. However, as we adjust the occupatiamneed to keep the number of systems in
the ensemble and the total ensemble energy constace the ensemble is isolated from the
surroundings.

A _ A _ =
e Bfe——m=1 y=3n € o v su=ERE
Es n=0 I Es =1 - Zn,
E; n=0 E=SnE —1 E2| eo—m=2 I
Ey |eeseee—n =6 T _ Ei] ===—m =3 for most probable
E, |eeee—n,=4 sum over all states, i Eo| #****—n,=5 distribution

Figure 12.5.1: To find the most probable distridwt the probabilities of occurrence of the
energy states are varied, while keeping the numbgystems in the ensemble and the total
ensemble energy constant.

States with High Energy Are Less Probable thaneStatith Low Energy:To maximize the
entropy we find the differential of the entropy lwiespect to changes in the probabilities and set
the result equal to zero. For a general process;ithnge in entropy using Eq. 12.4.9 and the
product rule is:

dS= -K_(pdinp+Inpdp) 125.1
i

Using the identity, dinip= 1/p dp, and separating the sums gives:
dS=-K. QL +Inpdp=-k>, dp—-k2 Inpdp 12.5.2
[ i [
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Note thatt p = 1, by normalization, so thatXiy) =% dp = 0. In other words, if the probability
of occurrence of one energy state increases, tieeprbbability of some other state must
decrease since the sum of the probabilities isydwanstant at 1. The first term on the right in
Eq. 12.5.2 is then zero leaving:

dS=-K_Inpdp 12.5.3
i

The most probable distribution maximizes S:

dS=-K . Inpdp=0 (most probable) 12.5.4
i

However, the changes in the probabilities, as wenoted, are dependent on each other. The
probabilities must sum to one and the total enefgiite ensemble must be constant, since the
ensemble is isolated: p = 1 andz E pi = . Correspondingly, we must kegpdp = 0 and

> Eidp = 0 as we adjust the probabilities of each statentl the maximum entropy. These two
conditions are called constraints, and this typproblem is called a constrained maximization.
To be as general as possible, note that consthrgs/emultiplying the constraints also give a
zero result:

ad>dp=0 and BY.Edp=0 (constraints) 12.5.5
i i

Since both of these equations are equal to zedmadEgs. 12.5.4 and 12.5.5 still gives zero,
which maximizes the entropy subject to the constsali

dS=-K. Inpdp+a> dp+BY Edp=0 (most probable) 12.5.6
i i i

The trick of adding in the constraints allows usreat the changes in probabilities;,ds
independent variables. This constrained maximinatiethod was developed by Joseph Louis
Lagrange in 1804. The Lagrange method is discusstter in the addendum. The constamts
andp are called_agrange multipliers and the method is often called the “method of
undetermined multipliers.” The important task wewrface is to determine the value and
meaning ofx andf. Note thatx is associated with the probability normalizationl 8 is
associated with conservation of the total ensembérgy, which in turn fixes the average energy
of a system in the ensemble.

Combining sums and distributing out the commamtdr of dpin Eq. 12.5.6 gives:

dS= -k (Inp+a+BE)dp=0 (most probable) 12.5.7
i

Since the dpare now independent and can vary from O to lotig way to ensure that the sum
in the last equation always gives zero is if thefficient of each term of djs separately equal
to zero:

Inp+a+BE=0 (most probable) 12.5.8

We can solve this last equation to find the mosbgble distribution:

p=eagfE (most probable) 12.5.9
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The probability of occurrence of a given energyesiaan exponentially decreasing function of
the energy. Low energy states are more probabieltiggn energy states; there are few high

energy systems. TheR& term is called th8oltzmann weighting factor for the energy state.
We can find the value of€through normalization using Eq. 12.2.7:

Yp=Y eePt=eryett=1 12.5.10
i [ i
Solving for €% gives:
_ 1
_Z e—BEi
[

12.5.11

This factor is just the normalization for the prbldigy distribution. Substitution of this last famt
into Eq. 12.5.9 gives:

- z e—B Ei

pi (most probable) 12.5.12

The sum in the denominator is called the partifiorction and is often given the symbol Q:

Q=) g Pk (canonical ensemble) 12.5.13
i

Substitution of this last definition into Eq. 12.8.gives the working formula:

P="7" (most probable) 12.5.14

The partition function, Q, is the sum of the Boltam weighing factors over all the accessible
energy states of the ensemble. We will have mudtermsay about Q in the foundations of
statistical mechanics chapter. However, for nowwitEjust consider Q as the normalization
ensuring thak p = 1. We still need to find the value 1Br

£ =1/KT: With the most probable distribution in hand ves eow calculate the entropy change
and average energy change for a process. The Baitzulistribution applies when the system is
at equilibrium. Taking the logarithm of the Boltznmadistribution, Eq. 12.5.14, gives:

Inp=-BE-InQ (equilibrium) 12.5.15
Substitution of this last equation into the chaimgentropy, Eq. 12.5.3, gives:
dS= -k, (-BE -In Q)dp (equilibrium, cst.V) 12.5.16
[

The constant volume constraint results becausstargyin a canonical ensemble is at fixed
volume, giving fixed energy states. Distributingaihgh the summation gives:

dS= BY Edp+kInQY dp (equilibrium, cst.V) 12.5.17
i i
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Note once again thatdp = 0, giving the last term in Eq. 12.5.17 as zeroich leaves:
dS =8> E dp (equilibrium, cst.V) 12.5.18
[

Notice that the summation in this last equatiothéschange in the ensemble averaged energy.
The fundamental basis for the connection betwesisstal mechanics and thermodynamics is
the equality of the internal energy and the enserabéraged energy, U — U(O)E), Eq. 12.1.2.
For a change during a process then dUE.dThe energy states for a system are functionseof t
volume, but for a constant volume process thar& fixed. We can find the change in average
energy for a constant volume process by takingliffierential of the average energy, Eq. 12.2.6,
for fixed E:

dU =dE) = ¥ E dp (cst. V) 12.5.19

At constant volume the change in internal energgnien solely by changes in the populations of
the energy states. Dividing Eq. 12.5.18 by 12.54l8ich is taken at constant volume, then gives
one of the most fundamental results in thermodyosami

(g—ﬁ) = kB (equilibrium, cst.V) 12.5.20
%
where k is Boltzmann’s constant. This last equaisahe key to finding the meaning @f First
notice the calculations of the change in entrogy,2.5.18, and the change in internal energy,
Eq. 12.5.19, require detailed information aboutahergy states and the distribution of the
energy among those states. However, the ratioeofitanges always results in a numbpr, k
Remember thdh is the Lagrange multiplier that is related to ni@imng a fixed average energy
for the system. Our examples, Figure 12.2.1 an8.42have shown that the entropy increases as
energy is transferred into the system givia§/QU) > 0, which make$ a positive number.
Summarizing therf} is an important characteristic of the system atldxgjium that is positive
and characterizes the average energy. We aregettiser to the meaning pf

