Chapter 2 SSM: Linear Algebra

11.

13.

Chapter 2
2.1

. Not a linear transformation, since y, = x2 + 2 is not linear in our sense.

Not linear, since yo = x1x3 is nonlinear.

By Fact 2.1.2, the three columns of the 2 x 3 matrix A are T'(€1),T(€2), and T'(€3), so
that

AR

1 9 17
xy
Note that 19 + -+ + Ty Uy = [U1...Tm] | -+ |, so that T is indeed linear, with matrix
Tm
[01 Yy -+ U]
. Y1 2 3 I .
We have to attempt to solve the equation y =6 9l |z for z1 and z3. Reducing
2 2
207 + 32 = Y1 . x1 + 1.529 = 0.5
the system 61 + Oy — ” we obtain 0 3yt

No unique solution (x1,x2) can be found for a given (y1,y2); the matrix is noninvertible.

We have to attempt to solve the equation [zl ] = B 3] [il ] for z; and 3. Reducing
2 2
r1 + 2z = €1 = 3y — %yg
the system we find that 1 |- The
3r1 + 9m = Y2 Ty = —y1+ 3y
3 2
inverse matrix is [ :{’ ] .
~1 :

a. First suppose that a # 0. We have to attempt to solve the equation {Zl ] = {Z Z] [il
2 2

for 1 and xs.

ary + bxra = +a 1+ g{Eg = %yl R
cr1 + dzy = Yo cx1 + drxy = ya | —c(I)
rr + §$2 = i _
b _
(d—F)r2 = —gy1 + 42
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SSM: Linear Algebra Section 2.1

b 1
T o+ ax2 = o

(e = —Lyp 4+ oy

We can solve this system for z; and xo if (and only if) ad — be # 0, as claimed.

If @ = 0, then we have to consider the system

cx1 + dxy = Yo
bry, = Y1

bry = 'A%

T N swap : [ < I1

We can solve for x; and x5 provided that both b and ¢ are nonzero, that is if be # 0.
Since a = 0, this means that ad — bc # 0, as claimed.

b. First suppose that ad — bc # 0 and a # 0. Let D = ad — be for simplicity. We continue
our work in part (a):

T1 + 33:2 = %yl
D _ c a7
Tx2 = —yhi + Y2|p
1 + Loy, = Ly —L(11)
T2 = —H5yn t+ By
71 = E+X%m - S
Ty = 5y + By
T = %yl - %yQ
T2 = -5yt By

1 bec _ D4bc _ _ d
(NOte that E+$_ G.DC_E_B')

—1
a b d
It follows that [c d} = ad—be [—c

then we have to solve the system

cx1+ dry =y | +c

bry = Y1 b
xr1+ %1‘2 = %yg —%(II)

T2 =34
1 = —b%yl +%y2

T2 = %yl
a 170 [-& d
— be ¢ | _ 1 o

It follows that [c d] = [ 1 0] P [—c } (recall that ¢ = 0), as

claimed.
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15.

17.

19.

21.

23.

By Exercise 13a, the matrix [Z _2} is invertible if (and only if) a? + b? # 0, which

a

b

=b|. . . oo . b
a} is invertible, then its inverse is ag—}rbz [ _Z a} ,

is the case unless a = b= 0. If [
by Exercise 13b.

IfA= _(1) _ﬂ , then A% = —& for all & in R?, so that A represents a reflection about

the origin.

This transformation is its own inverse: A~! = A.

IfA = (1) 8] , then A [il } = {%1 } , so that A represents the orthogonal projection onto
2

the &) axis. (See Figure 2.1.) This transformation is not invertible, since the equation

AZ = [(ﬂ has infinitely many solutions Z.

Figure 2.1: for Problem 2.1.19 .

Compare with Example 5.

0 1
-1 0
dicular and have the same length. If Z is in the first quadrant, then AZ is in the fourth.
Therefore, A represents the rotation through an angle of 90° in the clockwise direction.
0
1

If A= [ } , then A [il] = [ 3:2} Note that the vectors # and A are perpen-

2 —I1

(See Figure 2.2.) The inverse A~! = [ _(1)] represents the rotation through 90° in

the counterclockwise direction.
Compare with Exercise 21.

Note that A =2 {_(1) (1)] , so that A represents a rotation through an angle of 90° in the

clockwise direction, followed by a scaling by the factor of 2.

30



SSM: Linear Algebra Section 2.1

Figure 2.2: for Problem 2.1.21 .

_1
The inverse A~ = [(1) 8} represents a rotation through an angle of 90° in the
2

counterclockwise direction, followed by a scaling by the factor of %

25. The matrix represents a scaling by the factor of 2. (See Figure 2.3.)

1N
Na=%

Figure 2.3: for Problem 2.1.25 .

27. This matrix represents a reflection about the €; axis. (See Figure 2.4.)

29. This matrix represents a reflection about the origin. Compare with Exercise 17. (See
Figure 2.5.)

T

- ] must be transformed
2

31. The image must be reflected about the €5 axis, that is {

into [_il }: This can be accomplished by means of the linear transformation T'(Z) =
2

31



Chapter 2

SSM: Linear Algebra

circle

Figure 2.4: for Problem 2.1.27 .

B
N

Figure 2.5: for Problem 2.1.29 .

-1 0],
0o 1]"
1 0 :
33. By Fact 2.1.2, A = [T [0} T [1” (See Figure 2.6.)
_ 0
“= [1]
_ N2 . _\ _ |cos45°| _ N2
) = [m/i L Te)= [cos 45°]‘ [1/\5

11

Figure 2.6: for Problem 2.1.33 .
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SSM: Linear Algebra Section 2.1

Therefore, A =

Sk s
Sl -

35. We want to find a matrix A = {Z b] suchthatA[ 5] = [89} andA[ 6] = [88}

d 42 52 41 53
da + 42b =89
. R o 6a + 41b =88
This amounts to solving the system Set49d =52
6c+41d =53

(Here we really have two systems with two unknowns each.)

The unique solution is a =1, b= 2, ¢=2, and d = 1, so that A = [é ﬂ

37. Since & = ¥+ k(W — 0), we have T(Z) = T (v + k(W — ¥)) = T(¥) + k(T(W) — T(V)), by
Fact 2.1.3

Since k is between 0 and 1, the tip of this vector T'(Z) is on the line segment connecting
the tips of T'(¥) and T'(w). (See Figure 2.7.)

