
1.7 Linear morphisms II

In this section we will discuss the relationship between linear morphisms (of finite dimensional K-vector
spaces) and matrices. This material should be familiar to you from your first linear algebra course.

Throughout this section all K-vector spaces will be assumed finite dimensional.

Definition 1.7.1. Let f : V →W be a linear morphism of K-vector spaces, B = (b1, ... , bn) ⊂ V , C =
(c1, ... , cm) ⊂ W ordered bases of V , W . Then, the matrix of f with respect to B and C is the m × n
matrix

[f ]CB = [[f (b1)]C [f (b2)]C · · · [f (bn)]C] ,

so that the i th column of [f ]CB is the C-coordinate vector of f (bi ) ∈W .

If V = W and B = C then we write [f ]B
def
= [f ]BB.

Lemma 1.7.2. Let f : V →W be a linear morphism of K-vector spaces, B ⊂ V , C ⊂W ordered bases
of V , W . Then, for every v ∈ V , we have

[f (v)]C = [f ]CB[v ]B.

Moreover, if A is an m × n matrix such that

[f (v)]C = A[v ]B, for every v ∈ V ,

then A = [f ]CB.

This result should be familiar to you. Note that the standard matrix Af we defined previously for a linear
morphism f ∈ HomK(Kn,Km) is just

Af = [f ]S
(m)

S(n) .

We can record the conclusion of the Lemma 1.7.2 in a diagram in a similar fashion as we did in the
previous section for PC←B. We have the commutative diagram

V
f - W

	

Kn

[−]B
?

T
[f ]CB

- Km

[−]C
?

where T[f ]CB
: Kn → Km is the ‘multiplication by [f ]CB’ morphism and the symbol ‘	’ is translated to

mean

‘the composite morphism [−]C ◦ f : V → Km equals the composite morphism T[f ]CB
◦ [−]B : V → Km’;

this is precisely the statement of Lemma 1.7.2.

So, given ordered bases B = (b1, ... , bn) ⊂ V and C = (c1, ... , cm) ⊂ W of K-vector space V and W ,
we have just defined a function

[−]CB : HomK(V , W )→ Matm,n(K) ; f 7→ [f ]CB.

In fact, this correspondence obeys some particularly nice properties:

Theorem 1.7.3. The function

[−]CB : HomK(V , W )→ Matm,n(K) ; f 7→ [f ]CB,

satisfies the following properties:
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a) [−]CB is an isomorphism of K-vector spaces,

b) if f ∈ HomK(U, V ), g ∈ HomK(V , W ) and A ⊂ U,B ⊂ V , C ⊂W are bases of U, V , W , then

[g ◦ f ]CA = [g ]CB[f ]BA.

Here
g ◦ f : U → V →W ∈ HomK(U, W ),

is the composite morphism and on the RHS of the equation we are considering multiplication of
matrices.

c) for the identity morphism idV ∈ HomK(V , V ) we have

[idV ]CB = In,

where In is the n × n identity matrix.

d) if V = W then
[idV ]CB = PC←B.

e) If A ∈ Matm,n(K) and
TA : Kn → Km ; x 7→ Ax ,

so that TA ∈ HomK(Kn,Km). Then, if S(i) = (e1, ... , ei ) is the standard basis of Ki , then

[TA]S
(m)

S(n) = A.

We will now show how we can translate properties of morphisms into properties of matrices:

Theorem 1.7.4. Let f ∈ HomK(V , W ) be a linear morphism of K-vector spaces V , W and let B ⊂
V , C ⊂W be ordered bases of V , W . Then,

a) f is injective if and only if [f ]CB has a pivot in every column,

b) f is surjective if and only if [f ]CB has a pivot in every row,

c) f is an isomorphism if and only if [f ]CB is a square matrix and has a pivot in every row/column,

d) Suppose dim V = dim W . Then, f is injective if and only if f is surjective. In particular,

‘f injective =⇒ f surjective =⇒ f bijective =⇒ f injective’.

Remark 1.7.5. 1. Theorem 1.7.3 states various properties that imply that the association of a linear
morphism to its matrix (with respect to some ordered bases) behaves well and obeys certain desirable
properties.

