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Appendix 1: Propagation of Errors 
 
   All experimental measurements are subject to random error. Propagation of errors determines 
the effect of the measurement errors on the final results. Errors are expressed in a variety of 
ways. For n measurements, xi, the standard deviation is the root-mean-squared deviation of the 
measurements from the mean, x–: 
 

 s(x) = 










 

∑
i=1

n

 (xi – x–)2

n – 1

½

    x– = 

∑
i=1

n

  xi

n     A1.1 
 

The (n – 1) in the denominator is the number of degrees of freedom. The degrees of freedom are 
given by subtracting the number of extracted parameters from the number of measurements. In 
the determination of the standard deviation of a set of measurements, the single extracted 
parameter is the mean, x–. By convention, an error expressed in the form 12.34 ± 0.45 is assumed 
to be a standard deviation. The relative standard deviation is the standard deviation divided by 
the value. Multiplying the relative standard deviation by 100% gives the error as a percentage. 
The variance of x, s(x)2, is the square of the standard deviation. The relative variance is the 
variance divided by the value squared. Using the example x = 12.34 ± 0.45: 
 

standard deviation: s(x) = 0.45 

relative standard deviation: s(x)
x  = 

0.45
12.34 = 0.0365      or 3.65% 

variance: 
 

s(x)2 = 
 

(0.45)2 = 0.202 

relative variance: s(x)2

x2  = 
(0.45)2

(12.34)2 = 1.33x10-3 

 

Average deviations and approximations based on the readability of the instrument are also 
routinely used in propagation of errors. We will use the symbols  δx for the generalized error and 
δ2x for the generalized variance, whether roughly approximated or carefully calculated from an 
average or standard deviation. How do measurement errors propagate to the final results? 
   Consider a single measurement, x, and a final result f(x). Over a narrow range, the function 
f(x) can be approximated as a linear function with slope (df/dx). An error in x gives a resulting 
error in f(x), approximated by linear extrapolation, Figure A1.1: 
 

 δf = 
df
dx δx      (fixed-nonrandom error) A1.2 

 
 
 
 
 
 
 
 
 
 

Figure A1.1: The error of the x value is extrapolated linearly to find the error of f(x). 
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The errors in x are assumed to be distributed randomly. In finding a representation of the average 
errors, the positive and negative errors cancel upon summation. To avoid cancellation of errors, 
Eq. A1.2 is recast in terms of the variance, for the same reason that the standard deviation is also 
based on a sum of squared errors. Each measurement adds a similar term to the error. The 
general formula for propagation of errors for a two-parameter function f(x,y) is: 
 

 δ2f = 






∂f

∂x

2

y
 δ2x + 







∂f

∂y

2

x
 δ2y        A1.3 

 

Additional terms are added for additional measurements. This result is called the master error 
relationship. For example, consider the difference of two numbers, f = x – y. Eq. A1.3 gives: 
 

     f = x – y : 






∂f

∂x y
 = 1 







∂f

∂y x
 = −1 δ2f = (1)2 δ2x + (-1)2 δ2y = δ2x + δ2y  A1.4 

 

The result is identical if addition is chosen as the example. In words, variances add on addition 
and subtraction. Consider multiplication, f = xy: 
 

     f = xy : 






∂f

∂x y
 = y 







∂f

∂y x
 = x δ2f = (y)2 δ2x + (x)2 δ2y   A1.5 

 

Division of this last equation by f2 = x2y2, on both sides, converts the errors to relative variances: 
 

     f = xy : 
δ2f
f2  = 

δ2x
x2  + 

δ2y
y2          A1.6 

 

The result is identical if division is chosen as the example. In words, relative variances add on 
multiplication and division. As a final example, consider logarithmic relationships, f = ln x: 
 

     f = ln x : 






∂f

∂x y
 = 

1
x   δ2f = 






1

x

2

 δ2x = 
δ2x
x2     A1.7 

 

In words, the variance of ln(x) is the relative variance in the argument. Since there is only one 
error term, taking the square root of the last equation gives: the standard deviation of ln(x) is the 
relative standard deviation of the argument, δln(x) = δx/x. The results of the master error 
relationship are summarized by six rules, Table A1.1. For multi-step calculations, the rules are 
applied sequentially. 
 

