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Appendix 1: Propagation of Errors

All experimental measurements are subject tdaanerror. Propagation of errors determines
the effect of the measurement errors on the fiesullts. Errors are expressed in a variety of
ways. For n measurements, thestandard deviation is the root-mean-squared deviation of the
measurements from the mean, x
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The (n — 1) in the denominator is the numbedejr ees of freedom. The degrees of freedom are
given by subtracting the number of extracted pataradrom the number of measurements. In
the determination of the standard deviation oftaoeneasurements, the single extracted
parameter is the medn, By convention, an error expressed in the forn342.0.45 is assumed
to be a standard deviation. The relative standawibtion is the standard deviation divided by
the value. Multiplying the relative standard dematby 100% gives the error as a percentage.
The variance of x, s(&)is the square of the standard deviation. Theivelaariance is the
variance divided by the value squared. Using tleergte x = 12.34 0.45:

standard deviation: s(x) = 0.45
relative standard deviation: s(x) _ 0.4t
X - 1234~ 0.0365 or 3.65%
vanance: S(xf = (0.45f = 0.202
relative variance: s(x)® (0.45°
Z = (12.347 = 1.33x10°

Average deviations and approximations based oret@ability of the instrument are also
routinely used in propagation of errors. We wileube symboldx for the generalized error and
& for the generalized variance, whether roughlyragimated or carefully calculated from an
average or standard deviation. How do measuremensgropagate to the final results?

Consider a single measurement, x, and a fisailr§x). Over a narrow range, the function
f(x) can be approximated as a linear function wlthpe (df/dx). An error in x gives a resulting
error in f(x), approximated by linear extrapolatiéigure Al.1:

f
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Figure Al.1: The error of the x value is extrapetalinearly to find the error of f(x).
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The errors in x are assumed to be distributed nahgdn finding a representation of the average
errors, the positive and negative errors cancehgoonmation. To avoid cancellation of errors,
Eq. Al1.2 is recast in terms of the variance, fersame reason that the standard deviation is also
based on a sum of squared errors. Each measuraddsa similar term to the error. The

general formula for propagation of errors for a4{@avameter function f(x,y) is:

of\? of\2
2¢ | 2 = 2

Additional terms are added for additional measuramelhis result is called theaster error
relationship. For example, consider the difference of two nursple= x —y. Eq. A1.3 gives:

f=x—vy: %} =1 (%) =-1  &f= (175 + (-1F 8%y = + Oy Al.4
y X

The result is identical if addition is chosen as ¢éixample. In words, variances add on addition
and subtraction. Consider multiplication, f = xy:

f f
f=xy: (g_x) =y (g—) =x  &f=(y)* & + (x)*dy Al.5
Yy X
Division of this last equation by £ x%y? on both sides, converts the errors to relativeanaes:
&f & &
f=xy: 7—7+y Al.6

The result is identical if division is chosen as #xample. In words, relativariances add on
multiplication and division. As a final example,nsider logarithmic relationships, f = In x:

_ . (of)y _1 2_122_52)(
f=Inx: (6x)y_x 6f—(x) 63x—74r Al.7
In words, the variance of In(x) is the relativeigace in the argument. Since there is only one
error term, taking the square root of the last @qonayives: the standard deviation of In(x) is the
relative standard deviation of the argumeiri(x) = dx/x. The results of the master error
relationship are summarized by six rules, TablelAEor multi-step calculations, the rules are
applied sequentially.

Example A1.1: Error propagation in logarithmic relationships
The equilibrium constants for a reaction at twdedtént temperatures arg K 0.03220 +0.00072
at 298.2 K and K= 0.4732 +0.0064 at 353.2 K. Calculate the unaastan In(K»/Ky).