- a) implies that any question concerning the linear algebra properties of the set of K-linear mor-
phisms can be translated into a question concerning matrices. In particular, since it can be easily
seen that dimK Matm,n(K) = mn and isomorphic K-vector spaces have the same dimension, we
must therefore have that

dimK HomK(V , W ) = mn,

so that HomK(V , W ) is finite dimensional.

- b) can be summarised by the slogan

‘matrix multiplication is composition of morphisms’.

Together with e) this implies that, for an m × n matrix A and an n × p matrix B, we have
TA ◦ TB = TAB .
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2. Theorem 1.7.4 provides a way to show that a linear morphism satisfies certain properties, assuming
we have found bases of the domain and codomain.

Conversely, Theorem 1.7.4 is also useful in determining properties of matrices by translating to a property
of morphisms. For example, suppose that A, B are n × n matrices such that AB = In. By definition, a
square matrix P is invertible if and only if there is a square matrix Q such that PQ = QP = In. Thus,
even though we know that AB = In, in order to show that A (or B) is invertible, we would need to
show also that BA = In. This is difficult to show directly (ie, only using matrices) if you only know that
AB = In. However, if we consider the linear maps TA and TB then

AB = In =⇒ TA ◦ TB = TAB = idKn . (Theorem 1.7.3, b), c), e))

Now, by Lemma 0.2.4, since idKn is injective then TB is injective. Thus, TB is an isomorphism by
Theorem 1.7.4 so there exists a morphism g ∈ HomK(Kn,Kn) such that g ◦TB = TB ◦ g = idKn . Since
TA ◦ TB = idKn , then

g = idKn ◦ g = (TA ◦ TB) ◦ g = TA ◦ (TB ◦ g) = TA ◦ idKn = TA,

because f ◦ idKn = f , for any function f with domain Kn, and idKn ◦ f = f , for any function f with
codomain Kn. Hence, we have shown that g = TA so that idKn = TB ◦ g = TB ◦TA = TBA. Therefore,
In = BA. Note that we have repeatedly used (various parts of) Theorem 1.7.3 in this last collection of
justifications.

Suppose that we have distinct ordered bases B1,B2 ⊂ V and C1, C2 ⊂W of the K-vector spaces V , W
and f ∈ HomK(V , W ). How are the matrices [f ]C1

B1
and [f ]C2

B2
related?

Proposition 1.7.6. The matrices [f ]C1

B1
and [f ]C2

B2
satsify the following relation

[f ]C2

B2
= PC2←C1 [f ]C1

B1
PB1←B2 ,

where we are considering multiplication of matrices on the RHS of this equation. Moreover, if there
exists a matrix B such that

B = PC2←C1 [f ]C1

B1
PB1←B2 ,

then B = [f ]C2

B2
.

Proof: The proof is trivial once we have Theorem 1.7.3. If we consider that PB1←B2 = [idV ]B1

B2
and

PC2←C1 = [idW ]C2

C1
then the RHS of the desired relation is

PC2←C1 [f ]C1

B1
PB1←B2 = [idW ]C2

C1
[f ]C1

B1
[idV ]B1

B2
= [idV ◦ f ◦ idV ]C2

B2
= [f ]C2

B2
.

Corollary 1.7.7. Let f ∈ EndK(V ) be an endomorphism of a K-vector space V (recall Definition 1.4.1),
B, C ⊂ V ordered bases of V . Then, if we denote P = PB←C , we have

(∗) [f ]C = P−1[f ]BP.

Example 1.7.8. 1. Consider the linear morphism

f : Q3 → Q2 ;

x1

x2

x3

 7→ [
x1 + 2x2

− 1
2 x2 + 3x3

]
.

Then, f is linear since we can write

f (x) =

[
1 2 0
0 − 1

2 3

]
x , for every x ∈ Q3.
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Here, we have

Af = [f ]S
(2)

S(3) =

[
1 2 0
0 − 1

2 3

]
.

Consider the ordered bases

B =

0
2
1

 ,

 0
1
−1

 ,

1
1
1

 ⊂ Q3, C =

([
1
−1

]
,

[
1
1

])
⊂ Q2.

Then, we can use Proposition 1.7.6 to determine [f ]CB.

