MA 262: Exam 2 Redo

Name:

You may not use textbooks, notes, electronic devices or refer to other people (except the instructor). You may not have a phone visible during the exam and you may not leave the room until you are read Show all of your work; your work is your answer.

Problem	Score	Possible
1		20
2		20
3		20
4		5
5		20
6		5 (bonus)
Total		85

Remember to thoroughly explain each answer. Your work is your answer.
Problem 1: Consider the region S shown below. It is the ring between the circles with equations $x^{2}+y^{2}=1$ and $(x-3)^{2}+y^{2}=25$. Let C_{1} be the inner circle and C_{2} be the outer circle. Orient both C_{1} and C_{2} counter-clockwise.

(1) Suppose that \mathbf{F} is a vector field defined on S such that $\operatorname{scurl} \mathbf{F}=2$. If $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=6 \pi$, what is $\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}$?
(2) Suppose that \mathbf{G} is a vector field defined on S such that $\operatorname{div} \mathbf{G}=6$. If the flux of \mathbf{F} across C_{1} is equal to 9 , what is the flux of \mathbf{F} across C_{2} ?

Problem 2: Let $\mathbf{F}(x, y, z)=\left(\begin{array}{c}5 x^{2} \\ z \\ 2 y\end{array}\right)$. Let S be the triangle in \mathbb{R}^{3} with vertices $(3,0,0),(3,0,5)$, and $(3,7,0)$. Give S the orientation so that its normal vector is $(-1,0,0)$ at each point. See the image below.

(1) Find a parameterization of ∂S; you may provide separate parameterizations for each edge if you like.
(2) Does your parameterization of ∂S have the induced orientation from the orientation on S ?
(3) Use the definition of "line integral of a vector field" to write down a Calc 1-style integral equal to $\int_{\partial S} \mathbf{F} \cdot d \mathbf{s}$.
(4) Provide a parameterization of the surface S.
(5) Use your parameterization to write down a Calc 1-style integral equal to $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$. (Do not use Stokes' Theorem.)

Problem 3: Pick one of the following theorems, give a detailed statement of it and explain why it is true, with as much care as you can.
(1) If \mathbf{F} is a \mathbf{C}^{1} vector field on an open region U such that \mathbf{F} has path independent line integrals, then \mathbf{F} is conservative.
(2) Poincaré's Theorem
(3) Green's Theorem
(4) Stokes' Theorem

Problem 4: Give a parameterization of the surface of revolution obtained by rotating the image of the curve $\gamma(t)=\left(\begin{array}{c}\sin t \\ t+5 \\ 0\end{array}\right)$ for $0 \leq t \leq 4 \pi$ around the y-axis.

Problem 5: Consider the surface $\mathbf{X}(s, t)=\left(\begin{array}{c}s \\ t \\ \sin (s t)+1\end{array}\right)$ for points (s, t) in the triangle described by $0 \leq t \leq s$ and $0 \leq s \leq 1$. Note that this is the graph of the function $f(s, t)=\sin (s, t)$ over the indicated triangle. The surface \mathbf{X} is pictured below in red; the surfaces T, S_{1}, S_{2}, and S_{3} show up later in the problem.

The surface \mathbf{X} has normal vector:

$$
\mathbf{N}(s, t)=\left(\begin{array}{c}
-t \cos (s t) \\
-s \cos (s t) \\
1
\end{array}\right)
$$

Let $\mathbf{F}(x, y, z)=\left(\begin{array}{c}-y \\ x \\ 0\end{array}\right)$.
(1) Is the surface \mathbf{X} smooth? Why or why not?
(2) Compute the circulation of \mathbf{F} over \mathbf{X} using any method you want.
(3) Let P be the "wavy triangular prism" which is the union of the image of the parameterized surface \mathbf{X}, the triangle

$$
T=\{(x, y, 0): 0 \leq y \leq x \text { and } 0 \leq x \leq 1\}
$$

and the squares making up the sides:

$$
\begin{aligned}
& S_{1}=\{(x, 0, z): 0 \leq x \leq 1,0 \leq z \leq 1\} \\
& S_{2}=\left\{(x, x, z): 0 \leq x \leq 1,0 \leq z \leq \sin \left(x^{2}\right)+1\right\} \\
& \left.S_{3}=\{1, y, z): 0 \leq y \leq 1,0 \leq z \leq \sin (y)+1\right\}
\end{aligned}
$$

Orient P with outward pointing normals.
Suppose that \mathbf{G} is a \mathbf{C}^{1} vector field such that $\operatorname{div} \mathbf{G}(x, y, z)=10$. Write down a Calc 1 style integral equal to the flux of \mathbf{G} through P. You may use any method you wish to come up with such an integral.

Problem 6: (Extra-credit) Let $\mathbf{F}(x, y)=\binom{M(x, y)}{N(x, y)}$ be a C^{1} vector field
defined on all of \mathbb{R}^{2}. Suppose that \mathbf{F} has path independent line integrals. Give a thorough explanation of how to define a potential function for \mathbf{F}.