W) T(w) - T(V), translated

k(T(w) = T(V)), translated

™)

Figure 2.7: for Problem 2.1.37 .

1
39. By Fact 2.1.2, we have T

Tm Tm

T T (€rm).
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Chapter 2 SSM: Linear Algebra

41. These linear transformations are of the form [y] = [a b] [il ], or y = axy + bra. The
2

graph of such a function is a plane through the origin.

2 T T
43. a. T(Z) = | 3| - | z2 | =221 +3x2 + 423 =[2 3 4] | 22
4 xs3 3

The transformation is indeed linear, with matrix [2 3 4].

U1
b. If = | vg |, then T is linear with matrix [v; ve v3], as in part (a).
v3
L1 L1
c. Let [a b ¢] be the matrix of T. Then T |z2 | = [a b ] | z2 | = axy + bas + cx3 =
I3 I3
a xq a
22 |, so that ¥ = | b | does the job.
c T3 c
45. Yes, 2= L(T'(Z)) is also linear, which we will verify using Fact 2.1.3. Part a holds, since
L(T (v + @) = L(T (V) + T(W)) = L(T(V)) + L(T(wW)), and part b also works, because
L(T (kv)) = L(KT(¥)) = kL(T(?)).

Figure 2.8: for Problem 2.1.47 .

Measurements show that we have roughly w0 = 1.507 + vs.
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1.5T())

T@,)

Figure 2.9: for Problem 2.1.47 .

Therefore, by linearity, T'(w) = T'(1.5¢1 + U2) = 1.5T(¢h) + T'(02). (See Figure 2.9.)

49. a. Let z; be the number of 2 Franc coins, and x5 be the number of 5 Franc coins. Then
21 +bxy = 144
T “+xo = 51 |

From this we easily find our solution vector to be E’Z] .

total value of coins 2x1  +5xe 2 5| |x2
b . pu— pu— .
total number of coins

T +x2 1 1 x2
2 5
So, A = [1 1}
c. By Exercise 13, matrix A is invertible (since ad — bc = —3 # 0), and A~! =

W=

L [d -] 1 -5
ad=be | —¢ q | -1 2

a1 5] [144] [ 144 561)]
Then =5 | 2] 51| 73| -144 +42(51)| —

was the vector we found in part a.

e []- 10

5 _ 160
_ |9 9
SoA—{O 1 ]

W=

—111 37 .
[ _42} = {14], which

b. Using Exercise 13, we find 3(1) — (—182)0 = 3 £ 0, so A is invertible.
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Chapter 2 SSM: Linear Algebra

- 1 1% 2 32
A 1:%[ % =13 1| S0 F=3C+32
53. First we notice that all entries along the diagonal must be 1, since those represent
converting one currency to itself. Also, since azq = 200, £1 = ¥200, so ¥1 = .,Eﬁ.
So ay3 = Wlo' Using this same approach, we can find as; and a4; as well.

1 0.8 = 1.5
1.25 * *
So far, A = * * 1 200
2 1
3 * g0 1

Now, using as3 and a14, ¥1 = £ and £1 = 1.5 Euros. So, ¥1 = 5-(1.5)Euros =
3 .

100 Euros, meaning that a13 = 55-

We use this same approach to see that asq = as1a14 = %(%) = %, and as3 = as1a13 =

5 3 _ 3
1(200) = 30-

Then, using our method from above to find a43, we can find a3y, a2 and ago.

-1 4 3 3 -
5 400 2

5 1 3 15

4 320 8
Thus, A =
400 320
5 %5 1 200
2 8 1
L = 5 300 1 J
2.2

1. The standard L is transformed into a distorted L whose foot is the vector T’ ({1) =

3 1|1 |3
1 2 o (1]
. 0 3 1 0 2
Meanwhile, the back becomes the vector T' <[2}> = L 2] [2} = {4]
3. If # is in the unit square in R2, then & = z1€1 + 225 with 0 < 21, zo < 1, so that
T(f) = T(mlé} + xggg) = $1T(€1) + (EgT(éé)

The image of the unit square is a parallelogram in R3; two of its sides are T'(¢}) and
T'(€>), and the origin is one of its vertices. (See Figure 2.10.)
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T(@,)

TE,)

Figure 2.10: for Problem 2.2.3 .

5. Note that cos(f) = —0.8, so that § = arccos(—0.8) ~ 2.498.

1 1 1
7. According to the discussion on page 61, refy, (1| =2 - |1 #@— | 1|, where 4 is a
1 1 1
2
unit vector on L. To get @, we normalize | 1
2
11
2 1 2 1 9
@=%|1]|,sothatrefy, |1| =231 |1|—-|1|=|3%
2 1 2 1 1u
9
9. By Fact 2.2.5, this is a vertical shear.
. . 0.64 0.48 S .
11. In Exercise 10 we found the matrix A = 048 0.36 of the projection onto the line L.

By Fact 2.2.2,
ref;, @ = 2(proj;, &) — & = 2A% — & = (24 — I1)Z, so that the matrix of the reflection is

0.28  0.96]

24-1= [0.96 —0.28]"

13. By Fact 2.2.2,
refL |:$1:| 2 <_U1:| . |:$1:|) |:U1:| - |:$1:|
T2 _UQ T2 ug T2

_ up | x| _ (2u? — 1)xy + 2uqusws
= 2(U1x1 + U2$2) |:’U/2:| |:2’U/1U2x1 + (2113 _ 1)552
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Chapter 2 SSM: Linear Algebra

2 —
The matrix is A = [a Z _ {2% 1 2ujus

¢ Quiug  2u3 —1
entries is a + d = 2(u? + u3) — 2 = 0, since @ is a unit vector. It follows that d = —a.

_Z} . Also, a® + 0% = (2u? — 1)? +4ulu2 = 4uf — 4u? +

]. Note that the sum of the diagonal
Since ¢ = b, A is of the form Z
1+ 4u?(1 —u?) = 1, as claimed.

