Exam # 2

1. True or False?

- T If the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ span \mathbb{R}^3 , then the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ must form a basis of \mathbb{R}^3 .
- T F If the rank of a 7×10 matrix A is 4, then the kernel of A must be six-dimensional.
- T If V is the set of all 2×2 matrices A such that the vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is in the image of A, then V is a subspace of $\mathbb{R}^{2 \times 2}$.
- F For every subspace V of \mathbb{R}^4 there exists a 4×4 matrix A such that $V = \operatorname{im}(A)$.
- T F There exists a noninvertible 2×2 matrix A that is similar to $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
- Are the functions below isomorphisms? You will earn 2 points for each correct answer, and 1 point if you don't answer. No explanation is needed. We are told that one (and only one) of these functions fails to be linear.

Yes No
$$T(A) = SAS^{-1}$$
, where $S = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, from $\mathbb{R}^{2\times 2}$ to $\mathbb{R}^{2\times 2}$.

Yes No
$$T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5x + 6y & 6x + 7y \\ 7x + 8y & 8x + 9y \end{bmatrix}$$
 from \mathbb{R}^3 to $\mathbb{R}^{2 \times 2}$

Yes No
$$T(f(x)) = f(x) + 3$$
 from P_2 to P_2 .

Yes No
$$T(f(x)) = f(0) + f(1)x + f(2)x^2$$
 from P_2 to P_2 .

Yes No
$$T(f(x))=(x-1)f(x)$$
 from P to P.

3. Find a basis of the subspace V of P_3 consisting of all polynomials f(x) with f(1) = f(2). Find the dimension of V.

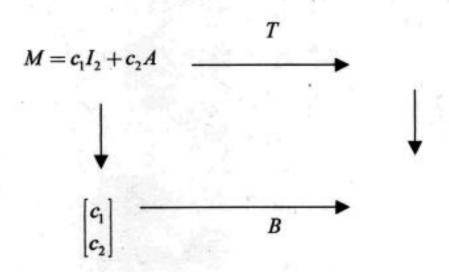
f(1) = f(2). Find the dimension of V.

4. If $b \neq 0$, find the matrix B of the linear transformation $T(\vec{x}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \vec{x}$ from \mathbb{R}^2 to \mathbb{R}^2 with respect to the basis $\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} b \\ d \end{bmatrix}$. Express the entries in the second column of B in terms of the determinant of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and the trace of A (the trace is the sum of the diagonal entries, a+d).

Math 253, Spring 2002, Exam #2

2

- 5. Let V be the span of the matrices I_2 and $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ in $\mathbb{R}^{2\times 2}$. Consider the linear transformation T(M) = AM from V to V.
- a. Compute A^2 . Write your answer as a scalar multiple of matrix A.
- b. Find the matrix B of T with respect to the basis $\mathcal{B} = I_2$, A. Use the commutative diagram below.



- c. Find a basis of the image of T
- d. Find a basis of the kernel of T

Exam # 2, Solutions

1. True or False?

- a. F As a counter example, consider $\vec{v}_1 = \vec{e}_1$, $\vec{v}_2 = \vec{e}_2$, $\vec{v}_3 = \vec{0}$, $\vec{v}_4 = \vec{e}_3$
- b. T $\dim(\ker A) = (\# \text{ columns}) (\operatorname{rank} A) = 10 4 = 6$
- c. F The zero matrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ isn't in V.
- d. T Pick a basis $\vec{v}_1, ..., \vec{v}_m$ of V. Make $\vec{v}_1, ..., \vec{v}_m$ the first m columns of A, with the remaining columns (if any) all being $\vec{0}$ (or otherwise dependent on the \vec{v}_i).
- e. F The matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is invertible, and any matrix that is similar to an invertible matrix is invertible as well.

2. Are the functions below isomorphisms?

- a. Yes The inverse is $A = S^{-1}BS$
- b. No The dimensions of domain and codomain aren't equal.
- c. No That's the nonlinear one; note that T(0) = 3
- d. Yes The kernel is 0, since the only polynomial f(x) in P_2 with f(0) = f(1) = f(2) = 0 is the zero polynomial.
- e. No The image isn't all of P, but $Im(T) = \{g \text{ in } P : g(1) = 0\}$.
- 3. We are looking for the polynomials $f(x) = a + bx + cx^2 + dx^3$ such that f(1) = f(2), or, a+b+c+d=a+2b+4c+8d, or b+3c+7d=0, or b=-3c-7d. These polynomials are of the form $f(x) = a+(-3c-7d)x+cx^2+dx^3 = a\cdot 1+c\left(x^2-3x\right)+d\left(x^3-7x\right)$, so that a,x^2-3x,x^3-7x is a basis of V, and $\dim(V)=3$.
- 4. With $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $S = \begin{bmatrix} 0 & b \\ 1 & d \end{bmatrix}$, we have $B = S^{-1}AS = \frac{1}{b} \begin{bmatrix} -d & b \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & b \\ 1 & d \end{bmatrix}$ $= \begin{bmatrix} 0 & bc ad \\ 1 & a + d \end{bmatrix} = \begin{bmatrix} 0 & -\det(A) \\ 1 & \operatorname{trace}(A) \end{bmatrix}$

$$=\begin{bmatrix} 1 & a+d \end{bmatrix} = \begin{bmatrix} 1 & \operatorname{trace}(A) \end{bmatrix}$$

Math 253, Spring 2002, Exam #2, Solutions

2

5. a..
$$A^2 = \begin{bmatrix} 7 & 14 \\ 21 & 42 \end{bmatrix} = 7A$$

b.

$$M = c_1 I_2 + c_2 A \qquad \longrightarrow \qquad T(M) = AM = c_1 A + c_2 A^2 = (c_1 + 7c_2) A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \qquad B \qquad \begin{bmatrix} 0 \\ c_1 + 7c_2 \end{bmatrix}$$

Thus
$$B = \begin{bmatrix} 0 & 0 \\ 1 & 7 \end{bmatrix}$$

- c. A basis of the image of B is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and a basis of the image of T is A.
- d. A basis of the kernel of B is $\begin{bmatrix} 7 \\ -1 \end{bmatrix}$, and a basis of the kernel of T is

$$7I_2 - A = \begin{bmatrix} 6 & -2 \\ -3 & 1 \end{bmatrix}.$$