
Study Guide/Practice Exam 3

This study guide/practice exam covers only the material since exam 2. The
final exam, however, is cumulative so you should be sure to thoroughly
study earlier material. The distribution of content on this practice exam is
not necessarily representative of the distribution of content on the actual
exam.

(1) Suppose that f is a function which is the solution to the initial value
problem

∂
∂x
f(x, y) + ∂

∂y
f(x, y) = xf(x, y)

f(0, 0) = 1

A theorem from differential equations guarantees that f ∈ C2(R2).

(a) Explain what f ∈ C2(R2) means.
(b) State a theorem which guarantees that ∂

∂x∂y
f(x, y) = ∂

∂y∂x
f(x, y)

for all (x, y) ∈ R2.

Solution: That f ∈ C2(R2) means that f , all first partial derivatives
of f , and all second partial derivatives of f are continuous at every
point in R2. Clairut’s theorem says that if f ∈ C2(D) where D is
a disc of positive radius in R2 containing a point a then the mixed
partial derivatives of f at a are equal. Thus, if f ∈ C2(R2), then the
mixed partials of f are equal at every point in R2.

(2) Let f(x, y) = x2 − sin(x) + cos(y). Find the first and second
MacLaurin polynomials for f .

Solution: The first Taylor polynomial is P1(x, y) = 1 − x. The
second is P2(x, y) = 1− x+ x2 − y2.

(3) Let φ(t) = (t2, t, sin(t)). Let f(x, y, z) = x− y + z. Use the chain
rule to find d

dt
f ◦ φ(t).

Solution:
φ′(t) = (2t, 1, cos(t))

∇f(x, y, z) = (1,−1, 1)
d
dt
f ◦ φ(t) = (1,−1, 1) · (2t, 1, cos(t))

Thus, d
dt
f ◦ φ(t) = 2t− 1 + cos(t).

(4) Let φ(t) = (cos t, cos t − sin t). Let L be the graph in R2 of the
line y − 2x = 4. Find points tmin, tmax ∈ [0, 2π) so that φ(tmin) is
the closest point on the ellipse to L and φ(tmax) is the farthest point.
You do not need to determine which is which.
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Solution: The distance from (x, y) in R2 to the line defined by the
equation y − 2x = 0 is

dist(x, y) =
|(x, y) · (−2, 1)|√

5

The line L does not go through the origin, but if we shift everything
down by 4 we will get y − 2x = 0. Shifting everything down by
4 does not change the distance between objects. Thus, the distance
from (x, y) to L is the same as dist(x, y − 4). To minimize the
distance we will minimize the square of the distance function. Let

s(x, y) =
(−2x+ y − 4)2

5

We wish to minimize s◦φ(t). We begin by finding the critical points
using the chain rule.

∇s(x, y) = 2
5
(−2x+ y − 4)(−2, 1)

φ′(t) = (− sin t,− sin t+ cos t)
d
dt
s ◦ φ(t) = 2

5
(− cos t− sin t− 4)(sin t+ cos t)

Set this last derivative equal to zero and solve for t. To do so, notice
that (− cos t− sin t− 4) is never 0. Thus, the derivative is equal to
zero only if sin t = − cos t. That is, if tan t = −1. For t ∈ [0, 2π),
tan t = −1 only if t = 3π/4 or t = 7π/4. These must be the t
values creating the maximum and minimum distances to the line L.

(5) Let f(x, y) = x3 + x2y − y2. Find and classify all critical points of
f .

Solution: We begin by calculating:

∇f(x, y) = (3x2 + 2xy, x2 − 2y)

and

Hf(x, y) =

(
6x+ 2y 2x

2x −2

)
We have ∇f(x, y) = (0, 0) if (x, y) = (0, 0) or if (x, y) = (3, 9/2).
These are our critical points. Plugging them into Hf(x, y) and us-
ing the second derivative test we discover that (0, 0) is a degenerate
critical point and that (3, 9/2) is a saddle point.

(6) Let f(x, y) = ex
2+y2−e−(x2+y2). Find and classify all critical points

of f .
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Solution:

fx(x, y) = 2x(ex
2+y2 + e−(x2+y2)

fy(x, y) = 2y(ex
2+y2 + e−(x2+y2)

The only critical point of f is, therefore, (0, 0). Then

fxx(x, y) = 2(ex
2+y2 + e−(x2+y2)) + 4x2( something )

fyy(x, y) = 2(ex
2+y2 + e−(x2+y2) + 4y2( something )

fyx(x, y) = 2x( something )

Consequently, Hf(0, 0) =

(
4 0
0 4

)
. By the second derivative test,

(0, 0) is a minimum of f .