 
              

Example A1.1:  Error propagation in logarithmic relationships 
The equilibrium constants for a reaction at two different temperatures are K1 = 0.03220 ±0.00072 
at 298.2 K and K2 = 0.4732 ±0.0064 at 353.2 K. Calculate the uncertainty in ln(K2/K1). 
 
Answer: The relative variance in K2/K1 is the sum of the relative variances (Rule 2): 
 

    Relative variance in K2 = (0.00072/0.03220)2 = 5.0x10-4 
 + Relative variance in K1 = (0.0064/0.4732)2     = 1.8x10-4 
    Relative variance in K2/K1         = 6.8x10-4 

 

Then using Rule 3 shows that the variance in ln(K2/K1) is the relative variance in K2/K1: 
 

 Variance in ln(K2/K1) = Relative variance in K2/K1 = 6.8x10-4 
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 Standard deviation in result  = 6.3x10-4 = 0.026 
       ⇑

⇓  
     ln(K2/K1)  =  ln 14.689  =  2.687± 0.026 
              

 
 

Table A1.1: Propagation of Error Rules, expressed with standard deviations. 
              

Rule 1: Variances add on addition or subtraction: 
 

f = x + y s(f)2 = s(x)2 + s(y)2 

Rule 2: Relative variances add on multiplication or division: 
 

f = xy s(f)2

f2  = 
s(x)2

x2  + 
s(y)2

y2  

Rule 3: The variance of ln(x) is the relative variance in x:  

f = ln x s(f)2 = 
s(x)2

x2  

The variance of log(x) is the (relative variance in x)/(2.303)2:  

f = log x s(f)2 = 
s(x)2

(2.303)2x2 

Rule 4: The relative variance of ex is the variance in x: 
 

f = ex 
s(f)2

f2  = s(x)2 

The relative variance of 10x is the (variance in x)(2.303)2: 
 

f = 10x s(f)2

f2  = (2.303)2s(x)2 

Rule 5: The variance of an average of n numbers, assuming 
equal variances for the x values, s(xi)

2 = s(x)2: 
f = 

Σ xi

n  s(f)2 = 
s(x)2

n  

 

Rule 6: In calculations with only one error term, you can work with standard deviations instead 
of variance. 
              

 
   For homework problems, complete propagation of errors treatments are usually not required. 
However, an expression of the uncertainty in results is still necessary. For homework problems, 
significant figures rules are sufficient. Significant figure rules are based on the master error 
relationship, but implemented as an approximate short-cut to full error propagation. Significant 
figure rules are discussed in General Chemistry texts in detail: 
 

  SF Rule 1: In multiplication and division the number of significant figures in the result is the 
same as the smallest number of significant figures in the data. 
 

  SF Rule 2: In addition and subtraction the number of decimal places in the result is the same as 
the smallest number of decimal places in the data. 
 

  SF Rule 3: The number of significant figures in the mantissa of log x is the same as the number 
of significant figures in x. Use the same rule for ln x. (In log 4.23x10-3 = -2.374, the mantissa is 
the .374 part.) 

 

  SF Rule 4: The number of significant figures in 10x is the number of significant figures in the 
mantissa of x. Use the same rule for ex. 
 

 
    For example, the uncertainty in ex with x = 3.45 using significant figure rules and in ex with 
x = 3.452 ±0.014 using error propagation are: 
 

           2 SF    2 SF 
 

    Significant figure rules e3.45 = 32.          Propagation e3.452±0.014 = 31.56 ±0.44   (or 1.4% error) 
 

Significant figure rules are a poor substitute for careful error propagation. 
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Appendix 2: Least Square Curve Fitting 
 