The ideas that we have developed in this chapeebased on the everyday observation that
heat is transferred from a hotter to a colder b&ay.12.5.20 characterizes thermal energy
transfer. Consider energy transfer between twotaahsolume systems 1 and 2. Eq. 12.5.20
applies to both systems separately and solvinghioentropy changes gives:

dS = kB1dUs and  dS= kB2dU2 (cst. V) 12.5.21
The total change in entropy for the transfer isshen of both systems:
dSot = dS + dS = kB1dU: + kB2dUo (cst. V) 12.5.22

dSet is positive for a spontaneous process, as werdeted in Sec. 12.2. The transfer of energy
between the two systems is equal in magnitude ppdsite in sign, dU= — dl. Substituting
for dU; in the last equation and assuming a spontaneoge$s gives:

dSot = K(B1—PB2) dUL>0 (spontaneous, cst.V) 12.5.23

Now consider three cases for energy transfer; vee @ choose the signs @:.(—32) and dU in
Eg. 12.5.23 to give an overall positive entropyrade
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1. If B1 <B2then B1—PB2) < 0 and we must have d 0 to give dg:> 0. For dU< 0 energy
is transferred from system 1 to system 2. Systenudt be the hotter system.

2. If 1 > B2 then 1 —B2) > 0 and we must have d& 0 to give dg:> 0. For dU > 0 energy
is transferred from system 2 to system 1. Systenu& be the hotter system.

3. If B1 = B2 then dox= 0, there will be no energy transfer and the ty&teams must be at
equilibrium.

We find thatf is an indicator of the direction of energy flowdaequilibrium. We can reconcile
the three relationships if we set:

1
B=ir 12.5.24

Then, for the three cases above, respectively:
1. If B1 <Bz2then (1/% — 1/T2) < 0 giving T > T2 making system 1 the hotter system,
2. 1f B2 >B2then (1/h — 1/T2) > 0 giving Tr < T2 making system 2 the hotter system,
3. If B1 =B2then T = T2 and the systems are at the same temperature,

which agree with the previous conclusions. Enesgyansferred from the hotter to the colder
body for cases 1 and 2. Case 3 is particularlyésteng. In Section 7.7 we introduced
temperature as a measure of equilibrium, baseti@@éroth Law of thermodynami¢sTwo
systems at equilibrium have the same temperatage @ shows that the statistical and
thermodynamic conceptions of temperature are ctamgisl he result thgd = 1/KT is consistent
with our everyday conception of hotter and col@erbstituting Eq. 12.5.24 into Eg. 12.5.20
gives the most fundamental definition of temperattir

0S 1 _—
(w)v =7 (equilibrium, cst.V) 12.5.25
We reached the same conclusion on purely thermaaigngrounds in Sec. 10.2, using the same
process. You may want to read in Sec. 10.2 onThermodynamic Definition of Temperature”
to help reconcile this definition of temperaturéhwyour own personal experience. Temperature
is an indicator of equilibrium. Systems at equilibn have a Boltzmann distribution among their
energy states characterized by the same temperdfierean summarize our results, written now
in terms of the temperature, by substitufhg 1/kT into Eqgs. 12.5.12, 12.5.14, and 12.4.1& Th
equilibrium probability distribution for the energyates of the ensemble is:

b= __ExT (equilibrium) 12.5.26
[

The Boltzmann distribution written in terms of tpa&rtition function is given by:
pi = Q

The entropy change for a process is given by Ecp.12:

with Q=Y e F/KT (equilibrium) 12.5.27
i
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ds :%Z E dp (equilibrium, cst.V) 12.5.28
i

These three equations with Eq. 12.2.6 and 12.2@ige a fundamental description of a system.
Together these equations are used to predict th@apeous direction for chemical reactions and
the position of equilibrium.

Example 12.5.1: Determination of Temperature from the Boltzmanrtribistion

The temperature is a single thermodynamic paraniedticharacterizes the distribution of
systems among the allowed energy states. Detetimengemperature for the energy distribution
given in Figure 12.4.1c. Assume the energy staaeisg is for a harmonic oscillator with
frequency 200. crh

Answer Taking the log of Eq. 12.4.27 gives a functibattis linear in the energy states for the
system:

E.
Inp = —ﬁ— In Q 12.5.29

The slope of a linear curve fit of In yersus Egives slope = —1/KT. The units for the energy are
joules. If the energy is converted to kJ rhthen the slope becomes slope = —1/RT. The energy
state spacing is the fundamental vibration frequéntich you can read directly from the
corresponding peak in the infrared spectrum) imkl?*, Eq. 8.9.2:

h -
e =AE =TC=NAhCV

= 6.022x18 mol'(6.626x10** J s)(2.998x18n s%)(200. cm')(100 cm/1 m)
= 2393 J mot = 2.393 kJ mot

The corresponding data and plot are given below.

i | Ei(kIJmol?Y) | ni pi In pi 0.0

0 0.000 9 0.600 -0.511

1 2.393 4 0.267 -1.322 -0.5

2 4.785 2 0133 | -2.015 y = -0.3143x - 0.5305

-1.0 1 R?=0.998
slope = —1/RT = -0.3143 RInol Inp,
RT = 3.182 kJ mot 15 4
3.182 kJ mot 20 -

T =8.314x16° ki KT mof™ = 383- K s

0.0 1.0 2.0 3.0 4.0 5.0 6.0
E; (k) mol?)




465

12.6 Entropy and Heat Transfer

The entropy is defined through the statisticalghits or the probability of occupation of the
energy states of a system, Egs. 12.2.1 and 1Z.4e%e definitions are crucial in developing an
understanding of the concept of entropy. HoweVersé formulations are often cumbersome to
apply in practical situations. A more easily apgpldefinition of entropy in terms of
thermodynamic variables is necessary. We begadisaussion of entropy in Secs. 10.1 and
12.2 by focusing on the simple idea that heataisdferred from hotter to colder objects. That
observation was then shown to be the result ofrthgimization of the number of accessible
energy states for the two objects. However, wendidyet make a direct connection to heat
transfer. The statistical definition of heat trarst the link to the thermodynamic definition of
entropy. Heat transfer results in a change of @yeeemergy and entropy for a system.

In general, a change in average energy for egssocan result from changes in the occupations
of the energy states, idior a change in the energy states themselvesTdkng the derivative
of Eq. 12.2.3 for a general process:

1
&E) =9—v(2 Edn+Yn dE.) 12.6.1
i i
We can make this expression look a bit more famiiiarealizing that work results from a

change in volume of the system. Consider a gasrauhfn a container of volume V. The energy
states for translation depend on the volume ottreainer:

OE;i
dE = (GV)n.dV 12.6.2
Substitution of this explicit volume dependencekoiato Eq. 12.6.1 gives:
1
KE) = W(Z E dn +2 N (Gan.de 12.6.3
heat work

This last equation is now similar to the thermodyiaformula for the change in internal energy
for a reversible process, dU =¢lg P dV. The first term in Eq. 12.5.3 gives thethiemnsfer for

a reversible process while the second term givesvtirk. We can also relate the heat transfer to
the change in probability of occupation of the @yestates using the definition of the probability
from Eq. 12.2.5:

dqev=yivz Eidn=) Edp (reversible) 12.6.4
i i

The transfer of heat into a system at constantweltesults in a change in the occupations of the
energy states, as we diagrammed in Figure 12.2.1.

