Homework 1

Do these problems on a separate sheet of paper. Be sure to read the homework policy in the syllabus.

Problem 1: Write down the equation of the line with slope 16 that passes through the point (-1,3).

Problem 2: Write down the equation of the line that passes through the points (-1,3) and (2,-6).

Problem 3: Determine the point(s) where the line going through (2,0) with slope -1/3 intersects the circle $x^2 + y^2 = 1$.

Problem 4: Let $p(z) = z^2$ and suppose that *a* is some real number. Your answers to both of the next questions will be in terms of *a*.

- (a) What is the slope of the line passing through the points (0,0) and (a, p(a))?
- (b) What is the equation of the line passing through the points (0,0) and (*a*, *p*(*a*))?

Problem 5: Suppose that *a* and *h* are real numbers with h > 0. Let $f(x) = \cos(x^2) - 2$. What is the slope of the line through the points (a, f(a)) and (a+h, f(a+h))? Your answer will be in terms of *a* and *h*. You do not need to simplify your answer.

Problem 6: Suppose that h > 0. Let $g(x) = e^x + e^{-x}$. What is the equation of the line through the points (0,2) and (h,g(h))? Your answer will be in terms of h. You do not need to simplify it.

Problem 7: A rectangle is inscribed inside the ellipse $2x^2 + y^2 = 4$.

- (a) Sketch a fairly accurate picture illustrating the setup.
- (b) Suppose that the rectangle has its upper right corner at the point $(1,\sqrt{2})$. What is the area of the rectangle?
- (c) Now suppose that the rectangle has its upper right corner at an arbitrary point $(x, \sqrt{4-2x^2})$. What is the area of the rectangle in terms of *x*?
- (d) Your answer from (c) is an expression in terms of *x*. Call that expression A(x) (for area). Use a graphing calculator or computer to graph A(x) for 0 ≤ x ≤ √2. For (approximately) what value of x is A(x) the largest?