Answer: The relative variance in#K; is the sum of the relative variances (Rule 2):

Relative variance in = (0.00072/0.03226) 5.0x10"
+ Relative variance in K= (0.0064/0.4732) = 1.8x10'
Relative variance in K = 6.8x10

Then using Rule 3 shows that the variance in #K) is the relative variance in,K:
Variance in In(K/K1) = Relative variance in #K; = 6.8x10"
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Standard deviation in result~#6.3x10" = 0ﬁ026
In(K/K1) = In 14.689 = 2.687+ 0.026

Table Al.1: Propagation of Error Rules, expressi standard deviations.
Rule 1: Variancesadd on addition or subtraction f=x+y s(ff = s(x} + s(yf

Rule 2: Relative variances add on multiplication or diets ¢ — Xy gj)_z _ sgx)2 sgyzf

Rule 3: The variancef In(x) is the relative variance in x f=lnx  s(fp= g )

The variancef log(x) is the (relative variance in x)/(2.363) | _ s(x)?
f=logx s(ff= (2.303)x
2
Rule 4: The relative variancef eX is the variance in:x f= g ﬂfiz)_ = s(xf

The relative variancef 10°is the (variance in x)(2.308) f=10° _fLZL = (2.303%s(x)

Rule 5: The variance of an average of n numbassuming X s(x)?

, 2 2. f==2  s(fy=
equal variances for the x valuséy)” = S(x)": n

Rule 6: In calculations with only one error term, you caork with standard deviations instead
of variance.

For homework problems, complete propagatiorriaie treatments are usually not required.
However, an expression of the uncertainty in resslstill necessary. For homework problems,
significant figures rules are sufficient. Signifitdigure rules are based on the master error
relationship, but implemented as an approximatetshu to full error propagation. Significant
figure rules are discussed in General Chemistrigtexdetail:

SF Rule 1: In multiplication and division the number of sifjcant figures in the result is the
same as the smallest number of significant figuréke data.

SF Rule 2: In addition and subtraction the number of deciplates in the result is the same as
the smallest number of decimal places in the data.

SF Rule 3: The number of significant figures in the mantis$éog x is the same as the number
of significant figures in x. Use the same rulelfok. (In log 4.23x1G = -2.374, the mantissa is
the .374 part.)

SF Rule 4: The number of significant figures in’1i8 the number of significant figures in the
mantissa of x. Use the same rule far e

For example, the uncertainty ihveith x = 3.45 using significant figure rules amdd' with
x = 3.452+0.014 using error propagation are:
2SF 2SF

—~ ! v
Significant figure rulessétg = 32. Propagatiorf €*%%= 31.56+0.44 (or 1.4% error)

Significant figure rules are a poor substitutedareful error propagation.
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Appendix 2: Least Square Curve Fitting

Important experimental parameters are oftenrated from the slope and intercept of linear
plots. Curve fitting also provides a statisticallid method for the determination of the
precision of results determined from multiple meaments. Consider data plotted in linear form
from a given set of n observation pairsard y, Figure A2.1. Thexvalues are assumed to be
exact, while the jyvalues are subject to random error. The objett isxd the best fit slope, m,
and intercept, b. The calculated fit values, onitbst fit line, are y= m % + b. The residual is
the difference between the observed and the fitesal

=Yy —Y¥=y—mx-—Db A2.1
ll Y|_ A

120 1.48 y

234  4.04

3.05 6.23

385 6.81

506  10.12

Figure A2.1: The best fit line minimizes the sunsqtiared residuals.

The best slope and intercept minimize the residofatse fit values. To avoid the cancellation of
positive and negative deviations of the fit valubg, sum of squared residuals is used as the
criterion for the best fit:

n n
S=Yrf=Y (yi— mx— by A2.2
i=1 i=1
To minimize S the derivatives with respect to tloge and intercept are set equal to zero:
0S
(%)b =0=22 (yi — mx — b)(-%) A2.3
0S
[6_) =0=22 (yi — mx — b)(-1)) A2.4
m

Both equations have a common factor of -2. The satioms factor through each ter(a + b)
=Z%a +Zb. The final term in Eq. A2.4 gives the sum:

n
-b)’ 1=-bn A2.5
i=1
The best fit m and b are the solutions of the tegykimultaneous equations:
0=2yxi—mZx?—bZ X A2.6
0=2y,—mXx—bn A2.7

The term proportional to the slope can be elimisdig multiplying Eqg. A2.6 by ( x;) and
multiplying Eq. A2.7 by E x?):
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0=(Zyxi—mZ x{—bX x)(-Z xi) A2.8

0=(Zyi—mZ x;—bn(Z x?) A2.9
Adding the resulting equations gives:

