Hyperbolic Geometry and Special Relativity

Classical Mechanics

- To solve physical problems we must choose a reference frame

Classical Mechanics

- To solve physical problems we must choose a reference frame

Classical Mechanics

- To solve physical problems we must choose a reference frame

Classical Mechanics

- To solve physical problems we must choose a reference frame

\widehat{R}

$$
\mathbf{x}=H \widehat{\mathbf{x}}+T
$$

$$
H \in S O(n) \quad T \in \mathbb{R}^{n}
$$

Classical Mechanics

- Newton's 1st Law: w/o forces, bodies move in straight lines w/o accel.

Classical Mechanics

- Newton's 1st Law: w/o forces, bodies move in straight lines w/o accel.

-Law of Inertia: There exist reference frames s.t. Newton 1 holds.

Classical Mechanics

- Newton's 1st Law: w/o forces, bodies move in straight lines w/o accel.

-Law of Inertia: There exist reference frames s.t. Newton 1 holds.

Classical Mechanics

- Newton's 1st Law: w/o forces, bodies move in straight lines w/o accel.

-Law of Inertia: There exist reference frames s.t. Newton 1 holds.

- Galilean Transformations are affine change of coords. that preserve Newton's laws.

Classical Mechanics

- Galilean Transformations are affine change of coords. that preserve Newton's laws.

$v H C$ are constant

$H \in S O(n)$

-Galilean Transformations preserve time intervals and (euclidean) distance in space

Maxwell's Equations

\boldsymbol{E} : electric field
B: magnetic field

1.Superposition
2. A stationary point generates no magnetic field and

$$
\mathbf{E}=\frac{k e \mathbf{r}}{r^{3}}
$$

3. A point charge with velocity v generates a magnetic field

$$
\mathbf{B}=\frac{k^{\prime} e(\mathbf{v} \times \mathbf{r})}{r^{3}}
$$

Corollary (Lorentz): $\quad \mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})$
'Maxwelt's Equations are not invariant'

'Maxwelt's Equations are not invariant

$$
\mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

'Maxwelt's Equations are not invariant ${ }^{\prime}$

$$
\begin{aligned}
& \mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
& \mathbf{F}=e(\widehat{\mathbf{E}}+\mathbf{0} \times \widehat{\mathbf{B}})
\end{aligned}
$$

'Maxwelt's Equations are not invariant ${ }^{\prime}$

$$
\begin{aligned}
\mathbf{F} & =e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
\mathbf{F} & =e(\widehat{\mathbf{E}}+\mathbf{0} \times \widehat{\mathbf{B}}) \\
\widehat{\mathbf{E}} & =\mathbf{E}+\mathbf{v} \times \mathbf{B}
\end{aligned}
$$

Maxwelt's Equations are not invariant

$$
\begin{aligned}
\mathbf{F} & =e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
\mathbf{F} & =e(\widehat{\mathbf{E}}+\mathbf{0} \times \widehat{\mathbf{B}}) \\
\text { so } \quad \widehat{\mathbf{E}} & =\mathbf{E}+\mathbf{v} \times \mathbf{B}
\end{aligned}
$$

$$
{ }_{\text {and fay sutitfining fie rofes: }}^{\mathbf{E}}=\widehat{\mathbf{E}}-\mathbf{v} \times \widehat{\mathbf{B}}
$$

Maxwelt's Equations are not invariant

$$
\begin{aligned}
\mathbf{F} & =e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
\mathbf{F} & =e(\widehat{\mathbf{E}}+\mathbf{0} \times \widehat{\mathbf{B}}) \\
\text { so } \quad \widehat{\mathbf{E}} & =\mathbf{E}+\mathbf{v} \times \mathbf{B}
\end{aligned}
$$

${ }_{\text {and }}$ fy syittfining ffer roles: $\mathbf{E}=\widehat{\mathbf{E}}-\mathbf{v} \times \widehat{\mathbf{B}}$

adding we get:

$\mathbf{0}=\mathbf{v} \times(\mathbf{B}-\widehat{\mathbf{B}})$

'Maxwell's Equations are not invariant'

$$
\begin{aligned}
\mathbf{F} & =e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
\mathbf{F} & =e(\widehat{\mathbf{E}}+\mathbf{0} \times \widehat{\mathbf{B}}) \\
\text { so } \quad \widehat{\mathbf{E}} & =\mathbf{E}+\mathbf{v} \times \mathbf{B}
\end{aligned}
$$

${ }_{\text {and }}$ fy syittrining ffer roles: $\mathbf{E}=\widehat{\mathbf{E}}-\mathbf{v} \times \widehat{\mathbf{B}}$

$$
\text { adding we get: } \quad \mathbf{0}=\mathbf{v} \times(\mathbf{B}-\widehat{\mathbf{B}})
$$

so $\mathbf{B}-\widehat{\mathbf{B}}$ is a multiple of \mathbf{v}.

'Maxwell's Equations are not invariant'

so

$$
\begin{aligned}
& \mathbf{F}=e(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
& \mathbf{F}=e(\widehat{\mathbf{E}}+\mathbf{0} \times \widehat{\mathbf{B}}) \\
& \widehat{\mathbf{E}}=\mathbf{E}+\mathbf{v} \times \mathbf{B}
\end{aligned}
$$

${ }_{\text {and }}$ fy syittrining ffer rofes: $\mathbf{E}=\widehat{\mathbf{E}}-\mathbf{v} \times \widehat{\mathbf{B}}$

$$
\begin{array}{ll}
\text { adding weget: } & \mathbf{0}=\mathbf{v} \times(\mathbf{B}-\widehat{\mathbf{B}})
\end{array}
$$

so $\mathbf{B}-\widehat{\mathbf{B}}$ is a multiple of \mathbf{v}.
but: $\mathbf{B}=0$ and $\widehat{\mathbf{B}}=-\frac{\mu_{0} e(\mathbf{v} \times \mathbf{r})}{4 \pi r^{3}}$ by (EM 3).