We have seen in Example 1.6.3 that

PS(3)←B =

0 0 1
2 1 1
1 −1 1

 , PS(2)←C =

[
1 1
−1 1

]
,

so that

PC←S(2) = P−1
S(2)←C =

[
1
2 − 1

2
1
2

1
2

]
.

Hence,

[f ]CB = PC←S(2) [f ]S
(2)

S(3) PS(3)←B =

[
1
2 − 1

2
1
2

1
2

] [
1 2 0
0 − 1

2 3

]0 0 1
2 1 1
1 −1 1

 =

[
1 11

4
1
4

3 − 3
4 4

]
.

2. Consider the linear morphism

g : Mat2(R)→ Mat2(R) ; A 7→ A− At ,

where At is the transpose of A. It is an exercise to check that g is linear.

We have the standard ordered basis of Mat2(R), S = (e11, e12, e21, e22), where eij is the 2 × 2
matrix with 0 everywhere except a 1 in the ij-entry. Also, we have the ordered bases31

B = (e12, e21, e11 − e22, e11 + e22) , C = (e11, e22, e12 + e21, e12 − e21) ⊂ Mat2(R).

Now, we see that

g(e11) = 0, g(e12) = e12 − e21, g(e21) = −e12 + e21, g(e22) = 0,

so that

[g ]S =


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 .

We use Proposition 1.7.6 to determine [g ]CB. We have

PS←B =


0 0 1 1
1 0 0 0
0 1 0 0
0 0 −1 1

 , PS←C =


1 0 0 0
0 0 1 1
0 0 1 −1
0 1 0 0

 .

31Check that these are bases of Mat2(R).
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Then,

PC←S = P−1
S←C =


1 0 0 0
0 0 0 1
0 1

2
1
2 0

0 1
2 − 1

2 0

 ,

and we have

[g ]CB = PC←S [g ]SPS←B =


1 0 0 0
0 0 0 1
0 1

2
1
2 0

0 1
2 − 1

2 0




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0




0 0 1 1
1 0 0 0
0 1 0 0
0 0 −1 1



=


0 0 0 0
0 0 0 0
0 0 0 0
1 −1 0 0


Indeed, we have that g(e12) = e12 − e21, which gives

[g(e12)]C =


0
0
0
1

 .

Using the definition of [g ]CB this should be the first column, so that the matrix we have obtained
above corroborates this.

Remark 1.7.9. The relationship established in Proposition 1.7.6 can be indicated in the following
‘rooftop’ or ‘prism’ diagram (think of the arrow V →W as the top of the rooftop)

V
f - W

Kn

[−]B1

�

T
[f ]
C1
B1

- Km

[−]C1

�

Kn

[−]B2

?

T
[f ]
C2
B2

-
TPB2←B1

-

Km

[−]C2

?TPC2←C1

-

Here we are assuming that all squares that appear are the commutative squares appearing after Lemma
1.7.2, and that the triangles that appear at the end of the prism are the commutative triangles that
appeared in Remark 1.6.2. So, Proposition 1.7.6 corresponds to the ‘bottom square’ being a commutative

diagram.

This diagram can be confusing at first but the more you try and understand it the better you will
understand the relationship between linear morphisms, matrices and change of coordinates.

Note that in the rooftop diagram all arrows which have some vertical component are isomorphisms; this
means that we can go forward and backwards along these arrows.

For example, suppose we start at V and go along the sequence of arrows (↓,→). Then, the commutativity
of the bottom square and the fact that that the arrows ↘ are isomorphisms means we have

→ = (↖,→,↘) ,

where ↖ denotes the inverse morphism to ↘.
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Then, because we write composition of functions in the reverse order (g ◦ f means ‘do f first, then g ’)
we have

T
[f ]
C2
B2

◦ [−]B2 = TPC2←C1
◦ T

[f ]
C1
B1

◦ TPB1←B2
◦ [−]B2 ;

that is, for every v ∈ V , we have

[f ]C2

B2
[v ]B2 = PC2←C1 [f ]C1

B1
PB1←B2 [v ]B2 ,

and this is Proposition 1.7.6.

Definition 1.7.10 (Similar matrices). Let A, B ∈ Matn(K). We say that A is similar to B if and only
if there exists an invertible matrix Q such that

A = Q−1BQ.

