SCALAR CURL
Suppose that \vec{F} is a continuous vector field on an open region $U \subset \mathbb{R}^{2}$. For $\vec{a} \in U$, we define

$$
\text { score } \vec{F}(\vec{a})=\lim _{C \rightarrow \vec{a}} \frac{1}{A \text { reach }} \int_{C}^{\vec{F}} \vec{F} \cdot d \vec{s}
$$

Theorem S-ppose $\vec{F}(\vec{x})=\binom{m(\vec{x})}{N(\vec{x} \mid}$ is C^{\prime}.
Then score $\vec{F}(\vec{x})=\frac{\partial}{\partial x} N(\vec{a})-\frac{\partial}{\partial y} M(\vec{a})$
proof We will use two theorems from Calc I
MVT for Integrals: If g is continuous on $[a, b]$ Hen there exists $t^{*} \in[a, b]$ s.t.

$$
g\left(t^{*}\right)=\frac{1}{b-a} \int_{a}^{b} g(t) d t
$$

MUT for Derivatives If g^{\prime} is continuous on $[a, b]$ Hen there exists $t^{*} \in[a, b]$ s.t.

$$
g^{\prime}\left(t^{*}\right)=\frac{g(b)-g(a)}{b-a}
$$

Let $\vec{a}=\left(a_{0}, a_{1}\right) \in U$
let S_{r} be the positively square with sides of length $2 r$ centered at \vec{a}

$$
\text { Areal }\left(S_{r}\right)=4 r^{2}
$$

Label the sids os indicated. Putting a bar over a pate meas the parameferization is in the corns direction. Parameterize the sides of S_{r} as flour:

$$
\begin{array}{ll}
L_{1}(t)=\left(a_{0}+t, a_{1}-r\right) & L_{1}^{\prime}(t)=(1,0) \\
L_{2}(t)=\left(a_{0}+r, a_{1}+t\right) & L_{2}^{\prime}(t)=(0,1) \\
L_{3}(t)=\left(a_{0}+t, a_{1}+r\right) & L_{3}^{\prime}(t)=(1,0) \\
L_{4}(t)=\left(a_{0}-r, a_{1}+t\right) & L_{4}^{\prime}(t)=(0,1)
\end{array}
$$

for $t \in[-r, r]$.
We also split \vec{F} into two parts

$$
\begin{aligned}
& \vec{F}(x)=\binom{\mu(\vec{x})}{0}+\binom{0}{N(\vec{x})} \\
& (\vec{F}) \vec{r}=\left({ }^{M}\right) \cdot d \vec{s}+(0) \cdot d
\end{aligned}
$$

Note that $\int_{s_{r}} \vec{F} \cdot d \vec{s}=\int_{s_{r}}\binom{M}{0} \cdot d \vec{s}+\int_{s_{r}}\binom{0}{N} \cdot d \vec{s}$.

$$
\begin{aligned}
& \text { Then } \\
& \frac{1}{4 r^{2}} S_{S_{r}}\binom{M}{0}-d \vec{s}=\frac{1}{4 r^{2}}\left(\begin{array}{c}
S_{1} \\
L_{1}
\end{array}\binom{M}{0}-d \vec{s} \underset{\substack{\text { Wrong }}}{\int_{\text {oration }}}\binom{M}{0}-d \vec{s}\right)
\end{aligned}
$$

$$
=\frac{1}{2 r} \cdot \frac{1}{2 r} \int_{-r}^{r} M\left(a_{0}+t, a_{1}-r\right)-M\left(a_{0}+t, a_{1}+r\right) d t
$$

since

$$
\binom{M}{0}-\binom{0}{1}=0
$$

By the MVT for integrals, there is a t^{*} st.

