
Notes on Constructing Potential Functions

The purpose of this document is to provide some additional details for the proof of:

Theorem. Suppose that U ⊂ Rn is an open region and that F is a continuous vector field defined
on U such that F has path independent line integrals. Then F is conservative. That is, there exists
a differentiable scalar field f on U such that F = ∇f .

To say that U is open means that for every x ∈ U , there is some positive radius r such that the
entire ball of radius r centered at x is contained in U . This condition can be dropped at the expense
of adding some restrictions on the boundary of U .

Proof. For simplicity we assume that U is path-connected. This means that for any two points in
U there is a piecewise differentiable path in U from one point to the other. If U were not path
connected, we would just do the following construction in each piece of U .

We assume that F has path-independent line integrals. We first define a scalar field f and then we
show that ∇f = F.

Definition: Here is how we define f . Choose a basepoint a ∈ U . For each x ∈ U , let γx be a
piecewise differentiable path in U from a to x. Such a path exists because we are assuming that U
is path-connected. Here is a schematic in 2-dimensions:

Define f(x) =
∫
γx

F · ds. Since F has path-independent line integrals (by assumption), it does not

matter what path γx we pick from a to x. Any other path (as long as it joins a to x) will give the
same answer for f(x). Thus, f : U → R is a well-defined function.

Showing it works: We must show that the function f we just defined has the property that
∇f = F. For simplicity, assuming we are working in two dimensions, so there are real-valued
functions M and N so that:

F(x) =

(
M(x)
N(x)

)
We need to show that ∂

∂xf(x) = M(x) and ∂
∂yf(x) = N(x). If we are working in more than two

dimensions, the proof is similar, we just have more partial derivatives to calculate.

By definition,
∂

∂x
f(x) = lim

h→0

f(x + (h, 0))− f(x)

h
.

For simplicity, we will just do the calculation when h > 0.

Let γx be piecewise differentiable path in U from the basepoint a to the point x. Since U is open,
if |h| > 0 is small enough, all the points x+(t, 0) are also in U . Let ψh(t) = x+(t, 0) for 0 ≤ t ≤ h.
Here is a depiction of the paths γx and ψh:
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Observe that by the definition of f :

f(x + (h, 0))− f(x) =

∫
γx·ψh

F · ds−
∫
γx

F · ds

where γx · ψh is the path where we first follow γx and then follow ψh. Observe that it is a path
from a to x + (h, 0). Since line integrals can be broken up along segments of path, we have:∫

γx·ψh

F · ds−
∫
γx

F · ds =

∫
γx

F · ds +

∫
ψh

F · ds−
∫
γx

F · ds =

∫
ψh

F · ds.

And this last integral is something we can compute, since ψ′h(t) = (1, 0). We have:

f(x + (h, 0))− f(x) =

∫ h

0
F(x + (h, 0)) ·ψ′(t) dt =

∫ h

0

(
M(x + (h, 0))
N(x + (h, 0))

)
·
(

1
0

)
=

∫ h

0
M(x + (h, 0)).

Thus,

lim
h→0+

1

h
(f(x + (h, 0))− f(x)) = lim

h→0+

1

h

∫ h

0
M(x + (h, 0)).

Notice that the part after the limit is the average value of M on the interval [0, h]. By assumption
M is continuous, so by the mean value theorem for integrals, there exists th ∈ [0, h] such that

1

h

∫ h

0
M(x + (h, 0)) = M(x + (th, 0)).

Thus,

lim
h→0+

1

h
(f(x + (h, 0))− f(x)) = lim

h→0+
M(x + (th, 0)) = M(x).

If we then consider the case when h→ 0−, and get the same result, we will have shown:

∂

∂x
f(x) = M(x)

as desired.

Computing ∂
∂yf(x) is similar, except we use:

ψh(t) = x + (0, t).

If we do that, we will obtain, via the same argument, ∂
∂yf(x) = N(x). That will show:

∇f(x) =

( ∂
∂xf(x)
∂
∂yf(x)

)
=

(
M(x)
N(x)

)
= F(x).
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