is a block diagonal matrix, with A; € Matgim v.(C). In fact, we can assume that B = By U ...U By, with
B; an ordered basis of U;, and that
Ai = [fluls;,

where f| u; - Ui = U; is the restriction of f to U,-FEI

2.3 Nilpotent endomorphisms
([, p.133-136)

In this section we will consider those linear endomorphisms f € Endc(V) whose only eigenvalue is 0.
This necessarily implies that
xr(A) = A"

We will see that for such endomorphisms there is a (ordered) basis B of V such that [f]z is ‘nearly
diagonal’.

Definition 2.3.1. An endomorphism f € Endc(V) is called nilpotent if there exists r € N such that
f" = Onde(v), SO that f7(v) = Oy, for every v € V.

A matrix A € Mat,(C) is called nilpotent if the endomorphism T € Endc(C") is nilpotent.

Lemma 2.3.2. Let f € Endc(V) be a nilpotent endomorphism. Then, the only eigenvalue of f is A =0
so that xr(\) = A4im V.

Proof: Suppose that v € V is an eigenvector of f with associated eigenvalue A. Therefore, we have
v # 0 and f(v) = Av. Suppose that f" = 0. Then,

0=f"(v)=fo---of(v)=Ffo---of(Av)=A"v.

Thus, as v # 0 we must have \" = 0 (Proposition [1.2.5]) implying that A = 0. O

For a nilpotent endomorphism f (resp. matrix A € Mat,(C)) we define the exponent of f (resp. of A),
denoted 7(f) (resp. n(A)), to be the smallest r € N such that " = 0 (resp. A" = 0). Therefore, if
n(f) = r then there exists v € V such that f"~1(v) # 0y.

For v € V we define the height of v (with respect to f), denoted ht(v), to be the smallest integer m
such that f™(v) = Oy, while f™~1(v) # Oy. Hence, for every v € V we have ht(v) < n(f).

Define Hy = {v € V | ht(v) < k}, the set of vectors that have height no greater than k; this is a
subspace of V[*]]

Let f € Endc(V) be a nilpotent endomorphism. Then, we obviously have H, ) = V, Ho = {Ov} and
a sequence of subspaces

{OV} = HO - Hl c---C H’r](f)fl C H”I(f) =V.

Let us denote
dim H,‘ = m;,

so that we have
O=mp<m<..< Myr)—1 < My(r) = dim V.

We are going to construct a basis of V: for ease of notation we let n(f) = k. Assume that k # 1,
so that f is not the zero endomorphism of V.

1. Let Gk be a complementary subspace of Hy_; so that

Hix = Hk—1 @ G,

and let (z1, ..., z,,) be an ordered basis of Gi. Then, since z; € Hi\ Hx_1 we have that f¥~1(z) #
Oy, for each j.

4OThis is a well-defined function since U; is f-invariant.
“1Exercise: show this.
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2. Consider the vectors f(z1), f(z2), ..., f(zp,). We have, for each j,

f*=1(f(z)) = f*(z) = 0y, since z; € Hy,
so that f(z;) € Hi_1, for each j. In addition, we can't have f(z;) € Hi_», else
0v = P21 (z)) = (),
implying that z; € Hy_;.

Moreover, the set S; = {f(z1), f(z2), ..., f(25,)} C Hk—1 \ Hk—2 is linearly independent: indeed,
suppose that there is a linear relation

le(zl) + ...+ Cpy f(zpl) = 0y.
with ¢y, ..., ¢, € C. Then, since f is a linear morphism we obtain

flazi + ... + ¢p 2, ) = Ov,

so that c1z; + ... + ¢p 25 € H1 C Hi—_1.

Hence, we have ¢z + ... + ¢p,2p, € Hik—1 N G = {0y}, so that c1z; + ... + ¢p, 25, = Ov. Hence,
because {z, ..., z, } is linearly independent we must have ¢; = ... = ¢, =0 € C. Thus, 51 is
linearly independent.

3. spang S1 N Hig_2 = {0y }: otherwise, we could find a linear combination

af(zi) + ...+ cp f(2p,) € Hi—2,

with some ¢; # 0. Then, we would have
0y = FE2(crf(2) + oo+ Fzn)) = F @21 + oo+ Gz,

so that c1z1 + ... + ¢ 2p, € Hik—1 N G = {0y} which gives all ¢; = 0, by linear independence
of the z's. But this contradicts that some ¢; is nonzero so that our initial assumption that
spang S1 N Hk_o # {0y} is false.

Hence, we have
spang S1 + Hyk—» = spang 51 & Hik_2 C Hy_1.