This definition is symmetric with respect to A and B: namely, A is similar to B if and only if B is similar
to A, since

A = Q−1BQ =⇒ QAQ−1 = B,

so that if we let P = Q−1 then we have a relation

B = P−1AP.

Here we have used the (assumed known) fact that (P−1)−1 = P, for any invertible matrix P.

Moreover, if A is similar to B and B is similar to C , so that

A = Q−1BQ, and B = P−1CP,

then
A = Q−1BQ = Q−1P−1CPQ = (PQ)−1C (PQ),

so that A is similar to C .32

Corollary 1.7.7 states that matrices of linear endomorphisms with respect to different bases are similar.
There is a converse to this result.

Proposition 1.7.11. Let A, B ∈ Matn(K) be similar matrices, so that A = P−1BP, where P ∈ GLn(K)
is an invertible n×n matrix. Then, there exists a linear endomorphism f ∈ EndK(Kn) and ordered bases
B, C ⊂ Kn such that

[f ]B = A, and [f ]C = B.

Proof: We take C = S(n) = (e1, ... , en), B = (b1, ... , bn), where bi is the i th column of P, and
f = TB ∈ EndK(Kn). The details are left to the reader.

Hence, Proposition 1.7.11 tells us that we can think of similar matrices A and B as being the matrices
of the same linear morphism with respect to different ordered bases. As such, we expect that similar
matrices should have certain equivalent properties; namely, those properties that can arise by considering
the linear morphism TA (or, equivalently, TB), for example, rank, diagonalisability, invertibility.

1.7.1 Rank, classification of linear morphisms

Let f ∈ HomK(V , W ) be a linear morphism and recall the definition of the kernel of f and the image
of f (Definition 1.4.4).

32These facts, along with the trivial statement that A is similar to A, imply that the notion of similarity defines an
equivalence relation on Matn(K).
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Definition 1.7.12. We define the rank of f , denoted rank f , to be the number

rank f = dim imf .

We define the nullity of f , denoted nul f , to be the number

nul f = dim ker f .

If A is an m × n matrix then we define the rank of A, denoted rank A, to be the rank of the linear
morphism TA determined by A. Similary, we define the nullity of A, denoted nul A, to be the nullity of
the linear morphism TA.

There exists a basic relationship between rank and nullity.

Theorem 1.7.13 (Rank Theorem). Let f ∈ HomK(V , W ). Then,

dim V = nul f + rank f .

Proof: By Corollary 1.5.19 we know that there is a subspace U ⊂ V such that V = ker f ⊕ U. Let
B = (b1, ... , br ) be an ordered basis for U. Then, we claim that C = (f (b1), ... , f (br )) is an ordered
basis of imf .

First, it is easy to see that the set {f (b1), ... , f (br )} ⊂W is a subset of imf . If v ∈ imf , then v = z +u,
where z ∈ ker f , u ∈ U (since V = ker f ⊕ U). Moreover, if u = λ1b1 + ... + λrbr then

f (v) = f (z + u) = f (z) + f (u) = 0W + f (λ1b1 + ... + λrbr ) = λ1f (b1) + ... + λr f (br ) ∈ spanK C.

Hence, since imf = {f (v) ∈W | v ∈ V } then we must have spanK C = imf .

It remains to show that {f (b1), ... , f (br )} is linearly independent: indeed, suppose we have a linear
relation

λ1f (b1) + ... + λr f (br ) = 0W .

Then, since f is linear, this implies that λ1b1 + ... + λrbr ∈ ker f and λ1b1 + ... + λrbr ∈ U (because B
is a basis of U). Hence,

λ1b1 + ... + λrbr ∈ ker f ∩ U = {0V },

so that
λ1b1 + ... + λrbr = 0V .

Now, as B is linearly independent then

λ1 = λ2 = · · · = λr = 0.

Hence, C is linearly independent and therefore a basis of imf .

Now, using Corollary 1.5.19, we see that

dim V = nul f + r = nul f + rank f ,

by the previous discussion.

Lemma 1.7.14. Let A be an m × n matrix. Then, the rank of A is equal to the maximal number of
linearly independent columns of A.

Proof: Let us write
A = [a1 a2 · · · an],

so that the i th column of A is the vector ai ∈ Km.