15. According to the discussion on Page 61, refy,(¥) = 2(Z- @)U — T

U1 Tl
= 2((E1U1 + Toug + CE3U3) Uz | — | X2
us I3
2z1u?  +2mouguy  +2r3u3U; —Tq (2u? — 1)xy +2usui o +2uqusxs
= | 2vquiue  +220u3  +2w3uzusy —a9 | = 2u U Ty +(2u3 — 1) +2usus3xs3
2riuiuz  +2wougus  +2w3ui —a3 2uius3 Ty +2usu3xo +(2u3 — 1)
(Q’u% — 1) 2U2U,1 2U1U,3
So A = 21 Us (2u2 — 1) Quous
2uius 2uous (2u? — 1)

17. We want, | ¢ bl fvr| o jave Hbuz ) o]
b —a| |v2 buvr  —avs v
Now, (@ —1)v; +bvy = 0 and bu; — (a+ 1)ve, which is a system with solutions of the form

bt , where t is an arbitrary constant.
(1—a)t Y

Let’s choose t = 1, making v = [1 E a]'

- o o . o -1
Similarly, we want Aw = —w. We perform a computation as above to reveal wj = [a b ]

as a possible choice. A quick check of ¥+ = 0 reveals that they are indeed perpendicular.
Now, any vector Z in R can be written in terms of components with respect to L = span(¢
as & = 2l + 7+ = ¢ 4 d. Then, T(Z) = AT = A(ct + di) = A(ct) + A(dw) =
CAT + dAW = ¢ — div = Tl — &+ = refr, (%), by Definition 2.2.2.

(The vectors ¥ and @ constructed above are both zero in the special case that a = 1 and
b= 0. In that case, we can let ¥ = € and @ = €5 instead.)

1
19. T(&) = €1, T(&) = &, and T(&) = 0, so that the matrix is | 0
0

o = O
o O O
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SSM: Linear Algebra Section 2.2

21. T(e1) = €y, T(e2) = —¢1, and T(€3) = €3, so that the matrix is (See

O = O
o O =
—_ o O

Figure 2.11.)

Figure 2.11: for Problem 2.2.21 .

23. T(e1) = €3, T(€a) = €, and T(€3) = €1, so that the matrix is

_= o O
o = O

1
0. (See Figure
0

2.12.)

T
/F.@z
é‘l
Figure 2.12: for Problem 2.2.23 .

25. The matrix A = [(1) ]11 represents a horizontal shear, and its inverse Al = [(1) _I;]

represents such a shear as well, but “the other way.”
27. Matrix B clearly represents a scaling.
Matrix C' represents a projection, by Definition 2.2.1, with u; = 0.6 and uy = 0.8.
Matrix E represents a shear, by Fact 2.2.5.
Matrix A represents a reflection, by Definition 2.2.2.
Matrix D represents a rotation, by Definition 2.2.3.

29. To check that L is linear, we verify the two parts of Fact 2.2.1.
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Chapter 2 SSM: Linear Algebra

a. Use the hint and apply L on both sides of the equation & + § = T'(L(Z) + L(¥)):

31.

33.

L(Z+79) = L(T(L(Z) + L(Y))) = L(Z) + L(¥), as claimed.
L(kZ) = L(kT(L(%)) = L(T(kL(Z))) = kL(Z), as claimed.
T T
Z=T(L(Z)) T is linear.
T
Write A = [t} U2 ¥3); then AZ = [y Ua T3] | @2 | = 2101 + 22Uz + x30s.
3

We must choose v, U, and ¥3 in such a way that x19; + z2¥Us + x303 is perpendicular to

1
w= |2| for all 1, x9, and x3. This is the case if (and only if) all the vectors ¥, ¥z, and
3
V3 are perpendicular to o, that is, if 04 - W =¥ - W = v3 - W = 0.
-2 -2 0 0
For example, we can choose 7] = 1| and U5 = 95 =0, so that A = 1 00
0 0 0 O

Geometrically, we can find the representation ¥ = ¥ + ¥2 by means of a parallelogram,
as shown in Figure 2.13.

Figure 2.13: for Problem 2.2.33 .

To show the existence and uniqueness of this representation algebraically, choose a nonzero

vector w; in L; and a nonzero ws in Ls. Then the system xywW; + zowa = 0 or

[wWy s {;1} = 0 has only the solution z; = zy = 0 (if W + xoWe = 0 then
2

21W1 = —xeWs is both in L and in Lo, so that it must be the zero vector).
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- . . T - . .
Therefore, the system z1wW; + xowWy = ¥ or [Wy Wa] {xl} = ¢ has a unique solution 1, z2
2

for all 7 in R? (by Fact 1.3.4). Now set ¥} = w1 and ¥ = Z2wWs to obtain the desired
representation ¢ = ¥} + ¥5. (Compare with Exercise 1.3.57.)

To show that the transformation 7'(¢) = ¥4 is linear, we will verify the two parts of Fact
2.1.3.

Let 0 = U1 + U2, W = W + Wa, so that ¥4+ w = (01 + W) + (¥ + W) and kv = kvl + k.

r1Tr 1 1 T T T 1

in Ll in Lg in L1 in Lg in L1 in L2 in Ll in L2

a. T(’U—F 117) = +w = T(ﬁ) + T(’lf}), and
b. T(kv) = kth = kT(?), as claimed.

35. If the vectors ¥; and vy are defined as shown in Figure 2.14, then the parallelogram P
consists of all vectors of the form ¢ = ¢17; + co¥s2, where 0 < ¢1, ¢o < 1.

The image of P counsists of all vectors of the form T'(¢) = T'(c191 +catha) = 1T (1) +c2T (V).

These vectors form the parallelogram shown in Figure 2.1.14.

P @)

image of P under T

<}

T,

Figure 2.14: for Problem 2.2.35 .

2 Us

2
37. a. By Definition 2.2.1, a projection has a matrix of the form {uué u;uz } , where [ul ]
142 2

is a unit vector.
So the trace is uf +u3 = 1.

b. By Definition 2.2.2, reflection matrices look like {Z _ba] , so the trace is a —a = 0.
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cosf —sinf
sinf  cosd
is cos 0 + cos @ = 2 cos 6 for some #. Thus, the trace is in the interval [—2,2].

c. According to Fact 2.2.3, a rotation matrix has the form [ } , so the trace

d. By Fact 2.2.5, the matrix of a shear appears as either {llg ﬂ or [(1) ]f] , depending

on whether it represents a vertical or horizontal shear. In both cases, however, the
traceis 1 4+ 1 = 2.

1
39. a. Note that ﬁ 1] =212 . The matrix represents an orthogonal
1

Nl N
Nl N
N[= N[

projection (Definition 2.2.1%,

V2
with @ = {ul} = \3— . So, [ 1} represents a projection combined with a scaling
ug 72 1 1

by a factor of 2.

b. This looks similar to a shear, with the one zero off the diagonal. Since the two diagonal

entries are identical, we can write [ 31 (3) =3 11 (1)], showing that this matrix
o 3

represents a vertical shear combined with a scaling by a factor of 3.