In particular, we see that my — my_1 < mg_1 — my_».
4. Let Gk_1 be a complementary subspace of Hy_» @ spang S1 in Hi_1, so that
Hi—1 = Hix_2 @ spanc 51 @ Gg_1,

and let (zp, 41, ..., Zp,) be an ordered basis of Gi_1.

5. Consider the subset S, = {f%(z1), ..., f?(2p,), f(Zp;+1), -, f(2p,)}. Then, as in 2, 3, 4 above we
have that
S» C Hi—2 \ Hik-3,
S, is linearly independent and spang S, N Hx—3 = {0y }. Therefore, we have

spanc So+ Hi_3 = spanc So ® Hi_3 C Hi_o,

so that my_1 — my_> < my_o — my_3.
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6. Let Gi_2 be a complementary subspace of spang So @ Hi—3 in Hi_», so that

Hik—2 = Hx_3 @ spanc $2 @ Gk_»,

and (Zp,41, ..., Zp,) be an ordered basis of Gi_».

7. Consider the subset S3 = {f3(z1), ..., F3(2p,), F2(Zp151), - » F2(2py)s F(Zpot1)s o+ F(2Zpy)}. Again,
it can be shown that
S3 C Hk—3 \ Hi—a,

S is linearly independent and spang S3NHi—4 = {Ov}. We obtain my_o —my_3 < my_3—my_4.

8. Proceed in this fashion to obtain a basis of V. We denote the vectors we have obtained in a table

21, Zpys
(2.3.1) f(z). f(zp,), Zp1+1, Zp,,
), .. N z), 2(zp41), o F2Z) o Zpat1 e Zpg,

where the vectors in the i*" row have height k — i + 1, so that vectors in the last row have height
1.

Also, note that each column determines an f-invariant subspace of V, namely the span of the
vectors in the column.

Lemma 2.3.3. Let W; denote the span of the it" column of vectors in the table above. Set py = 1.
Then,
dimW; =k —j, ifpi+1<i<pj.

Proof: Suppose that p; + 1 < i < pj41. Then, we have
W; = spanc{z, f(z), ..., f*77(z)}.
Suppose that there exists a linear relation
czit+af(z)+ ..+ Ckfjf1fk_j_l(2,') = 0y.
Then, applying f~1 to both sides of this equation gives
aof N z) + af* I (z) . a1 P 2(Z) = 0y

Now, as z; has height k —j (this follows because the vector at the top of the i*" column is in the (k—j)*
row, therefore as height (k — j)) the previous equation gives

Cofk_j_l(zi) 4+ 0y + ...+ 0y =0y,
so that ¢g = 0, since fk*j’l(z,-) # 0y. Thus, we are left with a linear relation
le(Zi) + ...+ Ck_j_1fk_j_1(2;) =0y,

and applying f/=%=2 to this equation will give ¢; = 0, since f(z;) has height k — j — 1. Proceeding in
this manner we find that ¢ = ¢; = ... ¢j_x—1 = 0 and the result follows. O

Thus, the information recorded in (2.3.1)) and Lemma proves the following

Theorem 2.3.4. Let f € Endc (V) be a nilpotent endomorphism with exponent 1n(f) = k. Then, there
exists integers di, ..., dx € Z>q so that

kdy + (k — 1)dy + ... + 2di_1 + 1djc = dim V,
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and f-invariant subspaces
WO, W WDl ow®, L wiD c v
with dime WY = j, such that
v=wPe .owPew Ve ewi Ve ewle  .owd.

Moreover, there is an ordered basis B,-U) of W,-U) such that

0 1 0 o0 0
0 O 1 o --- 0
0 0 0 1 -0
Fwolsgo = |00
0 «++ --- . 0 1
0 -~ - - 0 0]

We call such matrices 0-Jordan blocks. Hence, we can write the matrix of f relative to B =J; ; B,(j) as
a block diagonal matrix for which all of the blocks are 0-Jordan blocks and are of nonincreasing size as
we move from left to right.

Moreover, the geometric multiplicity of O as an eigenvalue of f is equal to the number of blocks of the
matrix [f]p and this number equals the sum
di+dr+ ...+ dy =dim E.
Proof: Everything except for the final statement follows from the construction of the basis B made
prior to the Theorem.

The last statement is shown as follows: we have that Eg = Hj, so that the O-eigenspace of f consists
of the set of all height 1 vectors in VF‘E] Moreover, the construction of the basis B shows that a basis
of Hj is given by the bottom row of the table (2.3.1]) and that this basis has the size specified. O

Corollary 2.3.5. Let A € Mat,(C) be a nilpotent matrix. Then, A is similar to a block diagonal matrix
for which all of the blocks are 0-Jordan blocks.