The Thermodynamic Definition of EntropyFor a general process, the change in entropy is
given by Eq. 12.5.28. Substituting the statista=finition of heat transfer, Eq. 12.6.4, into Eq.
12.5.28 gives:

23 £ dp =99 (reversible)  12.6.5
i
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This last equality gives the thermodynamic defamtof the entropy change for the system. This
definition is central and fundamental for the depahent of the thermodynamic theory of
spontaneous processes and equilibrium. The rdsulisthe direct relationship between heat
transfer and entropy. As discussed in Sec. 12.ZFand2.5.4, the entropy is determined by
TWmax, Which corresponds to a reversible process, shghetransfer must also be reversible. The
implications of the thermodynamic definition of oy are developed in the next four chapters.

12.7 When Are Entropy and Disorder Related?

In general entropy and disorder are not directigteel!-2? Disorder is often used as a way of
explaining the meaning of entropy; however, thlatrenship is not valid in many cases. The
source of the confusion is primarily centered amiffsue of indistinguishablity, which we will
discuss in Chapt. 32.0ne problem is that the scientific definition agatder is not well
established. Consider the two systems in Figuré.12both have 20x15 = 300 tiles. Which
system is more disordered? There is only one wayrahging the tiles to give the exact
configuration shown for each system, W = 1. Botlthefsystems in the figure have the same
number of ways of occurrence, so they are bothlggoi@bable as single configurations. The
number of ways of arranging the tiles for a randistribution is W = °°. The most probable
distribution is half black and half white, Mt probabie= 3001/(150! 150!) = 2.04x 0, where the
black and white tiles can occur _in any positionwdwger, the exact configurations in the figure
are both equally probable and so are equally “dis@d.?! It is not uncommon for the scientific
applications of everyday concepts to be more wsttithan their everyday usage. Disorder is
not a scientifically precise concept.

Figure 12.7.1: Each configuration has an equaladiity of occurrence, W = 1 for both.
Each system has the same amount of “disorder” mpared to all the ways of arranging the
states of the system with random dark and lightisegi W = 3%,

Is disorder a useful analogy for entropy, e¥e¢he concept of disorder is only loosely
associated with measureable thermodynamic prop@r@®nsider the gas phase absolute entropy
of propane and benzenesHg and GHe, Examplel12.4.1. Which substance has the larger
entropy? Which substance has the greater disoldkr® disorder as an analogy for entropy is
not helpful in determining the relative entropysobstances. In general you will find few
analogies in physical chemistry texts. Analogies afien be misleading. However, while the
concept of disorder is not particularly useful, fogurational entropy does play an important role
in the change of entropy for chemical procedgés.

The conformational entropy of molecular torsiansl the residual entropy at absolute zero for
C=0 are examples in which configurational randomipéggs an important role in chemical
processes. Three things are necessary to assoordtgurational randomness with entropy:
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1. The configurational randomness must be assaolcaté the dispersal of energy.

2. The configurational randomness must lead tongjsishable states.

3. The system must have some mechanism for randacoissing each possible microstate of
the system.

Condition 1 is met if the configurational randomsessults in the dispersal of energy in the
underlying systems or molecules. For example, wdossidering the residual entropy at absolute
zero of GO, the random orientation of theeO molecules is associated with the electronic and
vibrational energy of each molecule in the cryktilce. Specifically, configurational
randomness and entropy are related if the numberag$ of arranging the states of the system
can be factored into two terms, one relating tatrsl or orientational randomness and the
other term the remaining degrees of freedom offs¢em. W can be factored if the remaining
degrees of freedom are the same for each configaraf the molecule or systetfl’23:24

S = k In(WeonfigWsys) (equivalent configurational subsystems) 12.7.1

where Woniig is the number of ways of arranging the statef@ftystem for the different spatial
configurations andVsysis the number of ways of arranging the energyesttir each
configuration of the system. When finding differeadn entropy for a process, the statistical
weights for the underlying degrees of freedom chance
(Wconfig,zj
12.7.2

n
Wconfig,l

AS=5-§ = [k |n(Wconfig,2WSlyS)] - [k |n(Wconfig,2WslyS)] =kl

giving the appearance that the configurational geaalone is responsible for the entropy
change. However, there would be no change in eptrgpe the total statistical weight not
associated with energy dispersal, as originallggin Eq. 12.7.1.

Condition 2 will be a major topic in the latdrapter on the foundations of statistical
mechanics. In general, only distinguishable stapegribute to the entropy of a system. For
example, the two nitrogen atoms in &re indistinguishable. To follow the positionsio#
atoms, label the two nitrogen atoms asNN'. The configurational change®N" - N"=N'is
indistinguishable and therefore does not contriboiteonfigurational entropy. Our development
in this chapter has focused on the system as aewdyolising the canonical ensemble. We will
discuss how to relate system energies, partitiaotfans, and entropies to molecular properties
in the subsequent foundations chapter. Indistif@lngity plays an important role in the
relationship of molecular properties to ensembtgpprties??

Condition 3 is the result of tleegotic hypothesis The time average of a system may be
replaced by an ensemble average only if the erggpothesis is satisfied. The ergotic
hypothesis requires that each possible microsfateecsystem be accessed at random with equal
a priori probability. The ergotic hypothesis is satisfigdnbost chemical systems, except for
some magnetic interactions.

Energy is Dispersed by Increasing Spatial Dispersibor an ideal gas the number of ways of
arranging the states of the system can be factoted term that depends on the volume, V, and
a term that depends on the molecular translatikinatic energy and the internal degrees of
freedom. The configurational entropy for the logcatof the ideal gas molecules can then be used
to calculate the change in entropy for a procesa fthange in volume using Eq. 12.7.2.

Consider the isothermal expansion of an ideal gas ¥olume \{ to a larger volume ¥ The
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result of the change in configurational entropthis dispersal of molecular kinetic energy and
potential energy from a small volume to a largeunaé, which is a favorable process. Suppose
that N molecules are confined in a piston by a,giogure 10.1.2. The piston is isolated from the
surroundings. The initial pressure of the gasiiari®l the initial volume is ¥ The other side of

the piston is at vacuum. The initial number of waf/arranging the states of a single molecule is
proportional to the initial volume and for the N imcules. For the system of N molecules then
Wmax.1 O ViN. The stop is removed allowing the gas to exparattmpy a new volumeaVThe
number of ways of arranging the states for the fimtume are Wax 20 V2\. Using Eq. 12.7.2,

the change in entropy is given by:

Wconfi92 V2 V2 V2
AS =k | Wconﬁg’lj =kl Vl@ = Nk Ir(VJ =nR “{VJ 12.7.3

If V2> Vi1 thenAS > 0, showing that the expansion of an ideal gsa vacuum is spontaneous
for an isolated system.