4 -3

c. We are asked to write [3 4} =k l

ESI[SCRE NN

1 , with our scaling factor k yet to be

T ameo

3 4
determined. This matrix, [ f ]; has the form of a reflection matrix ( {Z _Z] > .
E Tk

This form further requires that 1 = a® +b? = (2)? + (2)?, or k = 5. Thus, the matrix
represents a reflection combined with a scaling by a factor of 5.

41. refo® = —refpd since refg, refp@, and & all have the same length, and refo2 and refpz
enclose an angle of 2a+ 25 = 2(a+ ) = 7. (See Figure 2.15.)

43. Since i = A7 is obtained from & by a rotation through # in the counterclockwise direction,
Z is obtained from g by a rotation through 6 in the clockwise direction, that is, a rotation

through —6. (See Figure 2.16.)
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. -
ref x

Figure 2.15: for Problem 2.2.41 .

Figure 2.16: for Problem 2.2.43 .

Therefore, the matrix of the inverse transformation is A~ = C.OS(_G) —sin(—0) =
sin(—60)  cos(—0)
[ cos @ sinf

. . You can use the formula in Exercise 2.1.13b to check this result.
—sinf cos6

. —a -b “a b —a b
45. ByExerc1se2.1.13,A_1:ﬁ[_Z a}:ﬁ[—z a}:—l[ “ }
a b
b —al

So A~! = A, which makes sense. Reflecting a vector twice about the same line will return
it to its original state.

. 1| _|a b||xz| _ |ax1 +bxo
s [2] <[22 2] < [em o).

_ cost —sint |\ _ |acost+ bsint —asint + bcost
a. f(t) = <T [sint]) ' <T[ cost}) o [ccost—&—dsint} [—csint—&—dcost
= (acost + bsint)(—asint + bcost) + (ccost + dsint)(—csint + d cost)

This function f(¢) is continuous, since cos(t), sin(t), and constant functions are con-
tinuous, and sums and products of continuous functions are continuous.
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b.

f(z) =T {?] T [_(ﬂ - (T {?] T [é]) since T is linear.

1 0 0 1 .
fO)=T [0} -T L] =T [1} -T {0] The claim follows.
By part (b), the numbers f(0) and f (g) have different signs (one is positive and the
other negative), or they are both zero. Since f(t) is continuous, by part (a), we can
apply the intermediate value theorem. (See Figure 2.17.)

49.

ol.

Figure 2.17: for Problem 2.2.47c .

Note that [Z?r?(t) ] and [ —sin(?) ] are perpendicular unit vectors, for any ¢. If we set

cos(t)

P sin(c) |

R cos(c) |

fle) =T(vh)-T(U2) =0, so that T'(¥1) and T'(v) are perpendicular, as claimed. Note
T (U2) may be zero.

with the number ¢ we found in part (c), then

S S o [5 0] fcos(t)] [Beos(t)] 5, . 0
Ifz = [sin(t)} then T'(Z) = {0 2 {sin(t)] = [2sin(t) = cos(t) 0 +sin(t) 5 |-
These vectors form an ellipse; consider the characterization of an ellipse given in the

and Wy = [g} (See Figure 2.18.)

5
0_

footnote on page 70, with W = [

Consider the linear transformation T with matrix A = [} Ws], that is,
T1| _ T _ = 9| T _ - -
T[xz] _A[xJ = Wy o) [@] = r1Wp + T2Ws.

—

The curve C is the image of the unit circle under the transformation 7 if ¢ =

[Z?ﬁgﬂ is on the unit circle, then T'(¢) = cos(t)wh + sin(t)ws is on the curve

C'. Therefore, C is an ellipse, by Exercise 50. (See Figure 2.19.)
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5cos (1)

™) =[2 sin (1)

unit o _|cos
circle *=|sin @ /—n
i :
— b - 5
\_/ \‘_/ W = [0]

Figure 2.18: for Problem 2.2.49 .

|

T(¥) =cos t Wl + sin IWZ

- _|cos(®)
Y _[ sin (1) / |
/ ;

3!

Figure 2.19: for Problem 2.2.51 .

2.3

. . 1
1. rrefl2 3 1 0] = 1 O: 8 -3 , so that [g S] = [_2 _2]
5 8 0 1 :
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3.

11.

13.

15.

17.

19.

21.

: 1 0 -1 ! -1
rref 0 2: Lo _ . 2 , so that [(1) ﬂ :[ ? ]
[1 10 0 1 01 40 3 0
1 2 2] [1 0 4
rref |1 3 1| =1{0 1 =11, sothat the matrix fails to be invertible, by Fact 2.3.3.
|1 1 3] 100 0
1 2 3] [1 2 0]
rref |0 0 2| ={0 0 1], sothat the matrix fails to be invertible, by Fact 2.3.3.
|10 0 3] 10 0 0]
11 1] [1 1 1]
rref |1 1 1| ={0 0 0], sothat the matrix fails to be invertible, by Fact 2.3.3.
|1 1 1) 10 0 0]
[1 0 -1
Use Fact 2.3.5; the inverseis [0 1 0
100 1
r1 0 00
. .| -2 1 0 0
Use Fact 2.3.5; the inverse is 1 _o9 10
L O 1 -2 1
r—6 9 -5 1
. . 9 -1 -5 2
Use Fact 2.3.5; the inverse is 5 _5 9 _3
L 1 2 -3 1

We make an attempt to solve for x; and x5 in terms of y; and ys:

T1+2x2 = n
4r1 +8x2 = Y2

1 + 212 =0
0 = —42/1 —|— yQ ’

—4(1)

This system has no solutions (x1,x2) for some (y1,y2), and infinitely many solutions for
others; the transformation fails to be invertible.

Solving for x1,x2, and x3 in terms of y1, y2, and y3, we find that

x1 =3y1— 3y2 + 3u3

Ty = —=3y1+4y2 —ys

T3 =Y1— %yg + %y:s

f(xz) = 2? fails to be invertible, since the equation f(z) = 22 = 1 has two solutions,

xr = =+1.
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23. Note that f'(x) = 322+ 1 is always positive; this implies that the function f(r) = 23 +x

fo=x3+x

25.

