MA 302: Yet More	Practice Problems	Name:	
			· · · · · · · · · · · · · · · · · · ·

- (1) Let S ⊂ ℝ³ be an ellipsoid enclosing the origin, oriented outward. Let P ⊂ ℝ³ be a cube enclosing the origin and enclosed by S. Orient *P* outward. Let **F** be an incompressible vector field defined on ℝ³ {0}. Prove that the flux of **F** through *P* is the same as the flux of **F** through *S*.
- (2) Let $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$. Let **a** be a point in \mathbb{R}^3 . For each $n \in \mathbb{N}$, let V_n be a compact 3-dimensional region containing **a**, such that the regions V_n limit to **a**. Orient the boundary of V_n outwards. Use the divergence theorem to prove that

div
$$\mathbf{F}(\mathbf{a}) = \lim_{n \to \infty} \frac{1}{\operatorname{vol} V_n} \iint_{\partial V_n} \mathbf{F} \cdot d\mathbf{S}.$$

- (3) Let *S* be the box with corners $(\pm 1, \pm 1, \pm 1)$, oriented outward. Let $\mathbf{F}(x, y, z) = \begin{pmatrix} xyz \\ xy \\ z \end{pmatrix}$. Find the flux of **F** through *S*.
- (4) Prove that inside a hollow planet there is no gravity. (You may use Gauss' Law of Gravitation.)
- (5) Give a complete, precise statement of the divergence theorem.