12.8 Summary — Looking Ahead

The development of the concept of entropy isroftonsidered the single most important
development in physical science in thd't@ntury. This single concept laid the foundation f
all modern science. Entropy is the statistical trimodynamic extensive state function that
determines the spontaneity of all macroscopic maygirocesses. The equation S = k InW is
inscribed on Boltzmann’s tomb in Vienna, highligigtithe contribution of the concept of
entropy and of Boltzmann to our understanding efgihysical universe.

We can conveniently combine both the statistical thermodynamic perspectives on entropy
by considering Eqgs. 12.2.1, 12.5.7, 12.5.28, an@.220gether to gain greater insight into the
meaning of entropy:

s:jﬁvmwmaxz_kzmnp and dsgj}e—vz—kZlnpdn 12.8.1
i i

Energy in the form of heat is transferred from @otb colder bodies, which increases the
number of ways of arranging the states of the caitpgystem. Heat transfer into a system at
constant volume results in changes in the occupsaiod the energy states, increasing the number
of ways of arranging the energy states of the gystée number of ways of arranging the states
of the system is a measure of energy dispersaltgimspersal corresponds to an increase in the
probability of occurrence of many different enegggtes of the system. The equilibrium state is
the most probable state. The most probable statearmcterized by a single parameter called the
temperature. Bodies in contact at equilibrium hiénesame temperature. Entropy is the
extensive state function that characterizes engdigpersal. Entropy always increases for a
spontaneous process in an isolated system beceasspes progress from states of lower
probability to states of higher probabil#y.

In the next chapter, we explore the thermodywatefinition of entropy, dS = dg/T. The
thermodynamic definition of entropy is often easceuse in practical problems, especially large
scale problems. However, we can freely switch betwbe statistical and thermodynamic
viewpoints at any point to find the practical s@utto a new problem. The statistical definition
of entropy reinforces the fact that random charagspa determining role in chemical equilibria.
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12.9 Addendum: Probability, Sterling’s Approximation, and Constrained Maximization

Probability theory is used to predict the likelod of a given set of events. For example, if you
are a gambler, what is the probability of beingldeaoyal flush or of a coin landing heads-up
four times in a row? Consider N possible singlenéseFor example, for coin tosses there are
two possible events: heads (H) and tails (T) a2\ For dice games, rolling a single die gives
6 possible events: 1, 2, 3, 4, 5, and 6 giving & Eor selecting playing cards there are 52
different cards or events, N = 52.

We will make three important assumptions toldith the probability of occurrence of various
events; we will assume that each event is indepdrafeany other event, the events are mutually
exclusive, and each individual outcome has an gopadability?® The assumption of
independence means that the results of any singla are uncorrelated with previous events.
Events are mutually exclusive if the occurrencevant A means that event B cannot occur. A
coin cannot land with both heads and tails showlegids and tails are mutually exclusive. We
also assume that each individual event has an equa&bri probability of occurrence. For coin
tosses, heads is just as likely to occur as s always promise to use “honest” dice. Let the
number of ways for a given event to occur ReThen the probability of occurrence for the
event Ais:

pa = Ma/N (independent, mutually exclusive) 12.9.1

For example, for coin tosses let the event be titermence of heads. There is only one way for a
coin to land heads-up, s@ & 1 out of N = 2 possible events, giving the piuolgy for a coin
landing heads-up asiF %. For throwing a die let the event be the omwe of a 3. There is
only one way for a single die to land with a 3 shhyvrs = 1 out of N = 6 possible events,
giving the probability for a die landing with 3 skimg s = /6. The assumption of equalpriori
probability requires that the probability of a th@ding with a 1 showing is alsa p /6. What is
the probability of selecting ® from a deck of cards? There ake=:13 hearts in every deck, so
the probability is p = nv/N = 13/52.

Now what happens for multiple events? Multiplers can occur as repeated selections in
time or space. Flipping a single coin repeatedbnigxample of a repeated selection in time.
Filling several boxes is a multiple event in sp&m@babilities for individual events combine in
two different ways to give the probability of a riiple event’’

Probabilities Add for the Occurrence of Events A BR Consider first a single event that can
happen in multiple ways. What is the probabilitysefecting a Queen from a deck of cards? The
probability of selecting a @, ora @, or a @, or a @ is each individually/sz. The

probability of drawing a Queen is the sum of thelyabilities of drawing a Queen of any suit:

PQ = Pov + Pos + Pos + Pos =52, The probability of drawing any Queen is four tavees

probable as selecting any single particular Qulem consider multiple events. What is the
probability of rolling a 6 on a single die in twolls? The result can occur on the first roll or the
second roll. The probabilities again add; the pbiliig on the first selection i¥s and on the
second selection ¢ adding to give/s overall. Probabilities of single events add whes t
selection can be expressed as an “OR” combinafienents?®

Probabilities Multiply for the Occurrence of Eve®8sAND B Consider a multiple event in
time. What is the probability of two successivedsap coin tosses? The complete list of
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possibilities for two successive coin tosses is; HH, TH, and TT. The occurrence of two
successive heads-up, HH, is only one of the fossiide outcomes giving a probability of=

Y. The probabilities for the single events multjfdgcause we require H on the first toss and H
on the second toss. The probability of heads offitstetoss is p and on the second toss ig p
giving for H and H, pn = p+2. Probabilities of single events multiply when gegection can be
expressed as an “AND” combination of events. Thabability of three successive H’s, HHH, is
one out of eight orgun= (¥2):

HHH HHT HTH THH HTT THT TTH TTT

Notice that the specific arrangement HTH has timeesprobability of occurrence as HHH,

putH = (Y2). The specific arrangement TTH also has the sawoteapility as HHH. These equal
probabilities result since the individual events exdependent and have eqgaadriori

probability. Another example of independence cofra®s the consideration of the third throw
of three. Consider three successive coin tossesima that the first two tosses both gave heads,
HH. What is the probability that the third throwalso H? You might be tempted to say that the
likelihood of the third throw being H is small, sethe first two throws were both H, but this
assumption is not true. After two successive hetlgsprobability of heads on the third throw is
still ¥2. The individual events are independent. Thie has no way of knowing that the first two
throws were both heads. This result is shown eitlglicy noting in the list of possible results
that HHH and HHT are equally probable.

Usually Order Doesn’t Matter Usually the distribution of events is importamit the specific
order of multiple events does not make a differanaephysical property. For example, consider
the three coin tosses. Notice that if order doasatter, HHT, HTH, and THH each have two

H’'s and one T. Taken together, the probability 6fTHor HTH or THH is three times more
probable than any specific arrangement when osdiEkien into account. Grouping the outcomes
for three coin tosses then gives the probabilitresspective of order:

HHH HHT HTH THH HTT THT TTH TTT
- A _/

pH° 3 (ps%pr) 3 (pupr) pr
W30 =1 W(21)=3 W(1,2)=3 W(0,3)=1

The statistical weights, W, multiply the probalyilgroducts. The weights result from the
addition of the probabilities of the specific outoes, in answer to “OR” questions. For example,
HHT or HTH or THH are equivalent outcomes for ourgoses. The statistical weights are
specific to the distribution of H and T outcomelkeThumber of H and T results are listed in the
order, W(m,nr), as distribution numbers for our coin tossingregée. Since p = pr the

products of the individual event probabilities &ach set of distribution numbers is the samg, p
= pu?pr, however we find that the probability of 2H’s ahfl, in any order, is three times as
probable as HHH or TTT. The statistical weights@astral to the development of the concept of
entropy. The explicit enumeration of every possdalécome for multiple events is difficult to

do, especially for large numbers of events. We te@bnsider counting problems in general to
find a way of calculating the statistical weights Farge systems. Central to the concept of a
statistical weight is the idea of a permutation.