27.

29.

31.

is increasing throughout. Therefore, the equation f(x) = b has at most one solution x for
all b. (See Figure 2.20.)

Now observe that lim, .. f(z) = o0 and lim,_,_ f(z) = —oo; this implies that the
equation f(x) = b has at least one solution z for a given b (for a careful proof, use
the intermediate value theorem; compare with Exercise 2.2.47c).

Nt

Figure 2.20: for Problem 2.3.23 .

Invertible, with inverse [xl} = {\3/@1]
T2 Y2

This fails to be invertible, since the equation [x;—;xﬂ = {(1)] has no solution.
122
Use Fact 2.3.3:
1 1 1 11 1 —II 1 0 2—k
1 2 k| -I—-1]01 k-1 — |0 1 k-1
1 4 k2| -1 0 3 k-1 =3(1I) 0 0 k2-3k+2

The matrix is invertible if (and only if) k2 — 3k + 2 = (k — 2)(k — 1) # 0, in which case
we can further reduce it to 3. Therefore, the matrix is invertible if k£ # 1 and k # 2.

Use Fact 2.3.3; first assume that a # 0.

1 0 -
1

0 a bl —a 0 c]| +(-a) 10 - L0
—a 0 ¢ I“j—»pII 0 a b — 0 a b — 10 a
|-b —c 0 —b —c 0 b —c 0] +0() 0 —c
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33.

35.

37.

39.

Now consider the case when a = 0:

0 0 b -b —c
0 0 SWap 0 0 c¢|: The second entry on the diagonal of rref
I IIT
b —c O 0 0 b
will be 0.
0 a b
It follows that the matrix | —a 0 ¢ | is noninvertible, regardless of the values of a, b,
b —c 0
and c.

Use Fact 2.3.6.

The requirement A~' = A means that —112—}%2 [:Z _2} = {Z _2} . This is the case
if (and only if) a® + b% = 1.

a. A is invertible if (and only if) all its diagonal entries, a, d, and f, are nonzero.

b. As in part (a): if all the diagonal entries are nonzero.

c. Yes, A~! will be upper triangular as well; as you construct rref[AfIn], you will perform
only the following row operations:

e divide rows by scalars

e subtract a multiple of the jth row from the ith row, where j > i.

Applying these operations to I, you end up with an upper triangular matrix.

d. Asin part (b): if all diagonal entries are nonzero.

Make an attempt to solve the linear transformation § = (cA)Z = ¢(AZ) for z

AZ =17 sothat T=A""1 (1) = (14717

c C
This shows that cA is indeed invertible, with (cA)~! = 2A~L
Suppose the ijth entry of M is k, and all other entries are as in the identity matrix. Then

we can find rref[MfIn] by subtracting k times the jth row from the ith row. Therefore,
M is indeed invertible, and M ~! differs from the identity matrix only at the ijth entry;
that entry is —k. (See Figure 2.21.)
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Jjth—

ith—-

41.

43.

. O . 0 . 0 . 0 |=j*

k 0 —k(j) 0 ’ . —k - jth
1 1 1t 1

t f

:th ;th

Mir) i, imM™"

Figure 2.21: for Problem 2.3.39 .

. Invertible: the transformation is its own inverse.

. Not invertible: the equation T'(Z) = b has infinitely many solutions if b is on the plane,

and none otherwise.

. Invertible: The inverse is a scaling by 1 (that is, a contraction by 5). If § = 5%, then

- 1

. Invertible: The inverse is a rotation about the same axis through the same angle in

the opposite direction.

We make an attempt to solve the equation § = A(BZ) for Z:

BZ = A7y, so that ¥ = B~1(A~1%).

45. a. Each of the three row divisions requires three multiplicative operations, and each of

the six row subtractions requires three multiplicative operations as well; altogether,
we have 3-3+6-3 =9 -3 = 3% = 27 operations.

. Suppose we have already taken care of the first m columns: [A:I,] has been reduced

the matrix in Figure 2.22.
Here, the stars represent arbitrary entries.

Suppose the (m + 1)th entry on the diagonal is k. Dividing the (m + 1)th row by & re-
quires n operations: n—m—1 to the left of the dotted line (not counting the computatio
and m + 1 to the right of the dotted line (including ;). Now the matrix has the form
showing in Figure 2.23.

=
>
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oK
% 0 .

N— m—

0| %

"\ — -’
— s

"

-
m n—-m m n—-m

Figure 2.22: for Problem 2.3.45b .

1
: 1. 0
| “1]
- o\ PR I\ _
~ -~ ~ ~
m n-m m n-m

Figure 2.23: for Problem 2.3.45b .

Eliminating each of the other n — 1 components of the (m + 1)th column now requires
n multiplicative operations (n —m — 1 to the left of the dotted line, and m + 1 to the
right). Altogether, it requires n+ (n—1)n = n? operations to process the mth column.

To process all n columns requires n - n2 = n® operations.

c. The inversion of a 12 x 12 matrix requires 123 = 4333 = 64 - 33 operations, that is, 64
times as much as the inversion of a 3 x 3 matrix. If the inversion of a 3 x 3 matrix
takes one second, then the inversion of a 12 x 12 matrix takes 64 seconds.

47. Let f(x) = 2?; the equation f(z) = 0 has the unique solution z = 0.

0.293 0 0 0.707 0 0
49. a. A= |0.014 0.207 0.017}, Is—A=|—-0.014 0.793 —0.017
0.044 0.01 0.216 —0.044 -0.01 0.784
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ol.

1.41 0 0
(Is; — A)~' = [ 0.0267 126  0.0274
0.0797 0.0161 1.28

1 1.41

. Wehaveb = | 0|, sothat # = (I5— A)~'&, = first column of (I5— A)~! ~ | 0.0267

0 0.0797

. As illustrated in part (b), the ith column of (I3 — A)~! gives the output vector required

to satisfy a consumer demand of 1 unit on industry ¢, in the absence of any other
consumer demands. In particular, the ith diagonal entry of (I3 — A)~! gives the
output of industry ¢ required to satisfy this demand. Since industry ¢ has to satisfy
the consumer demand of 1 as well as the interindustry demand, its total output will
be at least 1.

. Suppose the consumer demand increases from bto b+ € (that is, the demand on

manufacturing increases by one unit). Then the output must change from (I3 — A)~1b
to

(Is — A" YT+ &) = (Is — A"+ (Is — A)~1é&, = (Is — A)~ b+ (second column of
(Is = A)~7).

