Vector Fields in cylindrical coords
(1) Consider a 20 vector field in polar cords

If in rectangular coords

$$
\vec{F}(x, y)=\binom{M(x, y)}{N(x, y)}
$$

we wat to fid a corresponding expression when in polar coords

Consider the tangut plane based at P. We observe two coordinate systems one given by $d x, d y$ and ore given by $d r, d \theta$
Moving in the $d x$ direction by Δx increase the x-cord. y our point by Δx. Moving in the $d r$ direction by Δr increases distance to origin by Δr.

Thus to figure out the vector field in polorcoord:

- The projection of $\vec{F}(p)$ into $d r=\frac{1}{r} \vec{p}$ is given by $\quad \frac{F(\vec{p}) \cdot \vec{p}}{\|\vec{p}\|^{2}} \vec{p}=\frac{F(\vec{p}) \cdot \stackrel{\rightharpoonup}{p}}{r} d r$

The vector $d \theta$ is orthogonal to $d r$ (and thestop)
So if $\vec{p}=\binom{x}{y}$ then $d \theta=\frac{1}{r}\binom{-y}{x}$
the projection of $\vec{F}(p)$ on to $d \theta$ axisthen

$$
\frac{1}{r} F(\vec{p}) \cdot\binom{-y}{x} d \theta
$$

\Rightarrow in polar coords

$$
=\binom{M(x, y) \cos \theta+N(x, y) \sin \theta}{-M(x, y) \sin \theta+N(x, y) \cos \theta}
$$

$E x$
If $\vec{F}(x, y)=\binom{x}{y}$ then in polar:

$$
\begin{aligned}
\vec{F}(r, \theta) & =\binom{x \cos \theta+y \sin \theta}{-x \sin \theta+y \cos \theta} \\
& =\binom{r \cos ^{2} \theta+r \sin ^{2} \theta}{-r \cos \theta \sin \theta+r \sin \theta \cos \theta} \\
& =\binom{r}{0}
\end{aligned}
$$

Which makes sense:

IN cylindrical coords, the vectarfield

$$
\vec{F}(x, y, z)=\left(\begin{array}{l}
M(x, y, z) \\
N(x, y, z) \\
P(x, y, z)
\end{array}\right)
$$

is represated as

$$
\vec{F}\left(\begin{array}{l}
r \\
\theta \\
z
\end{array}\right)=\left(\begin{array}{l}
M \cos \theta+N \sin \theta \\
N \cos \theta-M \sin \theta \\
P
\end{array}\right)
$$

Ex $\quad F(x, y, z)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ in polar coords is:

$$
\vec{F}(r, \theta, z)=\left(\begin{array}{c}
r \cos ^{2} \theta+r \sin ^{2} \theta \\
r \sin \theta \cos \theta-r \sin \theta \cos \theta \\
z
\end{array}\right)=\left(\begin{array}{l}
r \\
0 \\
z
\end{array}\right)
$$

Therrem In cylindrical coords the divergence of

$$
\vec{F}(r, \theta, z)=\left(\begin{array}{l}
F_{r}(r, \theta, z) \\
F_{\theta}(r, \theta, z) \\
F_{z}(r, \theta, z)
\end{array}\right)
$$

is

$$
\operatorname{div} \vec{F}=\frac{1}{r} \frac{\partial}{\partial r}\left(r F_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta} F_{\theta}+\frac{\partial}{\partial z} F_{z}
$$

Ex If $\vec{F}(x, y, z)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ diverguce is

$$
\frac{\partial}{\partial x} x+\frac{\partial}{\partial y} y+\frac{\partial}{\partial z} z=3
$$

In cylindrical cordinats

$$
\begin{aligned}
& \vec{F}(r, \theta, z)=\left(\begin{array}{c}
r \\
0 \\
z
\end{array}\right) \\
\operatorname{div} F & =\frac{1}{r} \frac{\partial}{\partial r}\left(r^{2}\right)+\frac{1}{r} \frac{\partial}{\partial \theta} 0+\frac{\partial}{\partial z} z \\
& =\frac{1}{r}(2 r)+0+1 \\
& =2+1 \\
& =3
\end{aligned}
$$

Derivation of cylindrical divergence formula:
Let $\quad \vec{a}=\left(x_{0}, y_{0}, z_{0}\right)=\left(r_{0}, \theta_{0}, z_{0}\right)$ in \mathbb{R}^{3}
Consider $\Delta r>0 \quad \Delta \theta>0 \quad \Delta z>0$
and the 3D region

$$
V=\left\{(r, \theta, z) \left\lvert\, \begin{array}{l}
r_{0}-\Delta r \leq r \leq r_{0}+\Delta r \\
\theta_{0}-\Delta \theta \leqslant \theta \leqslant \theta_{0}+\Delta \theta \\
z_{0}-\Delta z \leqslant z \leqslant z_{0}+\Delta z
\end{array}\right.\right\}
$$

We give the 2 V outward normals
in rectangular coords these are difficalt to figure out, but in cylindrical cords its easier!