(7) Let g(x, y) = 1
xy

. Find the points on the graph of g which are closest
to the origin in R3. (Hint: Let s(x, y, z) = x2+y2+z2 be the square
of the distance from (x, y, z) to the origin and set z = g(x, y).)

Solution: Let s(x, y) = x2 + y2 + 1
x2y2

. We have

∇s(x, y) = (2x− 2

y2x3
, 2y − 2

y3x2
).

Setting ∇s(x, y) = (0, 0) and solving we get four critical points
(1, 1), (−1, 1), (1,−1), and (−1,−1). Call these A, B, C, and D
respectively.

Then Hs(x, y) =

(
2 + 6y−2x−4 4y−3x−3

4y−3x−3 2 + 6y−4x−2

)
. Consequently:

Hs(A) =

(
8 4
4 8

)
Hs(B) =

(
8 −4
−4 8

)
Hs(C) =

(
8 −4
−4 8

)
Hs(D) =

(
8 4
4 8

)
By the second derivative test, these are all minima.

(8) A company operates two plants which manufacture the same item
and whose total cost functions are

C1 = 8.5 + 0.03q2
1

C2 = 5.2 + 0.04q2
2

where q1 and q2 are the quantities produced by each plant. If the
item costs p dollars then

p = 60− .04(q1 + q2).
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The goal is to find values for q1 and q2 which will maximize the
company’s profit.

Carefully set up and describe how you would solve this problem
using multi-variable derivatives. You need not actually perform the
calculations.

Solution: Let P (q1, q2) = (q1 +q2)p−(C1 +C2). This is a function
of q1 and q2 which represents the profit of the company. I would plug
in the equations for p, C1, and C2 and would find the critical points
and then use the second derivative test to determine which critical
points were maxima of P .

(9) Let f(x, y) = x + y and let R be the rectangle in R2 with corners
(1, 1), (1, 3), (2, 1) and (2, 3).

(a) Subdivide R into four subrectangles of equal area and write
down a sum which approximates

∫∫
R

f dA.

Solution: Since the area of R is 2, the area of each subrectan-
gle is ∆A = 2/4 = 1/2. Choose lower left corners for sam-
ple points (for example). Then we have sample points (1, 1),
(3/2, 1), (2, 1), and (3/2, 2). The following sum approximates
the double integral:

∆A(f(1, 1) + f(3/2, 1) + f(2, 1) + f(3/2, 2)) = (1/2)(1 + 1 + 3/2 + 1 + 2 + 1 + 3/2 + 2)

(b) Use lower left corners of subdivisions of R and the limit defi-
nition of the Riemann integral to calculate

∫∫
R

f dA. You will

need the formula;
n∑
k=0

(k − 1) =
(n− 1)n

2
.

Solution: Subdividing R into n2 rectangles we have ∆A =
2/n2. Let Rij be the ith subrectangle in the x direction and
the jth subrectangle in the y direction. Then with lower left
corners of sample points (x∗ij, y

∗
ij) we have

x∗ij = 1 + (i− 1)/n
y∗ij = 1 + 2(j − 1)/n

f(x∗ij, y
∗
ij) = 2 + (i− 1)/n+ 2(j − 1)/n

Thus,
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∫∫
R

f dA = lim
n→∞

n∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A

= lim
n→∞

2
n2

n∑
i=1

n∑
j=1

2 + (i− 1)/n+ 2(j − 1)/n

= lim
n→∞

2
n2

n∑
i=1

( n∑
j=1

2 +
n∑
j=1

(i− 1)/n+
n∑
j=1

2(j − 1)/n
)

= lim
n→∞

2
n2

n∑
i=1

(
2n+ (i− 1) + (n− 1)

)
= lim

n→∞
2
n2

( n∑
i=1

2n+
n∑
i=1

(i− 1) +
n∑
i=1

(n− 1)
)

= lim
n→∞

2
n2

(
2n2 + n(n− 1)/2 + (n− 1)n

)
= 4 + 1 + 2
= 7.

(c) Write
∫∫
R

f dA as an iterated integral and solve.

