Homework 1

Do these problems on a separate sheet of paper. Be sure to read the homework policy in the syllabus.

Problem 1: Write down the equation of the line with slope 16 that passes through the point $(-1,3)$.

Problem 2: Write down the equation of the line that passes through the points $(-1,3)$ and $(2,-6)$.

Problem 3: Determine the point(s) where the line going through $(2,0)$ with slope $-1 / 3$ intersects the circle $x^{2}+y^{2}=1$.
Problem 4: Let $p(z)=z^{2}$ and suppose that a is some real number. Your answers to both of the next questions will be in terms of a.
(a) What is the slope of the line passing through the points $(0,0)$ and $(a, p(a))$?
(b) What is the equation of the line passing through the points $(0,0)$ and $(a, p(a))$?

Problem 5: Suppose that a and h are real numbers with $h>0$. Let $f(x)=$ $\cos \left(x^{2}\right)-2$. What is the slope of the line through the points $(a, f(a))$ and $(a+h, f(a+h))$? Your answer will be in terms of a and h. You do not need to simplify your answer.

Problem 6: Suppose that $h>0$. Let $g(x)=e^{x}+e^{-x}$. What is the equation of the line through the points $(0,2)$ and $(h, g(h))$? Your answer will be in terms of h. You do not need to simplify it.

Problem 7: A rectangle is inscribed inside the ellipse $2 x^{2}+y^{2}=4$.
(a) Sketch a fairly accurate picture illustrating the setup.
(b) Suppose that the rectangle has its upper right corner at the point $(1, \sqrt{2})$. What is the area of the rectangle?
(c) Now suppose that the rectangle has its upper right corner at an arbitrary point $\left(x, \sqrt{4-2 x^{2}}\right)$. What is the area of the rectangle in terms of x ?
(d) Your answer from (c) is an expression in terms of x. Call that expression $A(x)$ (for area). Use a graphing calculator or computer to graph $A(x)$ for $0 \leq x \leq \sqrt{2}$. For (approximately) what value of x is $A(x)$ the largest?