471

Permutations are the Rearrangements of the Order®éries of EventsWe often care about

the results of a series of events, but not therardehich particular events occur. The concept of
permutations helps us to count the number of etpntaeries of events. Consider selecting
three balls to place in a given box. The ballsi@eatical, but we will assume they are labeled so
we can observe the order of the selection evehis balls may be selected in the order:

12,3 13,2 2,13 2,31 31,2 or 321

Each series gives the same result—three ballsibdix. Each specific order is called a
permutation; which is a specific arrangement of the order séaes of events. For three balls in
one box there are six equivalent permutations. damwe calculate the number of permutations
for a series of events in general? Consider owggoieexample; for the first selection we have 3
balls to choose from, leaving two remaining bdfsr the second selection we have 2 balls to
choose from, leaving only 1 ball to choose fortthied event. The total number of ways of
choosing the balls is given by28lL or 3!. The 3! = 6 different permutations are shafove. For
N objects there are N! permutations or ways thaidbjects may be chosen. For example, there
are N objects to choose for the first selectior;X)Nobjects to choose for the second selection
and so on till the last object: N! = N(N-1)(N-2).1)( But what if there are more balls than the
number to be selected?

Given N Choose:nConsider the number of ways of filling a box it balls chosen from N

total balls. In other words, given N balls choosé@ny an example first with N =4 and n = 3. We
need to choose 3 balls; for the first selectiomhaee N = 4 to choose from, for the second
selection we have N-1 = 3 to choose from, andHerthird we have N-2 = 2 to choose from.
For example, the three chosen balls might be talks and 3 or any permutation of 1, 2, and 3:

1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1

The 3! total permutations are equivalent from teespective of a unique selection of the 4 initial
balls. Balls 1, 2, and 3 are selected each timewe don't care about the order of selection. The
other possibilities, without listing the corresporgipermutations are:

1,24 and the five permutations
1,34 and the five permutations
2,34 and the five permutations

There are four unique selections of the 4 ballepsing 3 at a time. How many unique series are
there for a general case? Consider the sequerat®inles from our example and the number of
ways of making each choice for the three balls: N()N—2). In general the series continues for
n selections:

ways of selecting n objects = N(N-1)...(N-n+1)

However, these selections include all the permurtiatiin general there are n! permutations of
the n selected objects. The number of ways of sieten distinguishable objects from N,
irrespective of the order of the chosen objects is:

C[N choose n] _N(N—l).r.]i(N—n+1)

129.1
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We can check this formula against our example fer&and n = 3. The last term in the
numerator will be (N-n+1) = (4 -3 +1) = 2:
4(3)(2) 4312
-3 T3eac

C[4 choose 3] 12.9.2
which agrees with our specific enumeration. Butatihthere is more than one box to put the
balls in?

The Number of Ways of Arranging a Set of DistrimutNumbers Consider N = 7 balls selected

at random to fill three boxes. Assume that 8 balls are in box ap 2 balls in box b, and then
nc = 2 balls are left for box c. How many differemigue arrangements are there? For the first

box, box a, there are N balls and we need to selecB. The number of ways to fill box a is just
Eq. 12.7.1 for [N choosejn

N(N=1)...(N-n+1)
na!

Wa = C[N choose g = 12.9.3
There are (N—) balls remaining. For our example, (N}& (7 — 3) = 4 remaining balls to
choose from. So for box b, we need to selget B. The numbers of ways is just [4 choose 2] or
in general [(N—g choose H:

_ (N=ng)(N—ng-1)...(N—-n—np+1)

Wb = C[(N—rw) choose 5] = ! 12.9.4

Now there are (N-#n) balls remaining. For our example, (N—n,) = (7-3-2) =2
remaining balls to choose from. So for box ¢, wecth® selectq= 2. The numbers of ways is
just [2 choose 2] or in general [(N—m,) choose §:

(N—ne—np)(N—ne—np —1)...(1)
nc!

Wc = C[(N—n—n,) choose g = 12.9.5

The total number of ways of selecting balls for ltleges is the product of Eqs. 12.9.3, 12.9.4,
and 12.9.5, W~ Wa Wp We:

N(N=1)...(N=n+1) (N—=ng)(N—ns—1)...(N-n—np+1) (N—ne—1p) (N—ne—p —1)...(1)
Na! Np! ne!

W (g, no,nc) =
12.9.6

where we listed the number of balls in each bothasargument for the number of ways of
making the selections, W. You will note from ousdission in Sec. 12.2 that the values

(na, b, nc) are called the distribution numbers for the oatigms of each box. Notice that the
numerator of Eq. 12.9.6 is really just the prochfdihe complete series of numbers from N down
to 1; the numerator is just N!:

N!

W(Ng,No,Nc) = PN nb'! el

(distinguishable) 12.9.7
which is the number of ways of selecting distingaisle objects subject to the given set of
distribution numbers, but irrespective of orderhwiteach box. The factorials in the denominator
are the number of permutations of the balls in dBwh to ensure that the count is irrespective of
the order in each box. For our specific exampléh i = 7 and distribution numbers (3,2,2),
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W = 71/(3! 2! 21) = 210 ways of arranging the badimong the boxes with the given set of
distribution numbers. The number of ways of sehert set of objects and the number of ways
of arranging the objects for a given set of disttitn numbers are equivalent views of the same
counting process. Eq. 12.9.7 can be applied taligtabution of energy among the systems in an
ensemble. The balls in our example are the sysitethe ensemble and the boxes are the
different energy states of the ensemble. Findiegdiktribution that gives a maximum in W
determines the most probable state and the comdsppentropy.

Sterling’s Approximation for the Factorial of a Digbution Number is Valid for Large Systems
The enormous number of systems in an ensemblesaliswo focus on the average properties for
the ensemble instead of looking at the detailsachesystem in the ensemble. The average
behavior becomes the overwhelmingly predominanatien in the thermodynamic limit. The
thermodynamic limit also allows the factorials ®dpproximated with no significant error. The
logarithm of N! can be written as the sum:

N 3
INN!'=>"Ini forexampleIn3!2 Ini=In1+In2+In3=In(@1) 12.9.10
i=1

i=1
For very large N, we can approximate the summagan integral and then using Table 1.4.1:
N
In N!=Zlni=fflnidi:[ilni—illil =NINN-N+I=NInN-N 12.9.11
i=1

which is the form of Sterling’s approximation theg introduced in Eq. 12.4.2. An
approximation that is more accurate for small nurs s

NN
INN!I'=NInN-N+%In 2N or N!I'=+/2nN (E) 12.9.12
However, for very large numbers, the ¥z id\2term is small compared to the first two terms and
Eg. 12.9.11 is sufficient. Several homework proldemplore the validity of these equations.
The use of Sterling’s approximation for the factsiin calculating W using Eq. 12.9.7 allows
the calculation of Wax.