The components of the second column of (I3 —A) ! tells us by how much each industry
has to increase its output.

. The ijth entry of (I, — A)~! gives the required increase of the output x; of industry

i to satisfy an increase of the consumer demand b; on industry j by one unit. In the

language of multivariable calculus, this quantity is gi; .

. Since rank(A)< n, the matrix E =rref(A) will not have a leading one in the last row,

and all entries in the last row of E will be zero.

0
0

Let ¢= | : |. Then the last equation of the system EZX = ¢ reads 0 = 1, so this system

0

1
is inconsistent.

Now, we can “rebuild” b from & by performing the reverse row-operations in the op-
posite order on [EE’} until we reach |A'b|. Since EZ = ¢ is inconsistent, Ax = b is

inconsistent as well.

. Since rank(A)< min(n,m), and m < n, rank(A) < n also. Thus, by part a, there is a

b such that A% = b is inconsistent.
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53. a. A— Ay = [

3.

3—-A 1
3 5—A|

This fails to be invertible when (3 — A\)(5 — A) — 3 =0,
or 15 — 8\ + A2 —3 =0,

or 12—8\+X*=0

or (6—A)(2—-X)=0.SoA=6o0r \=2.

-3 1
b. For A\=6, A— A\, = [ 3 _1}
The system (A — 615)& = 0 has the solutions [ Bt t} , where ¢ is an arbitrary constant.
Pick ¥ = [;}],for example.
11
For/\:Q,A—)\IQ:{3 3].
The system (A — 213)% = 0 has the solutions B t} , Where t is an arbitrary constant.
Pick ¥ = {jl},for example.
o [3 1) 1] _[e]  .[1]
roramsaz=[3 112 [8] =0 ]1]
L 131 11 [ 2] _ 1
o=z az= 3 1][1] =[] =2 1]
24
(4 6
|3 4
Undefined
[a b
c d
10 0
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9.

11.
13.

15.

17.

19.
21.
23.
25.

27.

29.

31.

33.

-1 1 0
5 3 4
6 —2 —4
0 0

o o

[10]

[h]

[(1) ﬂ ; Fact 2.4.9 applies to square matrices only.

Not necessarily true; (A4 B)? = (A+B)(A+B) = A’+ AB+ BA+B? # A>+2AB+ B?
if AB #+ BA.

Not necessarily true; consider the case A =1, and B = —1I,.
True; ABB 1A ! = AILA7 1 = AA-1 =1,,.

True; (ABA™1)3 = ABA"1ABA 'ABA~! = AB3A~L.
True; (A71B)~t = B~ 1(A71)~! = B71 A (use Fact 2.4.8).

T T o S S
(131, [+alBIfiL 8|4 nolfs] | (19 16

The columns of B must be solutions of the system ; 2} T = [8] .
-3t
t
with at least one of them being nonzero.

The solutions are of the form B = [ —;’)s] , where t and s are arbitrary constants,

1] and BT = [0},

The two columns of A must be solutions of the linear systems B¥ = [ 0 1

respectively. Each of these systems has infinitely many solutions.

2+t —1+s
The solutions are of the form | —1—-2¢ 1-—2s
t S

By Fact 1.3.3, there is a nonzero # such that BZ = 0 and therefore ABZ = 0. By Fact
2.3.4b, the 3 x 3 matrix AB fails to be invertible.
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35.

37.

39.

41.

a. Consider a solution Z of the equation AZ = 0.

— —

Multiply both sides by B from the left: BAZ = B0 = 0, so that # = 0 (since BA = I,,,).
It follows that & = 0 is the only solution of AZ = 0.

b. & = Ab is a solution, since BE = BAb = b (because BA = I,,,).

c. rank(A) = m, by part (a) (all variables are leading).
rank(B) = m, by part (b) (compare with Exercise 2.3.51a).

d. m = rank(B) < (number of columns of B) =n

o 174 1o 0 1 1 0
wewan 1[0 o= 0] [0 15[ 9]

3 T | P P Y 3 P 3 e

b } where —ab — ab # 0,

Thus, ¢ = a and d = —b. Matrix S must be of the form [Z b

or —2ab # 0, or a # 0 and b #£ 0.

Levx = [ lThenwewmx[; =15 5] H) ol = 1o o [c o)

or , meaning that b = ¢ = 0. Also, we want X (1) [0 1] X,

0 0 0

a 0

c 0

a O 0 1 0 1 a 0 0 a 0 d
or 4 dHO Do e e [0 a] =0 ¢ son-a T x -
a

0
2 x 2 matrix M, since XM =aM = MX.)

= aly must be a multiple of the identity matrix. (X will then commute with any

a. DoDg and DgD,, are the same transformation, namely, a rotation through o + (.

__|cosa —sina || cosf3 —sinf
b DaDg = [sina cosa][sinﬂ cosﬁ}

__|cosacosfB —sinasinf —cosasinf —sinacos
" |sinacos8+cosasinf —sinasinS + cosacos 3
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cos(a+ ) —sin(a+f)
sin(a + ) cos(a + )

DgD,, yields the same answer.

43. Let A represent the rotation through 120°; then A2 represents the rotation through 360°,
that is A% = I,.

 [eos(120°) —sin(120°)] | -3 %
sin(120°) cos(120°) | v3 1
2 2

45. We want A such that AT; = o;, for i = 1,2,...,m, or A[th U2 ... Up) = [y Wa ... W],

or AS = B.
Multiplying by S~ from the right we find the unique solution A = BS~!.

47. Use the result of Exercise 45, with S = [? ;] and B = {g 2],

e 1] 9 3
A=BS _5[_2 M

49. Let A be the matrix of T" and C the matrix of L. We want that APy = Py, AP, = Ps,

1 1 -1
and AP, = P,. We can use the result of Exercise 45, with S = |1 -1 1 and
1 -1 -1
1 -1 -1
B=|-1 -1 1
-1 1 -1

Then A=BS 1= |-

o = O
= o O
o O =

Using an analogous approach, we find that C' =

O = O
o O =
= o O

51. Let E be an elementary n x n matrix (obtained from I,, by a certain elementary row
operation), and let F' be the elementary matrix obtained from I,, by the reversed row
operation. Our work in Exercise 50 [parts (a) through (c)] shows that EF = I,,, so that
E is indeed invertible, and E~! = F is an elementary matrix as well.
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53. a. Let S = F1 F, ... E, in Exercise 52a.

