MA 262: E	xam 2	Redo
-----------	-------	------

You may not use textbooks, notes, electronic devices or refer to other people (except the instructor). You may not have a phone visible during the exam and you may not leave the room until you are read Show all of your work; **your work is your answer**.

Problem	Score	Possible
1		20
2		20
3		20
4		5
5		20
6		5 (bonus)
Total		85

Remember to thoroughly explain each answer. Your work is your answer.

Problem 1: Consider the region *S* shown below. It is the ring between the circles with equations $x^2 + y^2 = 1$ and $(x-3)^2 + y^2 = 25$. Let C_1 be the inner circle and C_2 be the outer circle. Orient both C_1 and C_2 counter-clockwise.

(1) Suppose that **F** is a vector field defined on *S* such that scurl **F** = 2. If $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = 6\pi$, what is $\int_{C_2} \mathbf{F} \cdot d\mathbf{s}$?

(2) Suppose that **G** is a vector field defined on *S* such that div $\mathbf{G} = 6$. If the flux of **F** across C_1 is equal to 9, what is the flux of **F** across C_2 ?

Problem 2: Let $\mathbf{F}(x,y,z) = \begin{pmatrix} 5x^2 \\ z \\ 2y \end{pmatrix}$. Let S be the triangle in \mathbb{R}^3 with

vertices (3,0,0), (3,0,5), and (3,7,0). Give S the orientation so that its normal vector is (-1,0,0) at each point. See the image below.

(1) Find a parameterization of ∂S ; you may provide separate parameterizations for each edge if you like.

- (2) Does your parameterization of ∂S have the induced orientation from the orientation on *S*?
- (3) Use the definition of "line integral of a vector field" to write down a Calc 1-style integral equal to $\int_{\partial S} \mathbf{F} \cdot d\mathbf{s}$.

(continued on next page)

(4) Provide a parameterization of the surface *S*.

(5) Use your parameterization to write down a Calc 1-style integral equal to $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$. (Do not use Stokes' Theorem.)

Problem 3: Pick **one** of the following theorems, **give** a detailed statement of it and **explain** why it is true, with as much care as you can.

- (1) If \mathbf{F} is a \mathbf{C}^1 vector field on an open region U such that \mathbf{F} has path independent line integrals, then \mathbf{F} is conservative.
- (2) Poincaré's Theorem
- (3) Green's Theorem
- (4) Stokes' Theorem

Problem 4: Give a parameterization of the surface of revolution obtained by rotating the image of the curve $\gamma(t) = \begin{pmatrix} \sin t \\ t+5 \\ 0 \end{pmatrix}$ for $0 \le t \le 4\pi$ around the *y*-axis. **Problem 5:** Consider the surface $\mathbf{X}(s,t) = \begin{pmatrix} s \\ t \\ \sin(st) + 1 \end{pmatrix}$ for points (s,t)

in the triangle described by $0 \le t \le s$ and $0 \le s \le 1$. Note that this is the graph of the function $f(s,t) = \sin(s,t)$ over the indicated triangle. The surface **X** is pictured below in red; the surfaces *T*, *S*₁, *S*₂, and *S*₃ show up later in the problem.

,

The surface **X** has normal vector:

$$\mathbf{N}(s,t) = \begin{pmatrix} -t\cos(st) \\ -s\cos(st) \\ 1 \end{pmatrix}$$

Let $\mathbf{F}(x,y,z) = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$.

(questions on next page)

(1) Is the surface **X** smooth? Why or why not?

(2) Compute the circulation of **F** over **X** using any method you want.

(3) Let *P* be the "wavy triangular prism" which is the union of the image of the parameterized surface **X**, the triangle

 $T = \{(x, y, 0) : 0 \le y \le x \text{ and } 0 \le x \le 1\}$

and the squares making up the sides:

 $\begin{array}{rcl} S_1 &=& \{(x,0,z): 0 \leq x \leq 1, 0 \leq z \leq 1\} \\ S_2 &=& \{(x,x,z): 0 \leq x \leq 1, 0 \leq z \leq \sin(x^2) + 1\} \\ S_3 &=& \{1,y,z): 0 \leq y \leq 1, 0 \leq z \leq \sin(y) + 1\} \end{array}$

Orient *P* with outward pointing normals.

Suppose that **G** is a C¹ vector field such that div $\mathbf{G}(x, y, z) = 10$. Write down a Calc 1 style integral equal to the flux of **G** through *P*. You may use any method you wish to come up with such an integral. **Problem 6:** (Extra-credit) Let $\mathbf{F}(x,y) = \begin{pmatrix} M(x,y) \\ N(x,y) \end{pmatrix}$ be a C¹ vector field defined on all of \mathbb{R}^2 . Suppose that **F** has path independent line integrals. Give a thorough explanation of how to define a potential function for **F**.