Notes on the cardiod
Find parametrization of a point p on a circle C that rolls clockwise around a circle A without sliding on slipping.

Assume that A starts on the verytopof C and that p is initially the point of tangency. Also cusume A has radius I andiscentered at the origin and that C has radius r

Let $c(t)$ denote the center of C at time t. It is rotating counter clockwise in a circle of radius $(1+r)$. Thus

$$
c(t)=(1+r)\binom{\cos (\omega t+\alpha)}{\sin (\omega t+\alpha)}
$$

The number ω accounts for the rate of rotation We will have to figure that out. The number α controls the starting position of C. Since C starts at the top of $A, \alpha=\pi / 2$.

In coordinates centered at $c(t)$, the point P is traveling in a circle, countanclock wise so its position is given by

$$
\begin{aligned}
& \text { ts position is given by } \\
& p(t)=\binom{r \cos (\hat{\omega} t+\beta)}{r \sin (\hat{\omega} t+\beta)}_{c(t)}^{\text {cords based }} \text { at } c(t)
\end{aligned}
$$

Whee $\hat{\omega}$ is the rate f rotation at β is stating position. Since the point starts at the buttorngg C $R=-\frac{\pi}{2}$. We vile hae to figure ont $\hat{\omega}$.

Thus, in standard coordinates

$$
p(t)=(1+r)\binom{\cos (\omega t+\pi / 2)}{\sin (\omega t+\pi / 2)}+r\binom{\cos (\hat{\omega} t-\pi / 2)}{\sin (\hat{\omega} t-\pi / 2)}
$$

Nous to figure ort ω and ω.

$$
\text { dist is } 2 \pi r
$$

dist is
$2 \pi(1+r)$

consider unwrapping C as it rolls. After 1 revolution it will travel $2 \pi r$ along A. That A means it tracesout on angle of $2 \pi r$
It doss that in $\frac{2 \pi}{\omega} \mathrm{sec}$. Since $\cos \left(\omega\left(\frac{2 \pi}{\omega}\right)\right.$

$$
=\cos (2 \pi)
$$

The center on the other hand travels
$(1+r) 2 \pi$. We wat it to cover that distance in $\frac{2 \pi}{\omega}$ seconds so the circle doron't slipor slide. Thus, we need

$$
\frac{2 \pi}{\omega}=(1+r) \cdot 2 \pi
$$

Thus $\omega=\frac{1}{1+r}$.

Similarly:

From the point of view of the center of C, the point of tangency rotates around C at the same rate as P. In one revolution the point of tangency covers a dist $2 \pi r$ (imagine uncapping C as it vols) it does so in $\frac{2 \pi}{\omega} \mathrm{sec}$. We need it to do so in $2 \pi r$ sec, else the is slipping or sliding.
Thus $\frac{2 \pi}{\omega}=2 \pi r$, so $\hat{\omega}=\frac{1}{r}$.
Hence
$p(t)=(1+r)\binom{\cos \left(\frac{1}{1+r} t+\frac{\pi}{2}\right)}{\sin \left(\frac{1}{1+r} t+\frac{\pi}{2}\right)}+r\binom{\cos \left(\frac{1}{r} t-\frac{\pi}{2}\right)}{\sin \left(\frac{1}{r} t-\frac{\pi}{2}\right)}_{D}=0$

