SCALAR CURL Suppose that \vec{F} is a continuous vector field on on open region UCR? For $\vec{a} \in U_{j}$ we define Scurl $\vec{F}(\vec{a}) = \lim_{Avealcy} \int_{C} \vec{F} \cdot d\vec{z}$ $C \rightarrow \vec{a}$ Theorem S-ppose $\vec{F}(\vec{x}) = \begin{pmatrix} m(\vec{x}) \\ N(\vec{x}) \end{pmatrix}$ is C. Then score $\vec{F}(\vec{x}) = \frac{\partial}{\partial x} N(\vec{a}) - \frac{\partial}{\partial y} N(\vec{a})$ proof We will use two theorems from Calc I MVT for Integrals: If g is continuous on [a,b] then there exists $t^* \in [a_{3}b]$ s.t. $g(t^*) = \frac{1}{b-a} \int_a^b g(t) dt$

MUT for Derivatives If g' is continuous on [a,b]then there exists $t^* \in [a,b] \ s.t.$ $g'(t^*) = \frac{g(b) - g(a)}{b - a}$

Label the side as indicated. Putting a bar over a part means the parameterization is in the cover direction. L₁(t) = $(a_0 + t, a_1 - r)$ L₁'(t) = (1, 0)L₂(t) = $(a_0 + t, a_1 + t)$ L₂'(t) = (0, 1)L₂(t) = $(a_0 + t, a_1 + r)$ L₂'(t) = (1, 0)L₃(t) = $(a_0 + t, a_1 + r)$ L₂'(t) = (1, 0)L₄(t) = $(a_0 - r, a_1 + t)$ L₄'(t) = (0, 1)For $t \in [-r_s r]$.

We also split \vec{F} into two parts $\vec{F}(x) = \begin{pmatrix} m(\vec{x}) \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ N(\vec{x}) \end{pmatrix}$ Note that $\begin{array}{c} S \vec{F} \cdot d\vec{s} = S \begin{pmatrix} M \\ 0 \end{pmatrix} \cdot d\vec{s} + S \begin{pmatrix} 0 \\ N \end{pmatrix} \cdot d\vec{s}$.

Then

$$\frac{1}{4r^2} \int_{S_r} \binom{M}{o} \cdot d\vec{s} = \frac{1}{4r^2} \left(\int_{L_1} \binom{M}{o} \cdot d\vec{s} - \int_{T_3} \binom{M}{o} \cdot d\vec{s} \right)$$

$$= \frac{1}{2r} \cdot \frac{1}{2r} \int_{T_3} M(a_0 + t_3 a_1 - r) - M(a_0 + t_3 a_1 + r) dt$$

$$= \frac{1}{2r} \cdot \frac{1}{2r} \int_{T_3} M(a_0 + t_3 a_1 - r) - M(a_0 + t_3 a_1 + r) dt$$

Since

$$\binom{M}{0} \cdot \binom{0}{1} = 0$$

By the MVT for integrals, there is a t^* s.t.
 $g(t^*)$
 $M(a_0 + t^*, a_1 - r) - M(a_0 + t^*, a_1 + r)$
 $= \frac{1}{2r} \int M(a_0 + t_3 a_1 - r) - M(a_0 + t_3 a_1 + r) dt$

Thus,

$$\frac{1}{\sqrt{\Gamma^{2}}} \int \left(\frac{M}{O}\right) \cdot d\vec{s} = \frac{M(a_{o} + t^{*}, a_{1} - r) - M(a_{o} + t^{*}, a_{1} tr)}{2r}$$

$$\frac{1}{\sqrt{\Gamma^{2}}} \int \left(\frac{M}{O}\right) \cdot d\vec{s} = \frac{M(a_{o} + t^{*}, a_{1} - r) - M(a_{o} + t^{*}, a_{1} tr)}{r}$$

$$\frac{1}{\sqrt{\Gamma^{2}}} \int \left(\frac{M}{O}\right) \cdot d\vec{s} = \frac{M(a_{o} + t^{*}, a_{1} - r) - M(a_{o} + t^{*}, a_{1} tr)}{r}$$

$$\frac{1}{\sqrt{\Gamma^{2}}} \int \left(\frac{M}{O}\right) \cdot d\vec{s} = \frac{M(a_{o} + t^{*}, a_{1} - r) - M(a_{o} + t^{*}, a_{1} tr)}{r}$$

$$\frac{1}{\sqrt{\Gamma^{2}}} \int \left(\frac{M}{O}\right) \cdot d\vec{s} = \frac{M(a_{o} + t^{*}, a_{1} - r) - M(a_{o} + t^{*}, a_{1} tr)}{r}$$

Now we apply MUT for derivatives

By MUT for derivatives, there is st e [-v.r] that

$$\frac{1}{4r^2} \int_{S_r} \binom{M}{0} \cdot d\overline{s} = -\frac{2}{2\gamma} M \left(a_0 + t^*, a_1 + s^* \right)$$

as
$$r \neq 0$$
 since $t^*, s^* \in [-r, r]$ we have
 $t^* \neq 0, s^* \neq 0.$ Decalling that $\frac{1}{2}$ Mis continuous
Since \vec{F} is C' shows:
 $\lim_{t \to 0^+} \frac{1}{5} \binom{M}{0} \cdot d\vec{s} = \lim_{t \to 0^+} -\frac{2}{2y} M(a_0 + t^*, a_1 + s^*)$
 $\lim_{t \to 0^+} \frac{1}{5r} \int_{t \to 0^+} \frac{1}{2y} M(a_0 + a_1 + s^*)$
 $r \neq 0^+$
 $r \neq 0^+$

A simpler completion shows

$$\frac{1}{4r^{2}} \int_{\Gamma} {\binom{0}{N}} d\vec{s} = \frac{1}{4r^{2}} \int_{\Gamma_{2}} {\binom{0}{N}} d\vec{s} - \int_{\Gamma_{N}} {\binom{0}{N}} d\vec{s}$$

$$= \frac{2}{3x} N \left(a_{0} + s^{*}, a_{1} + t^{*} \right)$$
for some $s^{*}, t^{*} \in \Gamma^{-} r^{-} r^{-}$
Thus:

$$\lim_{n \to 0^{+}} \int_{\Gamma} {\binom{0}{N}} d\vec{s} = \frac{2}{3x} N \left(\vec{a} \right)$$
Thus:

$$\lim_{n \to 0^{+}} \int_{\Gamma} {\binom{0}{N}} d\vec{s} = \frac{2}{3x} N \left(\vec{a} \right)$$
Since $\frac{2}{3x}$ is continuous.
Putting it togethen:

$$\lim_{n \to 0^{+}} \int_{\Gamma} d\vec{s} = \lim_{n \to 0^{+}} \frac{1}{sr} \int_{\Gamma} d\vec{s}$$

$$= -\frac{2}{3y} M \left(\vec{a} \right) + \frac{2}{3x} N \left(\vec{a} \right).$$
Finally we note that we used squares. For other shapes,
one can eight apply. Green's theorem or minic
its prech, as we challed see.