   Important experimental parameters are often determined from the slope and intercept of linear 
plots. Curve fitting also provides a statistically valid method for the determination of the 
precision of results determined from multiple measurements. Consider data plotted in linear form 
from a given set of n observation pairs, xi and yi, Figure A2.1. The xi values are assumed to be 
exact, while the yi values are subject to random error. The object is to find the best fit slope, m, 
and intercept, b. The calculated fit values, on the best fit line, are y^

i = m xi + b. The residual is 
the difference between the observed and the fit values: 
 

 ri = yi – y^ i = yi – m xi – b        A2.1 
 

 
 xi     yi  
 1.20 1.48 
 2.34 4.04 
 3.05 6.23 
 3.85 6.81 
 5.06 10.12 
 
 
 

Figure A2.1: The best fit line minimizes the sum of squared residuals. 
 
The best slope and intercept minimize the residuals of the fit values. To avoid the cancellation of 
positive and negative deviations of the fit values, the sum of squared residuals is used as the 
criterion for the best fit: 
 

 S = ∑
i=1

n

 r2
i  = ∑

i=1

n

 (yi – mxi – b)2        A2.2 

 

To minimize S the derivatives with respect to the slope and intercept are set equal to zero: 
  

 






∂S

∂m b
 = 0 = 2 Σ (yi – mxi – b)(–xi)       A2.3 

 






∂S

∂b m
= 0 = 2 Σ (yi – mxi – b)(–1))       A2.4 

 

Both equations have a common factor of -2. The summations factor through each term, Σ(a + b) 
= Σa + Σb. The final term in Eq. A2.4 gives the sum: 
 

 –b∑
i=1

n

 1= –bn          A2.5 

 

The best fit m and b are the solutions of the resulting simultaneous equations: 
 

 0 = Σ yixi – m Σ x2
i  – b Σ xi        A2.6 

 0 = Σ yi – m Σ xi – bn         A2.7 
 

The term proportional to the slope can be eliminated by multiplying Eq. A2.6 by (–Σ xi) and 

multiplying Eq. A2.7 by (Σ x2
i ): 

y 

x 

• • 

• • 

• 

• 

• 

• 

• 

ri yi 

y^ i 

xi 
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 0 = (Σ yixi – m Σ x2
i  – b Σ xi)(–Σ xi)       A2.8 

 0 = (Σ yi – m Σ xi – bn)(Σ x2
i )       A2.9 

 

Adding the resulting equations gives: 
 

 0 = –Σ xi Σ yixi + b (Σ xi)
2 + Σ x2

i  Σ yi – bnΣ x2
i      A2.10 

 

The last equation is solved for the best-fit b. The resulting b is then substituted into Eq. A2.9, 
which gives the best fit slope, m: 
 

 b = 
Σ x2

i  Σ yi –Σ xi Σ xiyi

nΣ x2
i  – (Σ xi)

2   m = 
nΣ xiyi – Σ xi Σ yi

nΣ x2
i  – (Σ xi)

2    A2.11 

 

These equations are universally used by hand-held calculators, Excel, and computer software 
packages for curve fitting. 
   How well do we know m and b? The scatter of the data points from the best fit line is 
characterized by the standard deviation of the y values: 
 

 sy = 






Σ r2

i

n – 2

½

        (linear)  A2.12 
 

The n – 2 degrees of freedom in the denominator results because two fit parameters are extracted 
from the data, the slope and the intercept (compare to Eq. A1.1). The next step is to determine 
the standard deviations of the slope and intercept. Propagation of errors from the measurement 
errors in the yi uses the master error relationship with n error terms, one for each of the yi values. 
For example, for the variance of the slope: 
 

 δ2m = 






∂m

∂y1

2
 δ2y1 + 







∂m

∂y2

2
  δ2y2 + 







∂m

∂y2

3
  δ2y3 + ...     A2.13 

 

We assume that the variance of each data point is the same, δ2yi = s2
y. Each derivative is the 

same, giving the standard deviations of the slope and intercept as: 
 

 sm = 





n

D

½
 sy   with  D = nΣ x2

i  – (Σ xi)
2    A2.14 

 sb = 






Σ x2

i

D

½

 sy          A2.15 
 

where D is the denominator of Eqs. A2.11. D is introduced purely as a convenience factor. 
  The regression coefficient, R, is used to judge if the data is well-described as a linear 
relationship: 
 