Solution:∫∫
R

f dA =
3∫
1

2∫
1

(x+ y) dx dy

=
3∫
1

(x2/2 + yx)
∣∣∣2
1
dy

=
3∫
1

(3/2) + y dy

= 7.

(10) For the following functions f and regionsR set up (but do not solve)
an iterated integral equal to

∫∫
R

f dA. Your answer should be some-

thing that can be plugged into Mathematica to find the answer.

(a) f(x, y) = x3y and R is a disc of radius 1 centered at the point
(1,−1).

Solution:∫∫
R

f dA =

∫
−

11

∫ √1−x2

−
√

1−x2

x3y dy dx

(b) f(x, y) = sin(xy) and R is the triangular region with corners
(0, 0), (2, 0), and (1, 5).
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Solution:∫∫
R

f dA =

∫ 5

0

∫ −y/5+2

y/5

sin(xy) dx dy

(c) f(x, y) = x2 − y2 and R is the region bounded by the graphs
of y = x5 and y = x3.

Solution:∫∫
R

f dA =

∫ 0

−1

∫ x5

x3

x2 − y2 dy dx+

∫ 1

0

∫ x3

x5

x2 − y2 dy dx

(11) Set up iterated triple integrals to find the volumes of the following
objects in R3. You do not need to solve the integrals.

(a) The region trapped between the graphs of y = −1, y = 1,
y = x3, z = x, and z = 5.

Solution: We use y-slices so that
∫∫∫
R

1 dV =
∫
− 11A(y) dy,

where A(y) is the area of a y slice. Figure 1 shows a typical
y-slice.

FIGURE 1. The colors of the lines have been chosen to cor-
respond to the colors of the 3D object in the Practice Exam.
The yellow line has the equation x = 3

√
y. The green line

has equation z = x, and the red line has the equation z = 5.

Examining the graph we see thatA(y) =
∫ 5

3
√
y

∫ 5

x
1 dz dx. Thus,∫∫∫

R

1 dV =

∫
−

11A(y) dy =

∫ 1

−1

∫ 5

3√x

∫ 5

x

1 dz dx dy.
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(b) The region which is trapped between the cylinders x2 + y2 = 1
and x2 + z2 = 1.

FIGURE 2. The green circle is x2 + y2 = 1 and the orange
lines are is x2 + z2 = 1.

Solution: We choose to use z–slices. In Figure 2 is drawn a
typical z-slice. The green circle is x2 +y2 = 1. The left orange
line is x = −

√
1− z2 and the right orange line is

√
1− z2.

Since −1 ≤ z ≤ 1, we have
∫∫∫
R

1 dV =
∫ 1

−1
A(v) dV where

A(v) is the area of a z slice. By examining the graph of the
z-slice we see that A(z) =

∫ √1−z2
−
√

1−z2
∫ √1−x2

−
√

1−x2 1 dy dx. Thus,∫∫∫
R

1 dV =

∫ 1

−1

∫ √1−z2

−
√

1−z2

∫ √1−x2

−
√

1−x2

1 dy dx dz.
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(12) Carefully state and explain the Change of Variables Theorem for
double integrals.

Solution: Suppose that f : R2 → R is continuous and that x =
x(u, v) and y = y(u, v) are a differentiable change of coordinates.
Let R ⊂ R2 be a region in the xy plane for which

∫∫
R
f dA exists.

Let R̂ be the corresponding region in the u, v plane. Let f̂ be the

composition of f with the coordinate change. Let J =

(
xu xv
yu yv

)
.

Then ∫∫
R

f dA =

∫∫
bR

f̂ | det J | dÂ.

The theorem gives a way of converting an integral of f over a region
in the xy plane to an integral over a region in the uv plane. The
determinant of the Jacobian measures the infinitessimal change in
area due to the coordinate change. It is necessary to include this so
that the Riemann sum representing the integral on the left is equal
to the Riemann sum representing the integral on the right.

(13) Let f(x, y) = y
√

4− (x2 + y2). Let R be the half disc defined
by x2 + y2 ≤ 1 and y ≥ 0. Set up an iterated integral in polar
coordinates which is equal to

∫∫
R

f dA.

Solution: In polar coordinates, we have y = r sin θ and r2 = x2 +
y2. Thus,

f̂(r, θ) = r sin θ
√

4− r2.

The half disc can be parameterized as 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π.
Thus ∫∫

R

f dA =

∫ π

0

∫ 1

0

4r2 sin θ
√

4− r2 dr dθ.
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(14) The following problems each give a function f , a region R, and a
change of coordinates. For each, write down an iterated integral in
the new coordinate system which equals

∫∫
R

f dA.