Observe:

$$
\begin{aligned}
\iint_{\partial V} \vec{F} \cdot d \vec{S} & =\iint_{\text {top }} F_{z} d S-\iint_{\text {bottom }} F_{z} d S \\
& +\iint_{\text {right }} F_{r} d S-\iint_{\text {left }} F_{r} d S \\
& +\iint_{\text {back }} F_{\theta} d S-\iint_{\text {front }} F_{\theta} d S
\end{aligned}
$$

Also

$$
\begin{aligned}
\operatorname{Vol}(V) & =\text { Area }(\text { top })(2 \Delta z) \\
& =\frac{2 \Delta \theta}{2 \pi}\left(\pi\left(r_{0}+\Delta r\right)^{2}-\pi\left(r_{0}-\Delta r\right)^{2}\right)(2 \Delta z) \\
& =8 r_{0} \Delta r \Delta \theta \Delta z
\end{aligned}
$$

We take the pieces great a tire:

parameterize the top as

$$
\left(\begin{array}{l}
r \\
\theta \\
z_{0}+\Delta z
\end{array}\right) \text { for } \quad \begin{aligned}
& r_{0}-\Delta r \leq r \leq r_{0}+\Delta r \\
& \theta_{0}-\Delta \theta \leq \theta \leq \theta_{0}+\Delta \theta
\end{aligned}
$$

are the bottom as

$$
\left(\begin{array}{l}
r \\
\theta \\
z_{0}-\Delta z
\end{array}\right) \text { wite the same bound e. }
$$

then

$$
\begin{aligned}
& \frac{1}{\operatorname{Vol}(V)}\left(\iint_{\text {top }} F_{z} d S-\iint_{\text {bottom }} F_{z} d S\right) \\
& =\frac{1}{r_{0}} \frac{1}{2 \Delta z} \frac{1}{\text { Area }(\text { top) })_{\theta_{0}-\Delta \theta}^{\theta_{0}+\Delta \theta} \int_{r_{0}-\Delta r}^{r_{0}+\Delta r}\left(F_{z}\left(r, \theta, z_{0}+\Delta z\right)-F_{z}\left(r, \theta, z_{0}-\Delta z\right)\right) \overbrace{r d r d \theta}^{\text {in polar }}} \\
& \text { Bu the MVT for integrals (applied twice) Here is } r^{*}, \theta^{*} \text { so: }
\end{aligned}
$$

By the MVT for integrals (applied twice) there is r^{*}, θ^{*} so:

$$
=\frac{1}{r_{0}} \frac{1}{2 \Delta z} \underbrace{\left(F_{z}\left(r^{*}, \theta^{*}, z_{0}+\Delta z\right)-F_{z}\left(r^{*}, \theta^{*}, z_{0}-\Delta z\right)\right) r^{*}}_{\text {function of } z \text { evaluated at }}
$$

By MVT for derivation end pts there is an Z^{*} with $z_{0}-\Delta z \leq z^{*} \leq z_{0}+\Delta z$
so that

$$
=\frac{1}{r_{0}} \frac{\partial}{\partial z} F_{z}\left(r^{*}, \theta^{*}, z^{*}\right) r^{*} \text {. Since }\left(r^{*}, \theta^{*}, z^{*}\right) \in V
$$

as V shrinks to $\left(r_{0,} \theta_{0}, z_{0}\right)$, as the partial deriv is continuous,

$$
\lim \frac{1}{V_{d l}(V) \text { top }}\left(\iint_{\text {button }} F_{z} d S-\int F_{z} d S\right)=\frac{\partial}{\partial z} F_{z}\left(r_{0}, \theta_{0}, z_{0}\right)
$$