0=2xZyXi+bEx)*+Zx?Zy—brx x? A2.10

The last equation is solved for the best-fit b. Tégulting b is then substituted into Eq. A2.9,
which gives the best fit slope, m:

o =Z xiZZyZi—Z Xi sziyi o =nZ xiyiz—Z Xi Zzyi p 11
nX x7 — & xi) nZ x7 — (& x)
These equations are universally used by hand-taétdlators, Excel, and computer software
packages for curve fitting.
How well do we know m and b? The scatter ofdata points from the best fit line is
characterized by the standard deviation of thelyesma

2
s = (nz_r'zj (linear) A2.12

The n — 2 degrees of freedom in the denominataiteesecause two fit parameters are extracted
from the data, the slope and the intercept (comjmag). A1.1). The next step is to determine
the standard deviations of the slope and interéapipagation of errors from the measurement
errors in the yuses the master error relationship with n ernange one for each of the wyalues.

For example, for the variance of the slope:

om)2
&m = (ay 62y1+(ay2j 5y2+(6y2j Vs ... A2.13

We assume that the variance of each data poiheisamed?y; = . Each derivative is the
same, giving the standard deviations of the sloykitercept as:

s
Sn = (%) s with D= x?— (Z x)° A2.14
> x3)”
8= (le S A2.15

where D is the denominator of Egs. A2.11. D isddtrced purely as a convenience factor.
The regression coefficient, R, is used to juddlea data is well-described as a linear
relationship:

_ N2 Xiyi —2 X 2V,
\/{nz XI & x) }{nzyz (ZY|) }

R ranges from -1 for strong negative to +1 formsfypositive correlation of the x and y values.
However, the standard deviations of the slope atetdept are the best statistics for judging
goodness-of-fit.

A2.16
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Non-linear Least Squares Curve Fitting: Least square analysis is also applied to nagalin
relationships. Consider a non-linear expressioh witee fit parameters: a, b, and c. For
example, f(x) = a@* + c. Non-linear least squares is an iterative @sscGuesses of the fit
parameters must be made initially; B°, and €. Improvements of the fit parameters are
obtained in a series of iterations. The expres&othe improvements in the fit parameters is:

AlAa=h or
0 2D 2D ey (FE0H
(S5 =G =G |20 =] = G- A2.17
s20 20 2 )\ (e, s,

wherelAa = a— 8 Ab =b -3, Ac = ¢ — ¢ are the differences between the improved valuds an
the old guesses. The fit valués,are the points on the fit curve evaluated withahd guess
parameters. This matrix equation is easily solwed, Ab, andAc using matrix inversion,

Eq. 2.8.19, as\a = é‘l h. Then improved values are calculated, for exarapteg + Aa. For

the f(x) = a 8 + ¢ example, the derivatives are:

ﬁ — bx (ﬁj _ ~bx (ﬁ) —
(aa)b,c_ € b a,c— —ax € ac a’b— 1 A2.18

which are evaluated at each poinirxthe sums. The sums are over all data pointd, to n.

The power of the technique is that the uncetitzsrof the fit parameters are generated in a
statistically valid way. The variances in the firameters are given by the diagonal elements of
the inverse:Al, and the variance of the y valugg(8q. A2.12 with (n — 3) in the denominator):

%= [é_l 1 552' $= [é_l 22 552' s = [é_l 33 552' A2.19
Correlations between fit parameters are also détexdrusing the off-diagonal elementsonl'A
['_A:_ ]12 [é_ ]13 ['_A:_ ]23

Rt B TR CTRLAE TR TL.E L 2P

The correlation coefficients between the fit partereeare important for validating the resdits.
For example for R, a correlation coefficient between the fit paraangbf 0 means that the error
in b has no effect on the error in c. For a cotretacoefficient oftl, the errors in b and c are
completely correlated. For high correlation coedfitts, a small change in the value of one data
point, caused by experimental error, gives a latgage in the fit values of both b and c.
Correlation coefficients larger than ~0.95 mean tiegther parameter estimate is valid.

An applet for “Non-Linear Least Squares Curviéirig,” is available on the text Web site or
companion CD, in a three- or four-parameter versg@common functional forms are
supported. Chapters 3-6, 18, and 20 provide exawgflthe use of non-linear curve fitting.
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