55.

[0
1

By Exercise 51, the elementary matrices E; are invertible: now use Fact 2.4.8 repeat-
edly to see that S is invertible.

4 8

1
A= {2 4] 2,representedby {8 (1)]

1 2 10
[4 8} _4(1),representedby [_4 1]

rref(A) = B (2)]

1
Therefore, rref(A) = [1 2} = [_411 (1)] [(Q) ﬂ [2 4] = E1EyA = SA, where

[0 914

(There are other correct answers.)

]f represents a horizontal shear, [i (1)] represents a vertical shear,

0] e . .

1 represents a “scaling in €; direction” (leaving the €» component unchanged),

0] e . .

& represents a “scaling in € direction” (leaving the €; component unchanged), and
1] . : 1

0 represents the reflection about the line spanned by i

57. Let A and B be two lower triangular n x n matrices. We need to show that the ijth entry

of AB is 0 whenever i < j.

This entry is the dot product of the ith row of A and the jth column of B,
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[ail a;2 ...04 00]

, which is indeed 0 if ¢ < j.

59. a. Write the system Ly = b in components:

61.

(m) (m)
.WriteL:[L O]andU:[UO UQ].ThenA:LU:

U1 =_3
_jlyl 1 ny22 + Y3 i 94 , 80 that y1 = =3, yo =14+ 3y; =5,
Y1+ 8y2 — dys + ya = 33

Ys =9 —y1 —2y2 = 2, and ys = 33 + y1 — 8y2 + Sy3 = 0:

-3
N
Y= 2
0
1
. Proceeding as in part (a) we find that & = _é
0

Lm)yy(m) Ly,
Ls Ly LgU(m) L3Us + LUy |’

so that A = LM (™) as claimed.

U,

. By Exercise 34, the matrices L and U are both invertible. By Exercise 2.3.35, the

diagonal entries of L and U are all nonzero. For any m, the matrices L™ and U™
are triangular, with nonzero diagonal entries, so that they are invertible. By Fact 2.4.8,
the matrix A(™ = L™ U (™) is invertible as well.

(n—1) = / A
. Using the hint, we write A = [A N U] = [Ii, 0} [U y]

w ok r t|| 0 s

We are looking for a column vector ¢, a row vector Z, and scalars ¢ and s satisfying
these equations. The following equations need to be satisfied: ¢ = L'y, @ = ZU’, and
k =2y +ts.

We find that 7 = (L')~'3, & = @(U’)"", and ts = k — G(U") "L (L')~17.

o7



Chapter 2 SSM: Linear Algebra

63.

65.

We can choose, for example, s = 1 and ¢t = k — w(U’) "1 (L") 717, proving that A does
indeed have an LU factorization.

Alternatively, one can show that if all principal submatrices are invertible then no
row swaps are required in the Gauss-Jordan Algorithm. In this case, we can find an
LU-factorization as outlined in Exercise 58.

We will prove that A(C + D) = AC + AD, repeatedly using Fact 1.3.9a: A(Z + ¢) =
AT + Ay.

Write B= [0 ... Uy and C = [W; ... Wy]. Then

A(C + D) = A[th + Wy -+ Uy + W] = [ATy + Ay -+ AUy, + Ay, ], and
AC + AD = A[th -+ O] + Al -+ W] = [AV) + AWy -+ AUy, + AW,
The results agree.

Suppose A11 is a p X p matrix and Ass is a g X ¢ matrix. For B to be the inverse of A we
must have AB = I, ,. Let us partition B the same way as A:

B = Bu Dz , where Bij is p X p and Bas is g X q.
Ba1  Baa
_|An O Bii Bi2|  |AuBn AuBie| |1, O
Then AB = [ 0 A22] [321 Bas| = | AssBai AsBos| — |0 I, means that

AnBi =1y, AxBoy =1, A11B12 =0, Ay By =0.
This implies that A7 and Aso are invertible, and By; = Al_ll, Boo = A2_21.
This in turn implies that Bio = 0 and By = 0.

We summarize: A is invertible if (and only if) both A;; and Asy are invertible; in this
case

A0
-1 _ |4
AT = [ 0 Ay } '
wh
67. Write A in terms of its rows: A = w2 (suppose A is n x m).
W,
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We can think of this as a partition into n

W wh B
. Wo W B o .
1 x m matrices. Now AB = | B= (a product of partitioned matrices).
W, wp B

We see that the ith row of AB is the product of the ith row of A and the matrix B.

Ip A12 * :|

69. Suppose Aj7 is a p X p matrix. Since Aj; is invertible, rref(A) = [ 0 0 rref(Ass)
23

so that
rank(A) = p + rank(Ass) = rank(A11) + rank(Aas).

71. Multiplying both sides with A~! we find that A = I,,: The identity matrix is the only
invertible matrix with this property.

a b][1 0 1 0ffa b
73. We must find all S such that SA = AS, or [c d} [0 2]_[0 2] [C d}

a 2b a b .
So L Zd] = {20 Qd}’ meaning that b = 2b and ¢ = 2¢, so b and ¢ must be zero.

We see that all diagonal matrices (those of the form [g 2]) commute with [1 O].

0 2
. a b a b0 —2 0 —2|la b
75.Aga1n71etA—[c d}Wewant [c d} [2 0]—[2 O}L d]'

2b —Qa] _ [—2c —2d

Thus, {261 —2¢ 20 2b

} , meaning that ¢ = —b and d = a.

We see that all matrices of the form {—ab

a b|[1 2 2 a b
77. Now we want [C d} {2 _1}:[2 —1] [c d}

a+2b 2a—b] _ {a+2c b+2d

b . 0 -2
a} commute with {2 0 }

c+2d 2c—d 2a —c 2b—d
b+ 2d, revealing d = a — b. (The other two equations are redundant.)

Thu&[ ].Soa—|—2b:a—|—2c7orc:b,anan—b:

All matrices of the form | ¢ b commute with L2 .
b a—0» 2 -1
a b 1 3 1 3 a b
o wewan [¢ 3 9] [1 3] [ 2],
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81.

83.

85.

Then, [a+2b 3a+6b} _ {a—i—i’)c b+ 3d

c+2d 3c+ 6d 2a + 6¢  2b+ 6d
3a + 6b = b+ 3d, revealing d = a + %b. The other two equations are redundant.

