MA 314 Homework 19: Acting Freely

1. Mortar

- (1) Read Chapter 7 of Bonahon and summarize the proof of the fact that if a group action has a fundamental domain, then it is discontinuous.
- (2) Sketch a picture of a locally finite polygon in \mathbb{E}^2 with infinitely many edges which tiles \mathbb{E}^2 . (Hint: consider a polygonal approximation to the region bounded by $y = x^3$ and $y = x^3 + 1$.)

2. Bricks

Given how specialized our description of group actions has been, you may wonder how prevalent discontinuous free actions are. The purpose of these problems is to prove:

Theorem. Let G be a group. Then there is a path metric space (X,d) such that G acts on X discontinuously, freely, and by isometries.

- (1) Let *G* be a group. A set $S \subset G$ is a **generating set** for *G* if every element of *G* can be written as the composition of finitely many elements of *S* and inverses of elements of *S*. Prove that every group *G* has a generating set. (There is a silly way of doing this.)
- (2) Let Γ be a graph which has a vertex v_g for each element $g \in G$. Two vertices v_a and v_b are joined by an edge, if there is an element $s \in S$ (for a generating set *S*) such that a = bs. Prove that the graph Γ is connected (i.e. that there is a sequence of edges joining any two vertices of Γ)
- (3) Give each edge of Γ a length of 1 and view it as a copy of the unit interval [0,1] ⊂ E¹. Define the distance between two vertices of Γ to be the minimal number of edges in an edge path joining them. Prove that Γ is path metric space.
- (4) Define an action of G on Γ by gv_a = v_{ga} where g ∈ G and v_a is a vertex of Γ. Prove that this is a group action. (i.e. that
 - If $g, g' \in G$, then $(gg')v_a = g(g'v_a)$
 - If $1 \in g$ is the identity element, then $1v_a = v_a$ for all vertices $v_a \in \Gamma$.

As part of your answer, show how to extend the definition of the action from the vertices of Γ to all points in Γ .

- (5) Prove that the action of G on Γ is free, discontinuous, and by isometries.(Hint: observe that the minimum distance from any vertex to any other vertex of Γ is 1.)
- (6) The free group F₂ on two generators is the group consisting of all "words" in two symbols (say *a* and *b*) and their inverse symbols *A* and *B*. For example, *aaaBBa* is an example of a word in F₂. Of course *aA* = *Aa* = 1 and *Bb* = *bB* = 1. The group F₂ is generated by *a* and *b*. Sketch a portion of the graph Γ corresponding to *S* = {*a*,*b*}.