The Method of Lagrange Multipliers is Used for Goaisied Maximization The maximization

or minimization of a function that is subject tanstraints is a common problem in many areas of
science, mathematics, statistics, and maximiziogtgrin economics. We will do a simple
mathematical example in this section to highligite method. Consider the bowl shaped function
in Figure 12.9.2. The functional form is:

fx,y) =1 —X— 12.9.12

The total differential of f as we vary x and y tod the maximum is:

of of
-2 2]

df=—2xdx—-2ydy=0 (maximum) 12.9.13
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f maximum without
constraint

maximum subject to
constraint

constraint on x and y

Figure 12.9.2: Constrained maximization of f(x,yl = ¥ — 2.

The unconstrained maximum for this function is akdted by setting df equal to 0, giving x =0
and y = 0 for the maximumgpdx = 1. However, what happens if we have a cons@tassume

that x and y are constrained to lie along the gitdine y = 1 — x, as shown in Figure 12.9.2. The
constraint function, c, is then obtained by reagmag the constraint to give an equation equal to
zero:

c=1-x-y=0 (constraint) 12.9.14
As x and y are changed to find the maximum, thiedihtial of the constraint gives:
dc=—-dx—-dy=0 (constraint) 12.9.15

This equation can be multiplied by a constan&nd still give zero; the constant is the Lagrange
multiplier:

A=dx—-dy)=0 (constraint) 12.9.15
Adding Eqg. 12.9.13 and Eq. 12.9.15 still gives zero

—2Xdx—-2ydy#A(—dx—-dy)=0 (constrained) 12.9.16
or collecting terms in dx and dy:

(-2x-AN)dx+(-2y-A)dy=0 (constrained) 12.9.17

We can now treat dx and dy as independent of etlar.drhe assumption of independence is
important. The reason is that dx can vary ovefuitsange without regard to the changes iny
and dy can vary over its full range without regrdhe changes in x. When dx and dy are
independent variables, the only way for Eq. 12.9dl&lways equal zero is if the coefficients of
dx and dy are both always equal to zero:

(-2x-A\)=0 and (-2yA)=0 (constrained) 12.9.18

We now have two equations in two unknowns, whidkesto give x =y. The maximum in our
function occurs when x =y. We can solve for thiiga of x and y for the maximum by using
the original constraint equation. Setting x = ¥Eip. 12.9.14 gives x =% and then y = %. The
value of f at the constrained maximum is then olgdifrom Eqg. 12.9.12:

f(¥,%) = 1 — (Y- (Yef = ¥ (constrained) 12.9.19

as shown in the figure. Problem 23 uses the Lagramethod for an example from economics.
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Chapter Summary

1. Energy is dispersed from a hotter to a coldelybo
2. Thermodynamic variables are time averages dvdegrees of freedom of a system.

3. Much specific information is lost when averagowgr the variables for all the degrees of
freedom to give just a few thermodynamic variables.

4. A group ofividentical systems is called an ensemble. An enkeaverage is equivalent to a
time average in the limjt - co, and subject to the ergotic hypothesis.

5. The ensemble is isolated from the surrounditigstotal energy of the ensemble is constant.
In a canonical ensemble the systems are in thesomahct, exchange energy, and have the same
average energy and temperature.

6. The ensemble represents a single system foaginer purposes.

7. The fundamental postulate of statistical medtsais: foravsystems in an ensemble with total
energyz, the ensemble average energy is equal to thenaitenergy of the system:

U - U(0) =(E _Z

- ( ) _< > - N

8. The dispersal of energy is determined by findirgnumber of ways of arranging the energy
states for the ensembla,,

9. Each individual configuration of the systems amthe energy states is callecharostate.
10. The statistical definition of the entropy fosystem in the ensembile is:

k
v IN Winax (ensemble) S =k In WMéx (single system)

where#max is the maximum number of ways of arranging thegystates in the ensemble and
Whax is the number of ways of arranging the energyestafithin a single system.

11. The number of systems in each energy stapesfsed by a set of distribution numbers,
{ni}, and averages are calculated using the distobutumbers. The average energy is:

1
U - U(0) =(E) :9—VZ nEi with normalization X’ ni = %
i i
12. The probability of occurrencg, pf energy statejks given by:
. N
B :?lv and then U-U(Q0) «E) = > pE; with normalization). p =1

i i=0
13. The number of ways of arranging the energestitr distinguishable systems is:
M

WNoM.M2,...) =5 Tt
14. A fundamental assumption is that each micrestas equa priori probability.
15. A set of distribution numbers corresponds moagrostate Greater energy dispersal results
from a macrostate with largey. Thermodynamic properties are averages over edissible
macrostates.

16. Statistical weights and probabilities multipliien a composite is formed, with no other
changesw/ = 11 Wh.
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17. The most probable distribution is the distridmthat has the largest number of ways of
arranging the energy stat@smnax. For thermodynamically meaningful numbers of systethe
most probable distribution is the overwhelminglggwominant distribution. Thermodynamic
averages are determined by the most probablehllistin.

18. A spontaneous process occurs when the systdergoes a change that increageslhe
equilibrium state is the most probable state, with “max. A reversible process occurs through
a sequence of steps with = Wiax

19. Entropy always increases for a spontaneougpsaa an isolated system.

20. A logarithmic function is the only possiblefofor the dependence of entropy @hax,
since entropy is an extensive state function.

21. Given the probability of occurrence of eachrgpetate of the ensemble:

=—kplnp
i
22. The molar residual entropy at absolute zegiven by:

S=RInw 3=-R) plnp S=0MmxS=—-RY plnp
i i

23. The ideal entropy of mixing for an ideal gasanixture of molecules with equal
intermolecular forces iBmixS = — NRX x; In x;.

24. The probability of occurrence of a system i énsemble with energy & given by:
p="0g with Q=Y e BT (canonical ensemble)
[
25. For systems with negligible interactions betwedistinguishable molecules or for internal
degrees of freedom, the entropy in terms of thebmrmof ways of arranging the states of the
constituent molecules is S = nR Ima and the sum over molecular states: S = 2R In p.
i
26. Energy is dispersed and entropy is increasaddogasing the number of accessible degrees
of freedom. Vibrations with frequencies less thhout 500 crit contribute to the internal
energy and entropy, at room temperature.

