Math 253, Fall 2001, Final Exam

- 1. True or False?
- a. If vector \vec{b} is in the image of matrix A, then the linear system $A\vec{x} = \vec{b}$ must be consistent.
- b. If A is a 4×3 matrix, and $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are linearly dependent vectors in \mathbb{R}^3 , then the vectors $A\vec{v}_1, A\vec{v}_2, A\vec{v}_3$ must be dependent as well.
- c. Matrix $\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ is similar to matrix $\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$.
- d. If the product of two square matrices A and B is invertible, then A must be invertible as well.
- e. If the determinant of a square matrix A is 1 or -1, then A must be an orthogonal matrix.
- 2. True or False?

to femisal add to be

- a. If a 10×10 matrix A has 6 distinct eigenvalues, then the rank of A must be at least 5.
- b. If matrix A is invertible, then there must be an eigenbasis for A.
- c. If the characteristic polynomial of a 7×7 matrix A is $f_A(\lambda) = \lambda (\lambda^2 1)(\lambda^2 2)(\lambda^2 3)$, then there must be an eigenbasis for A.
- d. If 1 is the only eigenvalue of a diagonalizable $n \times n$ matrix A, then A must be the identity matrix I_n .
- e. If \vec{v} is an eigenvector of A^2 , then \vec{v} must be an eigenvector of A as well.
- 3. Find the matrix B of the linear transformation $T(\vec{x}) = \begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix} \vec{x}$ with respect to the basis $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
- 4. a. Find the determinant of the matrix $A = \begin{bmatrix} 1 & -1 & 7 & 0 \\ 0 & 0 & 6 & 0 \\ 3 & 0 & 9 & 4 \\ 0 & 5 & 10 & 6 \end{bmatrix}$

b. Is matrix A invertible?

5. Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 4 \\ 1 & 2 & 0 & -1 & 6 \end{bmatrix}$$

- a. Find a basis of the image of matrix A.
- b. Find a basis of the kernel of matrix A.

Math 253, Fall 2001

A rabbit population and a wolf population are modeled by the equations

$$p(t+1) = 6p(t) - 2q(t)$$

 $q(t+1) = p(t) + 3q(t)$

The initial populations are p(0) = 600 and q(0) = 500.

- a) Which are the rabbits and which are the wolfs?
- b) Find closed formulas for p(t) and q(t).
- 7. Consider the linear transformation $L(A) = 2A + 3A^T$ from $\mathbb{R}^{2\times 2}$ to $\mathbb{R}^{2\times 2}$.
- a. Find the matrix B of transformation L with respect to the standard basis of $\mathbb{R}^{2\times 2}$.
- b. Is transformation L an isomorphism?
- c. Is the identity matrix I_2 in the image of L?
- 8. Let V be the space of all 2×2 matrices A such that the vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is in the kernel of A.
 - Find a basis of V, and thus determine dim(V).
 - b. Find the dimension of the space W of all 2×2 matrices A such that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an

eigenvector of Λ . (Hint: Using part a, you can answer this question without much computational work.)

- a. Is there a 2×2 matrix A with eigenvalues 4 and 6, such that all the four entries of A are positive? Give an example of such a matrix A, or explain why none exists.
 b. Is there a 2×2 matrix B that fails to be diagonalizable, such that all the four entries of B are positive? Give an example of such a matrix B, or explain why none exists.
- 10. Let P be the space of all polynomials, and let V be the space of all infinite sequences of real numbers. Consider the linear transformation

$$T(f(x)) = (f(0), f(1), f(2), ..., f(n), ...)$$
 from P to V.

a. Find the kernel of T. Explain your answer carefully.

- a. Find the kernel of T. Explain your answer carefully.
- b. Is T an isomorphism? Explain your answer carefully.

and the state of the state of the day of the day of the day of the state of the state of the day of