} So a+2b = a+ 3c, or ¢ = 2b, and

Thus all matrices of the form [ a } commute with [1 3} .

2b a+3b 2 6
a b ¢ 2 0 0] 2 00 a b ¢
Now we want |d e f 0 3 0/=1]0 30 d e f],
g h 1 0 0 2] 0 0 2 g h 1
2a 3b 2c 2a 2b 2c]
or, |[2d 3e 2f| = |3d 3e 3f|. So, 3b = 2b, 2d = 3d, 3f = 2f and 3h = 2h,
2g 3h 2 2g 2h 20|
meaning that b, d, f and h must all be zero.
a 0 c 2 00
Thus all matrices of the form [0 e 0| commute with [0 3 0
g 0 1 0 0 2

The ijth entry of AB is Y ;_; aikby;.
Then } 7y aibrj < 3y sbij = 5 (3oj_q biy) < s
T T

since a;; < s this is < r, as it is the jth column sum of B.

a. The components of the jth column of the technology matrix A give the demands
industry J; makes on the other industries, per unit output of J;. The fact that the
jth column sum is less than 1 means that industry J; adds value to the products it
produces.

b. A productive economy can satisfy any consumer demand l_;, since the equation

(I, — A)Z = b can be solved for the output vector # : & = (I, — A)~'b (compare with
Exercise 2.3.49).

c. The output & required to satisfy a consumer demand bis
F=(,—A) b= (I, +A+ A2+ 4 A" 4. ) b=b+ Ab+ A%b+ -+ A"b+ - -.

To interpret the terms in this series, keep in mind that whatever output ¢ the industries
produce generates an interindustry demand of Av.
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The industries first need to satisfy the consumer demand, b. Producing the output b

will generate an interindustry demand, Ab. Producing Ab in turn generates an extra
interindustry demand, A(Ab) = A2b, and so forth.

For a simple example, see Exercise 2.3.50; also read the discussion of “chains of in-
terindustry demands” in the footnote to Exercise 2.3.49.

0 01 1 00
87.a. A7'=11 0 O0land B'=1]0 0 1
010 0 1 0

Matrix A~! transforms a wife’s clan into her husband’s clan, and B~! transforms a
child’s clan into the mother’s clan.

b. B? transforms a women’s clan into the clan of a child of her daughter.

c. AB transforms a woman’s clan into the clan of her daughter-in-law (her son’s wife),
while BA transforms a man’s clan into the clan of his children. The two transformations
are different. (See Figure 2.24.)

A

¢ o"o:og

13
T X

y g

Figure 2.24: for Problem 2.4.87c .

d. The matrices for the four given diagrams (in the same order) are BB~! = I,

00 1 01 0
BAB™'= |1 0 0|, BBA)™=1|0 0 1|, BA(BA)~! =1,
010 100

0 01
e. Yes; since BAB™! = A71 = |1 0 0/, in the second case in part (d) the cousin
010

belongs to Bueya’s husband’s clan.

T if x is even

89. g(f(x)) =z, for all z, so that g o f is the identity, but f(g(x)) = {x t1 ifzisodd
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© N v @

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.
33.
35.

True or False

T; The matrix is [ 1 _1}
-1 1
T, by Fact 2.3.3.
F, by Fact 2.4.3.
F; Matrix AB will be 3 x 5, by Definition 2.4.1b.
T, by Fact 2.2.4.

F, by Fact 2.3.6. Note that the determinant is 0.

1
T; The shear matrix A = [(1) % ] works.

T; The equation det(A) = k? — 6k + 10 = 0 has no real solution.

F; Note that det(A) = (k —2)? +9 is always positive, so that A is invertible for all values
of k.

F; Consider A = I (or any other invertible 2 x 2 matrix).

F; For any 2 x 2 matrix A, the two columns of A [1 !

1 1} will be identical.

b _ba] , where a?+b? = 1. Here, a®?+b% = 1+1 = 2.

F; A reflection matrix is of the form [a
T; The product is det(A)Is.

T; Note that the matrix [(1) _é] represents a rotation through 7/2. Thus n = 4 (or

any multiple of 4) works.

F; If matrix A has two identical rows, then so does AB, for any matrix B. Thus AB
cannot be I,, so that A fails to be invertible.

F; Consider the matrix A that represents a rotation through the angle 27/17.
T; We have (5A)~! = 1471
T; Note that A?2B = AAB = ABA = BAA = BA?.
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37. F; Consider A =1, and B = —I5.

0 1
39. F; Consider matrix | 0 0 |, for example.
1 0

41. T; If you reflect twice in a row (about the same line), you will get the original vector
back: A(AT) = &, or, AT = ¥ = I,7. Thus A> = I and A~ = A.

100

43. T; Let A = [0 Lo

1 0
] , B=1{0 1/, for example.
0 0

45. T; We can rewrite the given equation as A2 + 34 = —4I3 and —%(A +3I3)A =15. By
Fact 2.4.9, matrix A is invertible, with A™! = —1(A 4 313).

47. F; A and C can be two matrices which fail to commute, and B could be I,, which
commutes with anything.

49. F; Since there are only eight entries that are not 1, there will be at least two rows that
contain only ones. Having two identical rows, the matrix will be non-invertible.

0 1
0 0
_ab_ 110 1o 1 d —=b||c d| cd d?
5= [c d|’ Now, 5 {0 O]S © ad—be {—c a } [0 0} T oad=be | 2 —cd |’
Since ¢ and d cannot both be zero (as S must be invertible), at least one of the off-

diagonal entries (—c? and d?) is nonzero, proving the claim.

51. F; We will show that S—1 S fails to be diagonal, for an arbitrary invertible matrix

53. T; Let A = a b . Now we want A~! = —A, or —1— [ d —b = {—a _b]. This
c d ad—bc | _¢ ¢ —¢ —d
holds if ad — bc = 1 and d = —a. These equations have many solutions: for example,
a=d=0,b=1,c= —1. More generally, we can choose an arbitrary a and an arbitrary
nonzero b. Then, d = —a and ¢ = —%.

55. T; Recall from Definition 2.2.1 that a projection matrix has the form [u v u2
12 2

u% U1U2:|
)

U1

where is a unit vector. Thus, a? + b2 + 2 + d? = uj + (uru2)? + (uruz)? + uj =

U2
ud +2(urug)? +uj = (u? +u3)? =12 =1.
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