Green Theorem: Summary of TRIcks
Assume D is compact, $2 D$ piecewise C^{\prime}, oriented so Donleft $\vec{F} C^{\prime}$ vector field defined on an openset containing D then

$$
\int_{\partial D} \vec{F} \cdot d \vec{s}=\iint_{D} \text { score } \vec{F} d A
$$

(1)

If score $\vec{F}=1$ then

$$
\operatorname{Area}(D)=\iint_{D} \operatorname{scure} \vec{F} d A \stackrel{\text { Greer }}{=} \int_{\partial D} \vec{F} \cdot d \vec{s}
$$

For ex $\vec{F}(x, y)=\binom{-y / z}{x / 2}$ or $\vec{F}(x, y)=\binom{0}{-x}$ or $\vec{F}(x, y)=\binom{y}{0}$
"Concalulucte area by integration alamo boundary"
(2) If score $\vec{F}=0$ and ∂D has two components C, γ bothorinted counter clockwise
Cols

$$
\begin{aligned}
\int_{C} \vec{F} \cdot d \vec{s}-\int_{\gamma} \vec{F} \cdot d \vec{s} & =\int_{\partial D} \vec{F} \cdot d \vec{s} \\
\text { Gean } & =\iint_{D} \text { scull } \vec{F} d A
\end{aligned}
$$

So $\int_{c} \vec{F} \cdot d \vec{s}=\int_{\gamma} \vec{F} \cdot d \vec{s}=0$
"If two curves co-bounda region and if they have the same orientation and if scuve $\vec{F}=0$ on the region, then the integral of \vec{F} over ore curve equals the integral aver the other curve"

