Notes on Constructing Potential Functions

The purpose of this document is to provide some additional details for the proof of:
Theorem. Suppose that $U \subset \mathbb{R}^{n}$ is an open region and that \mathbf{F} is a continuous vector field defined on U such that \mathbf{F} has path independent line integrals. Then \mathbf{F} is conservative. That is, there exists a differentiable scalar field f on U such that $\mathbf{F}=\nabla f$.

To say that U is open means that for every $\mathbf{x} \in U$, there is some positive radius r such that the entire ball of radius r centered at \mathbf{x} is contained in U. This condition can be dropped at the expense of adding some restrictions on the boundary of U.

Proof. For simplicity we assume that U is path-connected. This means that for any two points in U there is a piecewise differentiable path in U from one point to the other. If U were not path connected, we would just do the following construction in each piece of U.

We assume that \mathbf{F} has path-independent line integrals. We first define a scalar field f and then we show that $\nabla f=\mathbf{F}$.
Definition: Here is how we define f. Choose a basepoint $\mathbf{a} \in U$. For each $\mathbf{x} \in U$, let $\gamma_{\mathbf{x}}$ be a piecewise differentiable path in U from a to \mathbf{x}. Such a path exists because we are assuming that U is path-connected. Here is a schematic in 2-dimensions:

Define $f(\mathbf{x})=\int_{\gamma_{\mathbf{x}}} \mathbf{F} \cdot d \mathbf{s}$. Since \mathbf{F} has path-independent line integrals (by assumption), it does not matter what path $\gamma_{\mathbf{x}}$ we pick from a to \mathbf{x}. Any other path (as long as it joins a to \mathbf{x}) will give the same answer for $f(\mathbf{x})$. Thus, $f: U \rightarrow \mathbb{R}$ is a well-defined function.
Showing it works: We must show that the function f we just defined has the property that $\nabla f=\mathbf{F}$. For simplicity, assuming we are working in two dimensions, so there are real-valued functions M and N so that:

$$
\mathbf{F}(\mathbf{x})=\binom{M(\mathbf{x})}{N(\mathbf{x})}
$$

We need to show that $\frac{\partial}{\partial x} f(\mathbf{x})=M(\mathbf{x})$ and $\frac{\partial}{\partial y} f(\mathbf{x})=N(\mathbf{x})$. If we are working in more than two dimensions, the proof is similar, we just have more partial derivatives to calculate.
By definition,

$$
\frac{\partial}{\partial x} f(\mathbf{x})=\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+(h, 0))-f(\mathbf{x})}{h}
$$

For simplicity, we will just do the calculation when $h>0$.
Let $\gamma_{\mathbf{x}}$ be piecewise differentiable path in U from the basepoint a to the point \mathbf{x}. Since U is open, if $|h|>0$ is small enough, all the points $\mathbf{x}+(t, 0)$ are also in U. Let $\psi_{\mathbf{h}}(t)=\mathbf{x}+(t, 0)$ for $0 \leq t \leq h$. Here is a depiction of the paths $\gamma_{\mathbf{x}}$ and $\psi_{\mathbf{h}}$:

Observe that by the definition of f :

$$
f(\mathbf{x}+(h, 0))-f(\mathbf{x})=\int_{\gamma_{\mathbf{x}} \cdot \psi_{\mathbf{h}}} \mathbf{F} \cdot d \mathbf{s}-\int_{\gamma_{\mathbf{x}}} \mathbf{F} \cdot d \mathbf{s}
$$

where $\gamma_{\mathbf{x}} \cdot \psi_{\mathbf{h}}$ is the path where we first follow $\gamma_{\mathbf{x}}$ and then follow $\psi_{\mathbf{h}}$. Observe that it is a path from a to $\mathbf{x}+(h, 0)$. Since line integrals can be broken up along segments of path, we have:

$$
\int_{\gamma_{\mathbf{x}} \cdot \psi_{\mathbf{h}}} \mathbf{F} \cdot d \mathbf{s}-\int_{\gamma_{\mathbf{x}}} \mathbf{F} \cdot d \mathbf{s}=\int_{\gamma_{\mathbf{x}}} \mathbf{F} \cdot d \mathbf{s}+\int_{\psi_{\mathbf{h}}} \mathbf{F} \cdot d \mathbf{s}-\int_{\gamma_{\mathbf{x}}} \mathbf{F} \cdot d \mathbf{s}=\int_{\psi_{\mathbf{h}}} \mathbf{F} \cdot d \mathbf{s} .
$$

And this last integral is something we can compute, since $\psi_{\mathbf{h}}^{\prime}(t)=(1,0)$. We have:
$f(\mathbf{x}+(h, 0))-f(\mathbf{x})=\int_{0}^{h} \mathbf{F}(\mathbf{x}+(h, 0)) \cdot \psi^{\prime}(t) d t=\int_{0}^{h}\binom{M(\mathbf{x}+(h, 0))}{N(\mathbf{x}+(h, 0))} \cdot\binom{1}{0}=\int_{0}^{h} M(\mathbf{x}+(h, 0))$.
Thus,

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{h}(f(\mathbf{x}+(h, 0))-f(\mathbf{x}))=\lim _{h \rightarrow 0^{+}} \frac{1}{h} \int_{0}^{h} M(\mathbf{x}+(h, 0)) .
$$

Notice that the part after the limit is the average value of M on the interval $[0, h]$. By assumption M is continuous, so by the mean value theorem for integrals, there exists $t_{h} \in[0, h]$ such that

$$
\frac{1}{h} \int_{0}^{h} M(\mathbf{x}+(h, 0))=M\left(\mathbf{x}+\left(t_{h}, 0\right)\right) .
$$

Thus,

$$
\lim _{h \rightarrow 0^{+}} \frac{1}{h}(f(\mathbf{x}+(h, 0))-f(\mathbf{x}))=\lim _{h \rightarrow 0^{+}} M\left(\mathbf{x}+\left(t_{h}, 0\right)\right)=M(\mathbf{x}) .
$$

If we then consider the case when $h \rightarrow 0^{-}$, and get the same result, we will have shown:

$$
\frac{\partial}{\partial x} f(\mathbf{x})=M(\mathbf{x})
$$

as desired.
Computing $\frac{\partial}{\partial y} f(\mathbf{x})$ is similar, except we use:

$$
\psi_{\mathbf{h}}(t)=\mathbf{x}+(0, t) .
$$

If we do that, we will obtain, via the same argument, $\frac{\partial}{\partial y} f(\mathbf{x})=N(\mathbf{x})$. That will show:

$$
\nabla f(\mathbf{x})=\binom{\frac{\partial}{\partial x} f(\mathbf{x})}{\frac{\partial}{\partial y} f(\mathbf{x})}=\binom{M(\mathbf{x})}{N(\mathbf{x})}=\mathbf{F}(\mathbf{x}) .
$$