Proof: Consider the endomorphism Ta € Endc(C") and apply Theorem Then, we have a
basis BB such that [Ta]s takes the desired form. Now, use Corollary and [Ta]sm = A to deduce
the result. O

Definition 2.3.6. Let n € N. A partition of n is a decomposition of n into a sum of positive integers.
If we have a partition of n

n=n+..+n, withny,....,meN, n<n<..<n,

then we denote this partition
nor: n
1122 ... n/ I'

where we are assuming that 1 appears r; times in the partition of n, 2 appears r, times etc.
For example, consider the partition of 13

13=1+1+1+2+4+4,

then we denote this partition
132142,

42Check this.
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For a nilpotent endomorphism f € Endc (V) we define its nilpotent class to be the set of all nilpotent
endomorphisms g of V for which there is some ordered basis C C V with

[f]s = [gle.
where B is the basis described in Theorem [2.3.4]

We define the partition associated to the nilpotent class of f, denoted m(A), to be the partition
19291 ... k% obtained in Theorem We will also call this partition the partition associated
tof.

For a matrix A € Mat,(C) we define its nilpotent class (or similarity class) to be the nilpotent class of
the endomorphism T,4. We define the partition associated to A to be the partition associated to Tp4.

Theorem 2.3.7 (Classification of nilpotent endomorphisms). Let f,g € Endc (V) be nilpotent endo-
morphisms of V. Then, f and g lie in the same nilpotent class if and only if the partitions associated
to f and g coincide.

Corollary 2.3.8. Let A, B € Mat,(C) be nilpotent matrices. Then, f and g are similar if and only if
the partitions associated to A and B coincide.

Proof: We simply note that if T4 and Tg are in the same nilpotent class then there are bases
B,C C C" such that

[Tals = [Tslc-
Hence, if P1 = Psm 5, P2 = Pstn ¢ then we must have
P 'AP, = Py 'BP;,

so that
PP AP P, = B.

Now, since Pngl = (P1P271)’1 we have that A and B are similar precisely when T4 and Tg are in the
same nilpotent class. The result follows. O
2.3.1 Determining partitions associated to nilpotent endomorphisms

Given a nilpotent endomorphism f € Endc (V) (or nilpotent matrix A € Mat,(C)) how can we determine
the partition associated to f (resp. A)?

Once we have chosen an ordered basis B of V we can consider the nilpotent matrix [f]z. Then, the
problem of determining the partition associated to f reduces to determining the partition associated to
[f]5. As such, we need only determine the partition associated to a nilpotent matrix A € Mat,(C).

1. Determine the exponent of A, n(A), by considering the products A2, A3, etc. The first r such that
A" = 0 is the exponent of A.

2. We can determine the subspaces H; since

Hi={x e C"|ht(x) <i}=kerTy.

In particular, we have that dim H; is the number of non-pivot columns of A'.

C/1 =dim H”I(A) —dim Hn(A)—l-

3.

4. d, =dim Hn(A)—l —dim H,,](A)_2 — d.
5. d3 =dim Hn(A)_Q —dim Hn(A)—3 — dz.
6.

Thus, we can see that d; = dim H,(a)_(j—1) — dim H,(ay_; — dj_1, for 1 <i < n(A).
Hence, the partition associated to A is

m(A) : 19 2dhm-1 .. p(A)h
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Example 2.3.9. Consider the endomorphism

X1 X2
X2 0
F:CO=C%; |x| = |x
X4 0
X5 0

Then, with respect to the standard basis S®) we have that

01000
00000
A% [flem =10 0 0 1 0
00000
00000

You can check that A% = 0 so that 7(A) = 2. Then,

- dy =dimH, —dimH; =5 —3 =2, since H; = ker Ta has dimension 3 (there are 3 non-pivot
columns of A).

- dp=dimH; —dimHy—dy =3—-0—2=1, since Hy = {0}.
Hence, the partition associated to A is
m(A): 122 1424+2=75;
there are three 0-Jordan blocks - two of size 2 and one of size 1.

You can check that the following matrix B is nilpotent

1 -1 1 -1 1
1 -1 1 -1 1
B=]0 0 0 0 O
1 -1 1 -1 1
1 -1 1 -1 1

and that the partition associated to B is
m(B): 1’2+ 14+14+14+2=5
- We have B2 = 0 so that n(B) = 2.

- dp =dimH, —dimH; =5 —4 =1, since H; = ker Tg has dimension 4 (there are 4 non-pivot
columns of B).

- dp=dimH; —dimHy—dy =4—0—1=3, since Hy = {0}.

Thus, A and B are not similar, by Corollary However, since the matrix

01 00O
0 00 0O
cC=10 0 0 0 Of,
0 00 0O
0 00 0O
has associated partition
7(C): 132,

then we see that B is similar to C, by Corollary

Moreover, there are four 0-Jordan blocks of B (and C) - one of size 2 and three of size 1.
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