
MA 262 Vector Calculus Spring 2023

HW 8 Parameterized Surfaces Due: Fri. 4/7

These problems are based on your in class work and Sections 7.1 and 7.2 of Colley. You should
additionally take time to consolidate your knowledge of conservative vector fields, scalar curl, curl,
divergence, Green’s theorem.

Some of the problems may look forward to topics we will cover in the future. You should use what
you know, think creatively, and not necessarily expect the problems to exactly mimic examples
from class or the book. It’s your opportunity to practice genuine mathematical thinking!

Please review the course homework policies and don’t forget a cover sheet! Whenever you use a
computer to calculate or plot you need to say what program/softward you are using. Ideally you
will also include all or part of the code you used.

(CR) means the problems are graded on a credit/no credit basis. You are encouraged to check your
answers in the back of the book, if possible.

The problems from Colley on the most recent material are at the end of this problem set.

(1) Determine if the following vector fields are or are not conservative on the indicated region
U . For each give a reason. You may be able to find more than one reason for your answer, in
which case some are easier to find than others. Take the opportunity to review everything
you know about conservative vector fields.

(a) F(x, y) =

(
x cos(y)
y sin(x)

)
; U = R2

(b) F(x, y) =

(
x cos(y)
y sin(y)

)
; U = R2

(c) F(x, y) =

(
y2

0

)
; U = R2

(d) F(x, y) =

(
0
y2

)
; U = R2

(e) F(x, y) = 1
||(x,y)||

(
x, y
)
; U = R2 \ 0

(f) F(x, y) = 1
||(x,y)||2

(
x, y
)
; U = R2 \ 0

(g) F(x, y) = 1
||(x,y)||

(
−y, x

)
; U = R2 \ 0

(h) F(x, y) = 1
||(x,y)||2

(
−y, x

)
; U = R2 \ 0

(i) F(x, y) = 1
||(x,y)||2

(
−y, x

)
; U = {(x, y) ∈ R2 : y > 0}
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(2) This problem builds on some problems from the previous two assignments. The goal is to
give an example of how we can completely classify irrotational vector fields in terms of the
number of “holes” in the domain.

Suppose that a1, a2, . . ., an are distinct points in R2. Call them holes.
Let U = R2 \ {a1,a2, . . . ,an} (this is the region consisting of all points in the plane except
for these holes.)

The point of this problem is to prove the following theorem:

Theorem (Souped up Poincaré Theorem). There exist C1 vector fields F1,F2, . . . ,Fn on
U , each having scalar curl equal to 0, such that whenever G is a C1 vector field on U with
scurlG equal to 0, there exist constants c1, . . . , cn and a C1 scalar field h such that

G = c1F1 + c2F2 + · · ·+ cnFn +∇h

(An aside for those who have had linear algebra: the C1 vector fields on U with scalar curl
equal to 0 form a vector space. This theorem shows that up to the addition of a conservative
vector field, the dimension of this vector field is at most n (the number of holes). The vector
fields F1, . . . ,Fn are, in fact, also linearly independent and so the dimension is exactly equal
to n. This means that the purely algebraic notion of dimension is closely connected to the
topology of the space.)

We now begin the proof. Your solution for this problem should contain the entire write up
of the proof, including both the parts I provide and the parts that I tell you to provide.

Proof. Let F0(x, y) = 1
||(x,y)||2

(
−y
x

)
. Let

F1 = F0(x− a1)
F2 = F0(x− a2

...
Fn = F0(x− an)

In what follows, consider only positive values of r.

(a) For the purposes of illustrating your work, choose 3 specific points a1,a2,a3, draw
a picture of U and for each of a1,a2,a3 draw a picture of a circle of radius r, with
r smaller than half the minimum distance between holes, centered at the point and
oriented counter-clockwise. As you go along, you should repeat or augment this picture
to help understand what’s being asked.

(b) (Extra-credit) For the choice of holes that you made above, use a computer to plot the
vector field F1+F2+F3 as well as circles of small radius r centered at each of the holes.
You may want to adjust your choices of a1, a2, and a3 to get a decent picture. For the
remaining problems you should work more generally (so in the remaining work, don’t
assume that n = 3 and don’t assume that the ai are exactly the points you picked.)

(c) Use your previous homework to explain why each Fi has scurlFi = 0.
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(d) Let Ci(r) be the circle of radius r centered at ai and oriented counter-clockwise. Show
that

∫
Ci(r)

Fi · ds = 2π. (Hint: Show that the integral of F0 around a circle of radius r

centered at (0, 0) is equal to 2π and then explain why translating both F0 to Fi and
translating the circle to Ci won’t change the result of the integral.)

(e) Suppose that C is a simple closed curve in U , oriented counterclockwise. Explain why
for each i, it is the case that:

• If C encloses ai then
∫
C

Fi · ds = 2π

• If C does not enclose ai, then
∫
C

Fi · ds = 0

(Hint: Choose r to be at most half the minimum distance between any two of the
holes and small enough so that all the circles Ci(r) are enclosed by C. Apply Green’s
theorem to the region D bounded by C and the circles Ci(r), noting that each Ci(r)
has the wrong orientation for using Green’s theorem.)

(f) Suppose that c1, c2, . . . , cn are numbers, and that C is any simple closed curve in the
plane. For each i, let

εi =

{
0 if C encloses ai

1 if C does not enclose ai
.

Show that∫
C

(c1F1 + c2F2 + · · ·+ cnFn) · ds = 2π(c1ε1 + c2ε2 + · · · cnεn)

Now suppose that G is some unknown C1 vector field on U with scurlG = 0. We want to
show that G is the result of adding a conservative vector field to multiples of our known
vector fields. Define ki =

∫
Ci

G · ds.

(g) Suppose that C is any simple closed curve in U oriented counter-clockwise. Let εi equal
1 if C encloses ai and 0 if it does not. Use Green’s theorem to show that∫

C

G · ds = k1ε1 + k2ε2 + · · ·+ knεn.

(Hint: This is nearly identical to what you did above.)
(h) Let ci = k

2π . Define

H = G− (c1F1 + c2F2 + · · ·+ cnFn) .

Show that if C is any simple closed curve in U that is oriented counter-clockwise, then∫
C

H · ds = 0.

(i) Conclude that H is conservative and so there exists a potential function h such that
H = ∇h.

(j) Do a minuscule amount of algebra to complete the proof of the theorem.
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(3) (CR) From Colley Section 7.1 do problems: 1, 2, 5, 12, 13, 14

(4) (CR) From Colley 7.2 do problems: 1, 2, 3, 5, 7
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