Consider the linear morphism TA ∈ HomK(Kn,Km). Then, we have defined rank A = rank TA =
dim imTA. Then, since

TA


x1

...
xn


 = x1a1 + ... + xnan,
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we see that
(∗) spanK{a1, ... , an} = imTA.

Suppose that A 6= 0m,n. Thus, one of the columns of A is nonzero. Suppose that ai 6= 0Km . Then, {ai}
is a linearly independent set and can be extended to a basis of imTA using vectors from {a1, ... , an},
by (∗). Hence, rank A = dim imTA is equal to the number of columns of A that form a basis of imTA.
Moreover, by Proposition 1.5.15, every linearly independent set in imTA has size no greater than rank A.
In particular, every linearly independent subset of the columns of A has size no greater than rank A while
there does exist some subset having size exactly rank A.

If A = 0m,n then TA ∈ HomK(V , W ) is the zero morphism and rank TA = dim{0W } = 0. The result
follows.

The proof that we have just given for the Rank Theorem implies the following result.

Theorem 1.7.15. Let f ∈ HomK(V , W ) be a K-linear morphism and denote r = rank f . Then, there
exists ordered bases B ⊂ V , C ⊂W such that

[f ]CB =

[
Ir 0r ,n−r

0m−r ,r 0m−r ,n−r

]
,

where n = dim V , m = dim W and 0i ,j ∈ Mati ,j(K) is the zero matrix.

Proof: Consider an ordered basis B1 = (b1, ... , bn−r ) of ker f and extend to an ordered basis

B = (b1, ... , bn−r , bn−r+1, ... , bn)

of V . Then, as in the proof of the Rank Theorem, we see that (f (bn−r+1), ... , f (bn)) is an ordered basis
of imf . Extend this to an ordered basis

C = (f (bn−r+1), ... , f (bn), c1, ... , cm−r ),

of W . Then,

[f ]CB =

[
Ir 0r ,n−r

0m−r ,r 0m−r ,n−r

]
.

Corollary 1.7.16. Let A ∈ Matm,n(K) such that rank A = r . Then, there exists P ∈ GLn(K), Q ∈
GLm(K) such that

Q−1AP =

[
Ir 0r ,n−r

0m−r ,r 0m−r ,n−r

]
.

Corollary 1.7.17. Let A, B ∈ Matm,n(K). Then, A, B are the matrices of the same linear map with
respect to different bases if and only if they have the same rank.

Proof: By the previous Corollary we can find Q1, Q2 ∈ GLm(K), P1, P2 ∈ GLn(K) such that

Q−1
1 AP1 =

[
Ir 0r ,n−r

0m−r ,r 0m−r ,n−r

]
= Q−1

2 BP2.

Then, we have
Q2Q−1

1 AP1P−1
2 = B.

Recall that Q2Q−1
1 = (Q1Q−1

2 )−1. Then, as Q1Q−1
2 and P1P−1

2 are invertible matrices (products of
invertible matrices are invertible) their different sets of columns are linearly independent and therefore
form ordered bases C ⊂ Km and B ⊂ Kn. Then, if we consider the linear map TA, the above equation
says that

PC←S(m) [TA]S
(m)

S(n) PS(n)←B = B,

so that Proposition 1.7.6 implies that [TA]CB = B.

Remark 1.7.18. 1. The rank of a matrix A is usually defined to be the maximum number of linearly
independent columns of A. However, we have shown that our definition is equivalent to this
definition.
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2. Theorem 1.7.15 is just a restatement in terms of linear morphisms of a fact that you might have
come across before: every m × n matrix can be row-reduced to reduced echelon form using row
operations. Moreover, if we allow ‘column operations’, then any m×n matrix can be row/column-
reduced to a matrix of the form appearing in Theorem 1.7.15.

This requires the use of elementary (row-operation) matrices and we will investigate this result
during discussion.

3. Corollary 1.7.17 allows us to provide a classification of m×n matrices based on their rank: namely,
we can say that A and B are equivalent if there exists Q ∈ GLm(K), P ∈ GLn(K) such that

B = Q−1AP.

Then, this notion of equivalence defines an equivalence relation on Matm,n(K). Hence, we can
partition Matm,n(K) into dictinct equivalence classes. Corollary 1.7.17 says that the equivalence
classes can be labelled by the rank of the matrices that each class contains.

1.8 Dual Spaces (non-examinable)
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