 R = 
nΣ xiyi – Σ xi Σ yi

{nΣ x2
i  – (Σ xi)

2}{n Σ y2
i  – (Σ yi)

2}
      A2.16 

 

R ranges from -1 for strong negative to +1 for strong positive correlation of the x and y values. 
However, the standard deviations of the slope and intercept are the best statistics for judging 
goodness-of-fit. 
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Non-linear Least Squares Curve Fitting:  Least square analysis is also applied to non-linear 
relationships. Consider a non-linear expression with three fit parameters: a, b, and c. For 
example, f(x) = a e–bx + c. Non-linear least squares is an iterative process. Guesses of the fit 
parameters must be made initially: a°, b°, and c°. Improvements of the fit parameters are 
obtained in a series of iterations. The expression for the improvements in the fit parameters is: 
 

  A≈  ∆α~ = h~  or 

 









Σ 



∂f

∂a

2
Σ 


∂f

∂a 



∂f

∂b Σ 


∂f

∂a 


∂f

∂c

Σ 



∂f

∂b 


∂f

∂a Σ 



∂f

∂b

2
Σ 



∂f

∂b 


∂f

∂c

Σ 


∂f

∂c 


∂f

∂a Σ 


∂f

∂c 



∂f

∂b Σ 


∂f

∂c

2

 









∆a

∆b

∆c

 = 









Σ 



∂f

∂a (yi – y^ i)

Σ 



∂f

∂b (yi – y^ i)

Σ 


∂f

∂c (yi – y^ i)

   A2.17 

 

where ∆a = a – a°, ∆b = b – b°, ∆c = c – c° are the differences between the improved values and 
the old guesses. The fit values, y^

i, are the points on the fit curve evaluated with the old guess 
parameters. This matrix equation is easily solved for ∆a, ∆b, and ∆c using matrix inversion, 
Eq. 2.8.19, as  ∆α~ = A≈

–1 h~. Then improved values are calculated, for example a = a° + ∆a. For 
the f(x) = a e–bx + c example, the derivatives are: 
 

 






∂f

∂a b,c
 = e–bx  







∂f

∂b a,c
 = –ax e–bx  







∂f

∂c a,b
 = 1   A2.18 

 

which are evaluated at each point xi in the sums. The sums are over all data points, i = 1 to n. 
   The power of the technique is that the uncertainties of the fit parameters are generated in a 
statistically valid way. The variances in the fit parameters are given by the diagonal elements of 
the inverse, A≈

–1, and the variance of the y values, sy (Eq. A2.12 with (n – 3) in the denominator): 
 

 s2
a = [A≈

–1]11 s
2
y  s2

b = [A≈
–1]22 s

2
y  s2

c = [A≈
–1]33 s

2
y    A2.19 

 

Correlations between fit parameters are also determined using the off-diagonal elements of A≈
–1: 

 Rab = 
[A≈

–1]12

([A≈
–1]11 [A≈

–1]22)
½         Rac = 

[A≈
–1]13

([A≈
–1]11 [A≈

–1]33)
½         Rbc = 

[A≈
–1]23

([A≈
–1]22 [A≈

–1]33)
½ A2.20 

The correlation coefficients between the fit parameters are important for validating the results.1 
For example for Rbc, a correlation coefficient between the fit parameters of 0 means that the error 
in b has no effect on the error in c. For a correlation coefficient of ±1, the errors in b and c are 
completely correlated. For high correlation coefficients, a small change in the value of one data 
point, caused by experimental error, gives a large change in the fit values of both b and c. 
Correlation coefficients larger than ~0.95 mean that neither parameter estimate is valid. 
   An applet for “Non-Linear Least Squares Curve Fitting,” is available on the text Web site or 
companion CD, in a three- or four-parameter version; 22 common functional forms are 
supported. Chapters 3-6, 18, and 20 provide examples of the use of non-linear curve fitting. 
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