MA 314 Homework 15: Bad Quotient! Bad! Bad!

1. Reading

(1) Read some sources which you'll use as the basis for your blog essay.

2. Bricks

- (1) In class we considered two bad quotients:
 - $X = \mathbb{R}$ with the equivalence relation: $x \sim y \Leftrightarrow (x y) \in \mathbb{Q}$. This has the property that in \overline{X} there are distinct points \overline{P} and \overline{Q} such that the chain $\overline{C} : \overline{P}, \overline{Q}$ of jump number 1 has length 0.
 - X = [0,1] × [-1,1] ⊂ ℝ² with the equivalence relation generated by (1/n,1) ~ (1/n,-1). This has the property that in X̄ there are distinct points P̄ and Q̄ such that for any ε > 0, there is a chain C̄ : P̄, x̄, Q̄ of jump number 2 with ℓ(C̄) < ε. But there there exists an ε > 0 such that no chain of jump number less than 2 (i.e. jump number 1) has length less than ε.

Construct a space X and an equivalence relation giving rise to a quotient space \overline{X} such that both of the following hold:

- (a) There exist distinct points $\overline{P}, \overline{Q} \in \overline{X}$ such that for any $\varepsilon > 0$, there is a chain \overline{C} from \overline{P} to \overline{Q} of jump number j = 3 such that $\ell(\overline{C}) < \varepsilon$.
- (b) For all pairs of distinct points $\overline{P}, \overline{Q} \in \overline{X}$ there exists $\varepsilon > 0$ such that if \overline{C} is a chain from \overline{P} to \overline{Q} of jump number $j(\overline{C}) < j$ then $\ell(\overline{C}) > \varepsilon$.