Now we consider the front and back. Parameterize them as

Ten:

$$
\begin{aligned}
& \frac{1}{V_{01}(v)}\left(\iint_{\text {back }} F_{\theta} d S-\iint_{\text {front }} F_{\theta} d s\right)= \\
& \frac{1}{r_{0}} \frac{1}{2 \Delta \theta} \frac{1}{2 \Delta z} \frac{1}{2 \Delta r} \int_{z_{0}-\Delta z}^{z_{0}+\Delta z} \int_{r_{0}-\Delta r}^{r_{0}+\Delta r} F_{\theta}\left(r_{0} \theta_{0}+\Delta \theta_{j} z\right)-F_{\theta}\left(r_{0} \theta_{0}-\Delta \theta_{0} z\right) \overbrace{r d z}^{\sim} \\
& \text { does not depend } \\
& \underbrace{0}
\end{aligned}
$$

ale $\Delta r \Delta z$

By MVT for integrals, there is r^{*}, z^{*} so

$$
=\frac{1}{r_{0}} \frac{1}{2 \Delta \theta}(\underbrace{}_{\left.\begin{array}{l}
\text { function of } \theta \text { evaluated } \\
\text { at endpts of }\left[\theta_{0}-\Delta \theta_{,} \theta_{0}+\Delta \theta\right]
\end{array} F^{F_{\theta}\left(r^{*}, \theta_{0}+\Delta \theta_{,} z^{*}\right)-F_{\theta}\left(r^{*}, \theta_{0}-\Delta \theta_{,} z^{*}\right]}\right)}
$$

By MUT for derivation there is Θ^{*} so

$$
=\frac{1}{r_{0}} \frac{\partial}{\partial \theta} F_{\theta}\left(r^{*}, \theta^{*}, z^{*}\right)
$$

Assuming the partial deriv. is continuous thesis approach
$\frac{1}{r} \frac{\partial}{\partial \theta} F_{\theta}(r, \theta, z)$ as V shrinks to \vec{a},

Finally we consider the left and right sides

In cylindrical coords theyare parameterized as

$$
\left(\begin{array}{c}
r_{0}-\Delta r \\
\theta \\
z
\end{array}\right) \text { and }\left(\begin{array}{c}
r_{0}+\Delta r \\
\theta \\
z
\end{array}\right)
$$

he hae
(*)

$$
\begin{aligned}
& \frac{1}{\operatorname{Vol}(V)}\left(\iint_{r_{\text {right }}} F_{r} d S-\iint_{\text {left }} F_{r} d S\right) \\
& =\frac{1}{V o l(v)}\left(\int_{\theta_{0}-\Delta \theta}^{\theta_{0}+\Delta \theta} \int_{z_{0}-\Delta z}^{z_{0}+\Delta z} F_{r}\left(r_{0}+\Delta r_{\nu} \theta, z\right)\left(r_{0}+\Delta r\right) d z d \theta\right) \\
& \left.-\int_{\theta_{0}+\Delta \theta}^{\theta_{0}+\Delta \theta} \int_{\theta_{0}-\Delta \theta}^{z_{0}+\Delta z} F_{r}+\Delta z\left(r_{0}-\Delta r_{0} \theta, z\right)\left(r_{0}-\Delta r\right) d z d \theta\right) \\
& =\frac{1}{v_{0} I}(v) \int_{\theta_{0}-\Delta \theta}^{\theta_{0}+\Delta \theta} \int_{z_{0}-\Delta z}^{z_{0}+\Delta z} F_{r}\left(r_{0}+\Delta r, \theta, z\right)\left(r_{0}+\Delta r\right)-F_{r}\left(r_{0}-\Delta r, \theta, z\right)\left(r_{0}-\Delta r\right) \\
& d z d \theta
\end{aligned}
$$

MUT Integrals

$$
=\frac{1}{r_{0}} \frac{1}{2 \Delta r}\left(F_{r}\left(r_{0}+\Delta r_{,} \theta^{*}, z^{*}\right)\left(r_{0}+\Delta r\right)-F_{r}\left(r_{0}-\Delta r_{,} \theta^{*}, z^{*}\right)\right)
$$

for some $\theta^{*}, z^{\#}$
$\left.=\left.\frac{1}{r_{0}} \frac{\partial}{\partial r}\right|_{r^{*}} F_{r}\left(r, \theta^{*}, z^{*}\right) r\right)$ for sore r^{*}
as $V \rightarrow \vec{a},\left(r^{*}, \theta^{*}, z^{*}\right) \rightarrow \vec{a}$. As we assume the protial deriv. is continuous,

$$
\lim _{V \rightarrow \vec{a}}(x) \rightarrow \frac{1}{r_{0}} \frac{\partial}{\partial r} F_{r}\left(r_{0}, \theta_{0}, z_{0}\right) .
$$