Sorentz Transformations

We assume:

- Transformation is affine (Newton's 1st Law is preserved)
- Light travels at constant velocity and in straight lines. Hence photon world lines are of the form:
- No physical effect is transferred faster than light.
- Only (not accelerative) relative motion can be detected.

Sorentz Transformations

We assume:

- Transformation is affine (Newton's 1st Law is preserved)
- Light travels at constant velocity and in straight lines. Hence photon world lines are of the form:

$$
\begin{aligned}
\mathbf{x} & =\mathbf{u} t+\mathbf{a} \\
\|\mathbf{u}\|^{2} & =c^{2}
\end{aligned}
$$

- No physical effect is transferred faster than light.
- Only (not accelerative) relative motion can be detected.

Lorentz Transformations are affine

$$
\begin{gathered}
\mathbf{x}=L \widehat{\mathbf{x}}+C \\
L=\left(\begin{array}{cccc}
\gamma & - & - & - \\
- & - & - & - \\
- & - & - & - \\
- & - & - & -
\end{array}\right) \\
t=\gamma \widehat{t}+\text { constant }
\end{gathered}
$$

Lorentz Transformations are affine

$$
\mathbf{x}=L \widehat{\mathbf{x}}+C
$$

time dilation

$$
\begin{aligned}
& L=\left(\begin{array}{cccc}
\gamma & - & - & - \\
- & - & - & - \\
- & - & - & - \\
- & - & - & -
\end{array}\right) \\
& t=\gamma \widehat{t}+\text { constant }
\end{aligned}
$$

Lorentz Transformations have conical photon world lines

$$
c t^{2}-x^{2}-y^{2}-z^{2}=0
$$

What's invariant?

The world lines of photons

Event E_{i} has \mathbf{O} coordinates \mathbf{x}_{i}.

 Event E_{i} has $\widehat{\mathbf{O}}$ coordinates $\widehat{\mathbf{x}}_{i}$.They are on the world line of a photon iff:
$\underset{\text { spatiad dispfacement } \longrightarrow}{\longrightarrow} D=c T_{\longleftrightarrow}$ trmporaraf displacement

$$
\begin{aligned}
c^{2}\left(t_{2}-t_{1}\right)^{2}-\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}-\left(z_{2}-z_{1}\right)^{2} & =0 \\
c^{2}\left(\widehat{t}_{2}-\widehat{t}_{1}\right)^{2}-\left(\widehat{x}_{2}-\widehat{x}_{1}\right)^{2}-\ldots & =0
\end{aligned}
$$

World Lines of $\operatorname{Photons~}$

$$
\begin{gathered}
X=\left(\begin{array}{l}
c t_{2} \\
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)-\left(\begin{array}{l}
c t_{1} \\
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \\
g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
\text { Need: }
\end{gathered}
$$

$$
X^{t} g X=0 \Leftrightarrow \widehat{X}^{T} g \widehat{X}=0
$$

If $\hat{X}=L X$ then:

$$
X^{t} g X=0 \Leftrightarrow X^{T} L^{T} g L X=0
$$

Minkowski Space $\mathbb{R}^{1,3}$

$$
\begin{aligned}
x \circ y & =-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} \\
\|x\| & =\sqrt{x \circ x} \\
x \circ y & =\|x\|\|y\| \cosh \eta
\end{aligned}
$$

Minkowski Space $\mathbb{R}^{1,3}$

$$
\begin{aligned}
x \circ y & =-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} \\
\|x\| & =\sqrt{x \circ x} \\
x \circ y & =\|x\|\|y\| \cosh \eta \\
C^{3} & =\{x:\|x\|=0\} \quad \text { light cone }
\end{aligned}
$$

Minkowski Space $\mathbb{R}^{1,3}$

$$
\begin{array}{rlrl}
x \circ y & =-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} \\
\|x\| & =\sqrt{x \circ x} \\
x \circ y & =\|x\|\|y\| \cosh \eta & \\
& =\{x:\|x\|=0\} & & \text { light cone } \\
& C^{3} & =\{x \| & >0
\end{array}
$$

Minkowski Space $\mathbb{R}^{1,3}$

$$
\begin{aligned}
x \circ y & =-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} \\
\|x\| & =\sqrt{x \circ x} \\
x \circ y & =\|x\|\|y\| \cosh \eta
\end{aligned}
$$

$$
C^{3}=\{x:\|x\|=0\} \quad \text { light cone }
$$

$$
\|x\|>0
$$

spacelike

$$
\|x\| \text { imaginary } \quad \text { timelike }
$$

Minkowski Space $\mathbb{R}^{1,3}$

$$
\begin{aligned}
x \circ y & =-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} \\
\|x\| & =\sqrt{x \circ x} \\
x \circ y & =\|x\|\|y\| \cosh \eta
\end{aligned}
$$

$$
C^{3}=\{x:\|x\|=0\} \quad \text { light cone }
$$

$\|x\|>0$
$\|x\|$ imaginary timelike
spacelike

Lorentz
transformation

Minkowski Space $\mathbb{R}^{1,3}$

$$
F^{3}=\left\{x \in \mathbb{R}^{1,3}:\|x\|^{2}=-1\right\}
$$

$$
x \circ y=\|x\|\| \| y \| \cosh \eta
$$

$$
d_{H}(x, y)=\eta(x, y)
$$

tíme-like angle

Minkowski Space

Theorem: F^{3} with d_{H} is isometric to \mathbb{H}^{3}