(a) f(x, y) = x−y. R is the triangle with corners (0, 0), (3, 1) and
(0, 2). The coordinate change is given by x = s−t, y = −s−t.

Solution: We have f̂(s, t) = 2s and det J = −2. Since the
coordinate change is a linear coordinate change lines are taken
to lines. Thus, we need only compute the image of the three
corners of R in the st plane. To do this we solve for s and t in
terms of x and y, obtaining:

s = x/2− y/2
t = −x/2− y/2

Thus R̂ is a triangular region with vertices (0, 0), (1,−2), and
(−1,−1). Thus, we have∫∫

R

f dA =
∫∫
bR 4s dÂ

=
∫ 1

−1

∫ s
−(s+1)/2−1

4s dt ds+
∫ 1

0

∫ −2s

−(s+1)/2−1
4s dt ds

(b) f(x, y) = 4
√
x+ y. R is the region bounded by x2 − y2 = 1,

x2 − y2 = 4, y = 0, and y = x/2. The region appears in
Figure 3. The coordinate change is given by x = r cosh θ,
y = r sinh θ. It may help to remember the following facts:

d
dθ

cosh θ = sinh θ
d
dθ

sinh θ = cosh θ
cosh2 θ − sinh2 θ = 1

cosh θ = (eθ + e−θ)/2
sinh θ = (eθ − e−θ)/2

Solution: The new function is

f̂(r, θ) = (r cosh θ + r sinh θ)1/4

= r1/4eθ/4

The new region is defined bounded by

r2 = 1
r2 = 4

r sinh θ = 0
2r sinh θ = r cosh θ
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The hyperbolas x2 − y2 = 1 and x2 − y2 = 4 each have two
branches, if f > 0 we are on the right branches which is what
we want. Thus, two of the curves bounding our new region R̂
are

r = 1
r = 2

Thus, r > 0 for all the points in R̂. Consequently, our other
lines bounding R̂ must be:

sinh θ = 0
2(eθ − e−θ) = eθ + e−θ

The first of these happens only if θ = 0 and the second only if
θ = ln(3)/2. Thus our region R̂ is the rectangle bounded by

r = 1
r = 2
θ = 0
θ = (ln 3)/2

The Jacobian of the coordinate change is:

J =

(
cosh θ r sinh θ
sinh θ r cosh θ

)
It has determinant:

det J = r cosh2 θ − r sinh2 θ = r

Hence,

∫∫
R

f dA =
∫∫
bR f̂ r dÂ

=
∫ 2

1

∫ (ln3)/2

0
r5/4eθ/4 dθ dr
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(c) Let f(x, y) = 1. Let R be the elliptical region Ax2 + Bxy +
Cy2 ≤ 1, where A, B, and C are positive constants such that
C > B2/(4A2). Use the coordinate change

s =
(
x+ B

2A
y
)√

A

t = y
√
C − B2

4A
.

Computing
∫∫
R

f dA will give the area of R.

Solution: For convenience we let k =
√
C −B2/(4A). The

coordinate change can be rewritten as:

x = s√
A
− Bt

2Ak

y = t/k

Thus, the determinant of the Jacobian is det J = 1
k
√
A

. Our
region is determined as follows:

Ax2 +Bxy + Cy2 ≤ 1

A( s√
A
− Bt

2aK
)2 +B( s√

A
− Bt

2Ak
)( t
k
) + Ct2

k2 ≤ 1

A
(
s2

A
− Bts√

AAk
+ B2t2

4A2k2

)
+ Bst√

Ak
− B2t2

2Ak2 + Ct2

k2 ≤ 1

s2 − Bts√
Ak

+ B2t2

4Ak2 + Bst√
Ak
− B2t2

2Ak2 + Ct2

k2 ≤ 1

k2s2 + (B
2

4A
− B2

2A
+ C)t2 ≤ k2

k2s2 + (−B2

4A
+ C)t2 ≤ k2

k2s2 + k2t2 ≤ k2

s2 + t2 ≤ 1

Thus the new region R̂ is the disc of unit radius in the st plane.
Consequently,

∫∫
R

f dA =
∫∫
bR f( 1

k
√
A

) dÂ

= 1
k
√
A

∫∫
bR 1 dÂ

= 1
k
√
A
π

= 2π√
4AC−B2