27. The change in entropy for a process is: dSk=+ p dp

28. The most probable state is characterized loyghesthermodynamic parameter called the
temperature. Bodies at equilibrium have the samgégature. The most fundamental definition
of temperature is:

(g_ﬁ)v E% giving B = 1/kT

29. AtconstantV: dU=@)= > E dp and dS -—er E dp
i i

30. For a reversible process:flgr >, Eidp and dS :djfl_ﬂ’
i

31. To associate configurational randomness wittopgi: the configurational randomness must
be associated with the dispersal of energy, thégumational randomness must lead to
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distinguishable states, and the system must hawe seechanism for randomly accessing each
possible microstate of the system.

32. The time average of a system may be replaceoh lepsemble average only if the ergotic
hypothesis is satisfied; each possible microstatbeosystem must be accessed at random with
equala priori probability.

33. Energy is dispersed by increasing spatial dsspe; the change in entropy for the isothermal
expansion of an ideal gas 585 = nR In(\4/V4).

34. Probabilities add for the occurrence of evénts B. Probabilities multiply for the
occurrence of events A and B.

35. For N objects there are N! permutations or whgbjects may be chosen.

36. The number of ways of selecting n distinguishalbjects from N, irrespective of the order:

CIN choose n] _N(N_l)'r']i('\"”ﬂ): _ E\r']'_ 3
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Problems: The Statistical Definition of Entropy

1. Calculate the number of ways of arranging thergynstates and find all the microstates
consistent with the distribution numbers (2,2,0f00d the average energy for the distribution.
(Assume distinguishable systems.)

38 |———
26 | ——
1l |-eo—

0 '-oo—
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2. Calculate the number of ways of arranging thexrgynstates and find all the microstates
consistent with the distribution numbers (2,1,0Find the average energy for the distribution.
(Assume distinguishable systems.)

3¢ | -—
E 2¢
1l |-&—

0 '-oo—

3. Given the following microstates:

E4s
3e
2t
le|oe—— |oeo |0 9o |o— o (06— | o |0 o |—0o_ |(—0o o [— oo
Ol —oeee |6 00 | 00 o | _goo— o906 lo 0o o o 0o loee o loe o lgeeo—

(a). Find the set of distribution numbers.

(b). Specify the macrostate.

(c). Find the number of ways of arranging the enestgtes for the system for the set of
distribution numbers. Is the given set of micrassatomplete?

(d). Find the statistical weight for the macrostate

(e). Find the degeneracy for the macrostate.

(f). Find(E) and U — U(0).

(9). Find the probability of occurrence of the ffinsicrostate, within the given macrostate.

(h). Find another macrostate with the same numbgystems and the same energy. Which is
more probable, the given macrostate or the new ostate?

(). What is the most probable distribution anéhax subject toyv= 5 ande = 2?

()- What is the equilibrium distribution?

4. Assume a system has equally spaced energy stdatespacing. (a). Findy; &, (E), and

U — U(0) for the distributions (26,14,9,5,3,2,11425,16,8,5,3,2,1). (b). Which distribution is
the more probable macrostate? (c). Find the difiezdoetween the two macrostates in the
number of ways of arranging the energy stateshi®isyystem. (d). One of the two is the most
probable distribution. Which macrostate correspdndble equilibrium state?

5. Calculate the residual entropy for a crystelolid like N=N=0 assuming the energy
difference for the two crystalline alignments i8@ kJ mof. Assume that the distribution of
alignments is “frozen in” at the melting point. Aisse the melting point is -908. Compare the
result to Eq. 12.4.10. Why is there a difference?

6. The goal of this problem is to help you becaontge comfortable with partition functions.
Consider the residual entropy of N=N=0. Defineltheest energy alignment as having energy
€ and the higher energy alignmengtatA reasonable way to assess the degree of alignsen
to calculate the fraction of molecules in the lavergy state,of and the fraction of the molecules
in the high energy state; f

no nl

fo= No+ M f= No+ My



480

where R is the number of molecules in the low energy atignt and nis the number of
molecules in the high energy alignmeé@f course, § + f1 = 1. (a). The number of molecules in
a specific energy state is proportional to the Bolnn weighting factor, il €€/<T. Use this
proportionality to find the fractions &ind 1. (b). Alternatively, the probability of finding a
molecule in a specific energy statg,is given by Eqgs. 12.4.13 (Eq. 8.9.5). Show tluatry
answers to part (a) are consistent with Eqgs. 12.4.1

7. Calculate the number of ways of arranging Biirtjuishable balls in three boxes with 3 in
the first box, 5 in the second box, and 2 in thedthox.

8. (a). Calculate the number of ways of arran@mtistinguishable balls among 3 boxes with 2
balls in the first box, 1 ball in the second boxd ® balls in the third box. (b). Calculate the
number of ways of arranging the energy statesestistem with 3 molecules given that 2
molecules are in the first energy level, 1 molecdsili@ the second energy level, and 0 molecules
are in the third energy level. Draw the arrangemsent

9. Find the set of distribution numbers that mazes the number of arrangements for 3 balls in
3 boxes.

10. (a). Starting with N (N/e)N show that In N N In N — N. (b). Starting with

N! 2\/2T[N (N/elN show that In N!' =N In N — N + % Inrl. (c) Compare the exact value of
In N! and the two approximations for the largesintoer your calculator can use.

11. Show that the percent error using Sterlingjgraxmation for In(N!) decreases with
increasing N. (Excel has a larger range for valith&dh most calculators.)

12. In Problem 4 the most probable distributiors watermined, choosing from
(26,14,9,5,3,2,1) and (25,16,8,5,3,2,1). Verifyt tine most probable distribution is a Boltzmann
distribution.

13. The fundamental vibration frequency foisl 214.50 crit. Assume the vibrational states are
equally spaced with spacing 214.50trtodine vapor is held in an oven at elevated teatpee.
The relative occupations of the vibrational statese found to be 1.000 : 0.467 : 0.222 : 0.100.
Calculate the temperature.

14. Is the following system at thermal equilibriu@®e the approximate temperature, assuming
the unit of energyg, is 10.0 crt.

0

12¢ nz =2

6 [ane— =3

2¢c |maeee = =4
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15. The conformational entropy for butane wasmeteed in Example 12.4.3 using tbauche
anti-energy difference from molecular mechanics. Us®gecular orbital calculation to estimate
the energy difference and determine the correspgntbnformational entropy. How sensitive is
the conformational entropy to the value of the gpelifference? Your instructor will assign a
molecular orbital method from the following listgending on the resources available: AM1,
PM3, HF 3-21G(*), HF 6-31G*, B3LYP/6-31G*, MP2/6-B&*//HF 6-31G* (single point
energy at MP2/6-311G* for the geometry calcula@gbilF 6-31G*).

16. Determine the conformational entropy for 1,2hthrobutane. Your instructor will assign a
molecular mechanics or molecular orbital methodnftbe following list depending on available
resources: MMFF, PM3, HF 3-21G(*), HF 6-31G*, B3L/MFB1G*, MP2/6-311G*//HF 6-31G*
(single point energy at MP2/6-311G* for the geometriculation at HF 6-31G*)

17. The process of folding a protein to produeeattive conformation restricts torsions along
the polypeptide backbone and side chain torsionarfono acids that are buried in the interior of
the protein. Calculate the conformational entropthe side chain of the amino acid valine at
298.2 K. Use molecular mechanics with the MMFF éofield in the gas phase for the zwitter-
ionic form to determine the low energy side chainformations and the corresponding energies.