$$
\begin{aligned}
& M\left(a_{0}+t^{*}, a_{1}-r\right)-M\left(a_{0}+t^{*}, a_{1}+r\right) \\
& \quad=\frac{1}{2 r} \int_{-r}^{r} M\left(a_{0}+t, a_{1}-r\right)-M\left(a_{0}+t, a_{1}+r\right) \\
& g(t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{aligned}
\frac{1}{4 r^{2}} \int_{s}\binom{M}{0} \cdot d \vec{s} & =\frac{M\left(a_{0}+t^{*}, a_{1}-r\right)-M\left(a_{0}+t^{*}, a_{1}, r\right)}{2 r} \\
\begin{array}{l}
\text { now thin tot } \\
\text { this as the }
\end{array} & =\frac{M\left(a_{0}+t^{*}, a_{1}-r\right)-M\left(a_{0}+t^{*}, a_{1}+r\right)}{r-(-r)}
\end{aligned}
\end{aligned}
$$

Now ne apply MVT for derivatives

By MUT for derivatives, there is $S^{*} \in[-r, r]$ so that
here is the

$$
\begin{aligned}
& \begin{array}{c}
\text { here is the } \\
\text { variable }
\end{array} \\
& \left.\frac{\partial}{\partial y} \right\rvert\, M\left(a_{0}+t^{*}, a_{1}+y\right)=\frac{M\left(a_{0}+t^{*}, a_{1}+r\right)-M\left(a_{0}+t^{*}, a_{1}-r\right)}{r-(-r)} \\
& y=s^{*}
\end{aligned}
$$

Thus,

$$
\frac{1}{4 r^{2}} \int_{s_{r}}\binom{M}{0} \cdot d \vec{s}=-\frac{\partial}{\partial y} M\left(a_{0}+t^{*}, a_{1}+s^{*}\right)
$$

aS $r \rightarrow 0$ since $t^{*}, s^{*} \in\left[-r_{j} r\right]$ we have $t^{*} \rightarrow 0, S^{*} \rightarrow 0$. Recalling that $\frac{\partial}{\partial y} M$ is continuous since \vec{F} is C^{\prime} shows:

$$
\begin{array}{rl}
\operatorname{since} F & F \text { is } C \\
\lim _{r \rightarrow 0^{+}} \frac{1}{4 r^{2}} \int_{S_{r}}(M) \cdot d \vec{s} & =\lim _{r \rightarrow 0^{+}}-\frac{\partial}{\partial y} M\left(a_{0}+t^{*} a_{1}+s^{*}\right) \\
& =-\frac{\partial}{\partial y} M\left(a_{0} a_{1}\right) \\
& =-\frac{\partial}{\partial y} M(\vec{a})
\end{array}
$$

A similar computctim shows

$$
\begin{aligned}
\frac{1}{4 r^{2}} \int_{S_{r}}\binom{0}{N} \cdot d \vec{s} & =\frac{1}{4 r^{2}} \int_{L_{2}}\binom{0}{N}-d \vec{s}-\int_{L_{4}}\binom{0}{N} \cdot d \vec{s} \\
& =\frac{\partial}{\partial x} N\left(a_{0}+s^{*}, a_{1}+t^{*}\right) \\
& \text { for some } s_{j}^{*} t^{*} \in\left[-r_{0} r\right]
\end{aligned}
$$

Thus:

$$
\lim _{r \rightarrow 0^{+}} \frac{1}{4 r^{2}} \int_{S_{r}}\binom{0}{N}-d \vec{s}=\frac{\partial}{\partial x} N(\vec{a})
$$

Since $\frac{\partial N}{\partial x}$ is continuous.
Putting it togth:

$$
\begin{aligned}
& \text { Putting it togth : } \\
& \begin{aligned}
\lim _{r \rightarrow 0^{+}} \frac{1}{4 r^{2}} \int_{s_{r}} \vec{F} \cdot d \vec{s} & =\lim _{r \rightarrow 0^{+}} \frac{1}{\varphi_{1}^{2}} \int_{r}\binom{M}{0} \cdot d \vec{s}+\lim _{r \rightarrow 0^{+}} \frac{1}{\varphi_{0}^{2}} \int_{S_{r}}\binom{0}{N} \cdot d \vec{s} \\
& =-\frac{\partial}{\partial y} M(\vec{a})+\frac{\partial}{\partial x} N(\vec{a})
\end{aligned}
\end{aligned}
$$

Finally we note that we used squares. For other shapes, one can eith apply Green's theorem or mimic its proof, as cue shall see.