18. Assume that thgaucheenergy states for a 1,2-disubstituted ethane, %—CHx-Y, are at
energye above thanti-state. Thanti-state is set at the reference state. Show that the
conformational entropy for the C—C bond in disubgtid ethane compounds is given by:

-€/RT
R 1 ) e’
S=- In +2eRTn

19. Show that the maximum conformational entrapyfifeely rotating sphybridized bonds is
given by S = R In 3. In other words, assume thatehergy differences between the three
conformational states is much less than RT. Yoo aéed to assume that the three
conformations are distinguishable, as in the cébtraane dihedral or the side chain of valine but
not —CH torsions.

20. Calculate the conformational entropy for ti{e®)—C(sp) bond torsion leading to the
phenyl ring in the side chain of the amino acidmpli@anine. Use molecular mechanics with the
MMFF force field for gas phase energies. To obtalues that are appropriate for protein
folding studies, build a protein in the alpha-haliform with 11 residues: five alanines followed
by phenylalanine followed by five alanines. Acetglthe N-terminus and amidate the C-
terminus to help stabilize the alpha-helix. Onaltwest energy structure is found, fix (or
freeze) all of the atoms except those in the phsiod chain. Then determine the low energy
conformers as you rotate around the-Gs(sps)—Cing(Sp2)—Cring dinedral. You will find four low
energy conformers. However, the conformers arevindquivalent pairs. The conformers in
each pair differ by rotation of the phenyl ring 8. The phenyl ring is symmetrical with
respect to rotation by 180so the conformational states that differ by °18€ indistinguishable.
The counting of states for calculation of the epyres over distinguishable states. To correct for
symmetry, then, calculate the entropy by summirgy awly the two unique, distinguishable
states. The structure and the required dihedrallastrated below, Figure P12.1.
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Figure P12.1: An alpha-helical 11-mer with pheratahe in the center. The required
dihedral is depicted with the angle of -48.Qiving the lowest energy conformer. The dotted
lines show the hydrogen-bonding pattern. The distos in the hydrogen-bonding pattern
are caused by the shortness of the peptide. Yodehmoay differ in the conformations of the
terminal residues.

21. The Boltzmann distribution is often derivededitly by maximizingi/ instead of
maximizing the entropy using Eq. 12.4.9. In thislgem, we derive the Boltzmann distribution
in several steps directly from the statistical vty (a) Starting with Eq. 12.4.1, show that
without constraints:

oln
d(inw) = (a—ni dn
(b). Add in the constraints to give:
din
0= o di+a) dn—-B> Edn
(c). Show that the constrained maximization resalts

(a:}nn?”j+a_35=o

(d). Note that the summation variable in Eqg. 12i4.&n arbitrary index. We can also write:

INnW=NInN=3 njlnn

j
Show that the derivative of In W with respect tovhile holding all the other distribution
numbers constant gives just one term, which is:

(%=—(Inn+1):_|nn
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(e). Substitute this last result into the resudtrrpart (c) and solve for to find:
n = ex —BEi = ¢” e BE:
(f). Use normalization to find the Boltzmann distriion:

n_ePE
& Q

22. Consider the bowl shaped function, f(x,y) = # — y?. Maximize the function subject to the
constraint y = 0.5 using the Lagrange method okterehined multipliers.

23. A scientific instrument company produces twitecent widgets. Let the number of widgets
produced by the factory per day of the two difféenerdgets be pand n, respectively. The profit
obtained by selling type-one widgets, Bnd type-two widgets,2Pis given as:

P.=40 n — n? P=20n-0.5n°

The negative terms in the profit equations resedidnse as the production increases, the cost of
labor increases (extra people need to be hiredjlancharketing costs increase. The factory can
make at most 25 widgets per day. Find the optieallof production for the two widgets to
maximize the overall profit. Compare the constrdiresult to the unconstrained result assuming
the factory can produce any number of widgets pgr d

24. Thermodynamic state functions can be writtegctly in terms of the partition function, Q,
which adds to the importance of this central cohddping Eqs. 12.4.9, 12.4.12, 12.2.6, and
12.1.2, show that the entropy can be written as:

S = kan+%(g)

25. What is the probability of selecting an Acelhtotal cards? To avoid statistical
complications, assume that after each selectiocdris returned to the deck, so that each
selection is made from a full deck of 52 cards.

26. The next five problems concern the relatiop$igtween statistical weights and the
probability of occurrence of a particular set oéets. The number of ways of selecting n objects

from N, which we called C[N choose n], is also edlthe binomial coefficient and given the
symbol(}). Using Eq. 12.9.1 show that the binomial coeffitiean be expressed as:
N N!
(n) = C[N choose n] :nm

27. In the last problem we showed that the binowgefficient(N) can be defined as:

N!

(N) = C[N choose n] m

n
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The binomial coefficien(}) is the numerical coefficient for th& nerm in the Ni-order
polynomial (1 + x). For example:

L+xP=(1+2x+%)1+Xx)
= 1 + 3x + -+

5
=(o)1+(@Dx (e (3

Verify the corresponding result for (1 +x)

28. Assume that 3 distinguishable balls are setkeat random for placement into two boxes.
The volume of box 1 is Vand the volume of box 2 is;VThe probability of a single ball landing
in box 1 is proportional to its volumey p Vi/(V1 + V2). The probability of a single ball landing
in box 2 is proportional to its volumez p V2/(V1 + V2). What is the probability that all 3 balls
land in the first box? There is only one way fdr3aballs to land in box 1 giving the probability
as p(3,0) = p’. There is only one way for all 3 balls to landiox 2 giving p(0,3) = §. Find the
probability of 2 balls landing in box 1 and the &mng ball landing in box 2. Relate the results
to the statistical weight W(2,1).

29. Show that for a two-category problem with Ktisiguishable objects the binomial
coefficient and statistical weight are related by:

() = ()

An example is the previous two-box problem. Theilteslso holds for any molecular system
that has only two energy levels. Use the resulheflast problem as a specific example.

30. Assume that 3 distinguishable balls are setkat random for placement into two boxes.
The volume of box 1 is Vand the volume of box 2 is;VThe probability of a single ball landing
in box 1 is proportional to its volume; p Vi/(V1 + V2). The probability of a single ball landing
in box 2 is proportional to its volumez p V2/(V1 + V2). There is only one way for all 3 balls to
land in box 1 giving the probability as p(3,0) £.grhere is only one way for all 3 balls to land
in box 2 giving p(0,3) = $. The probability of 2 balls landing in box 1 ame remaining ball
landing in box 2 is p(2,1) = 3{fp2), because there are 3 ways of arranging the siiswibution
numbers. Likewise p(1,2) = 3{m?). Show the relationship of the probabilities p§3(2,1),
p(1,2), and p(0,3) to the terms in the expansiom@fpolynomial (p+ p2)°.
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