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Abstract

These are notes for the upper division course ’Linear Algebra’ (Math 110) taught at the University
of California, Berkeley, during the summer session 2012. Students are assumed to have attended a
first course in linear algebra (equivalent to UCB Math 54). The aim of this course is to provide an
introduction to the study of finite dimensional vector spaces over fields of characteristic zero and
linear morphisms between them and to provide an abstract understanding of several key concepts
previously encountered. The main topics to be covered are: basics of vector spaces and linear
morphisms, the Jordan canonical form and Euclidean/Hermitian spaces.
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0 Preliminaries

In this preliminary section we will introduce some of the fundamental language and notation that will
be adopted in this course. It is intended to be an informal introduction to the language of sets and
functions and logical quantifiers.

0.1 Basic Set Theory

For most mathematicians the notion of a set is fundamental and essential to their understanding of
mathematics. In a sense, everything in sight is a set (even functions can be considered as sets!1) .

A vector space is an example of a set with structure so we need to ensure that we know what a set is
and understand how to write down and describe sets using set notation.

Definition 0.1.1 (Informal Definition). A set S is a collection of objects (or elements). We will denote
the size of a set S by |S |; this will either be a natural number or infinite (we do discuss questions of
cardinality of sets).

For example, we can consider the following sets:

- the set P of people in Etcheverry, room 3109, at 10.10am on 6/18/2012,

- the set B of all people in the city of Berkeley at 10.10am on 6/18/2012,

- the set R of all real numbers,

- the set A of all real numbers that are greater than or equal to π,

- the set Mm×n(R) of all m × n matrices with real entries,

- the set HomR(Rn,Rm) of all R-linear morphisms with domain Rn and codomain Rm,

- the set C (0, 1) of all real valued continuous functions with domain (0, 1).

Don’t worry if some of these words are new to you, we will define them shortly.

You will observe that there are some relations between these sets: for example,

- every person that is an object in the collection P is also an object in the collection B,

- every number that is an object of A is also an object of R.

We say in this case that P (resp. A) is a subset of B (resp. R), and write

P ⊆ B (resp. A ⊆ R).

1A function f : A→ B ; x 7→ f (x) is the same data as providing a subset Γf ⊂ A×B, where Γf = {(x , f (x)) | x ∈ A},
the graph of f . Conversely, if C ⊂ A × B is a subset such that, ∀a ∈ A, ∃b ∈ B such that (a, b) ∈ C , and (a, b) =
(a, b′) ∈ C =⇒ b = b′, then C is the graph of some function.
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Remark. In this class we will use the notations ⊆ and ⊂ interchangeably and make no distinction
between them. On the blackboard I will write ⊆ as this is a notational habit of mine whereas in these
notes I shall usually write ⊂ as it is a shorter command in LATEX(the software I use to create these notes).

We can also write the following

P = {x ∈ B | x is in Etcheverry, room 3109, at 10.10am on 6/18/2012} ,

or in words:

P is the set of those objects x in B such that x is in Etcheverry, room 3109, at 10.10am on 6/18/2012.

Here we have used

- the logical symbol ‘∈’ which is to be translated as ‘is a member of’ or ‘is an object in the collection’,

- the vertical bar ‘|’ which is to be translated as ‘such that’ or ’subject to the condition that’.

In general, we will write (sub)sets in the following way:

T = {x ∈ S |P} ,

where P is some property or condition. In words, the above expression is translated as

T is the set of those objects x in the set S such that x satisfies the condition/property P.

For example, we can write
A = {x ∈ R | x ≥ π}.

Definition 0.1.2. We will use the following symbols (or logical quantifiers) frequently:

- ∀ - translated as ‘for all’ or ‘for every’, (the universal quantifier)

- ∃ - translated as ‘there exists’ or ‘there is, (the existential quantifier).

For example, the statement

‘for every positive real number x , there exists some real number y such that y 2 = x ’,

can be written
∀x ∈ R with x > 0,∃y ∈ R such that y 2 = x .

Remark. Learning mathematics is difficult and can be made considerably more difficult if the basic
language is not understood. If you ever encounter any notation that you do not understand please ask
a fellow student or ask me and I will make sure to clear things up. I have spent many hours of my life
staring blankly at a page due to misunderstood notation so I understand your pain in trying to get to
grips with new notation and reading mathematics.

Notation. In this course we will adopt the following notational conventions:

- ∅, the empty set (ie the empty collection, or the collection of no objects),

- [n] = {1, 2, 3, ... , n},

- N = {1, 2, 3, 4, ...}, the set of natural numbers,

- Z = {0,±1,±2,±3, ...}, the set of integers,

- Z≥a = {x ∈ Z | x ≥ a}, and similarly Z>a,Z≤a,Z<a,

- Q = { a
b | a, b ∈ Z, b 6= 0}, the set of rational numbers,

- R, the set of real numbers,
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- C, the set of complex numbers.

Remark (Complex Numbers). Complex numbers are poorly taught in most places so that most students
have a fear and loathing of them. However, there is no need to be afraid! It really doesn’t matter whether
you consider imaginary numbers to be ‘real’ (or to exist in our domain of knowledge in this universe),
all that matters is that you know their basic properties: a complex number z ∈ C is a‘number’ that can
be expressed in the form

z = a + b∆, a, b ∈ R,

where, for now, ∆ is just some symbol.

We can add and multiply the complex numbers z = a + b∆, w = c + d∆ ∈ C, as follows

z + w = (a + c) + (b + d)∆, z .w = (ac − bd) + (bc + ad)∆.

If z = a + b∆ ∈ C then the complex number z̃ = a
a2+b2 − b

a2+b2 ∆ satisfies

z .z̃ = z̃ .z = 1,

so that z̃ is the multiplicative inverse of z and we can therefore write 1/z = z−1 = z̃ . Hence, if
z = a + b∆, w = c + d∆ ∈ C, then

z/w = z .w−1 =
ac + bd

c2 + d2
+

bc − ad

c2 + d2
∆.

Of course, the number i = 1.∆ satisfies the property that i2 = −1, so that 1.∆ corresponds to the
imaginary number i that you learned about in high school. However, as we will be using the letter i
frequently for subscripts, we shall instead just write

√
−1 so that we will consider complex numbers to

take the form
z = a + b

√
−1.

We have the following inclusions
N ⊂ Z ⊂ Q ⊂ R ⊂ C,

so that, in particular, every real number is also a complex number (if a ∈ R then we consider a =
a.1 + 0.

√
−1 ∈ C).

Definition 0.1.3 (Operations on Sets). • Suppose that S is a set and S1, S2 are subsets.

- the union of S1 and S2 is the set

S1 ∪ S2 = {x ∈ S | x ∈ S1 or x ∈ S2}.

- the intersection of S1 and S2 is the set

S1 ∩ S2 = {x ∈ S | x ∈ S1 and x ∈ S2}.

More generally, if Si ⊂ S , i ∈ J, is a family of subsets of S , where J is some indexing set, then we can
define ⋃

i∈J

Si = {s ∈ S | s ∈ Sk , for some k ∈ J},

and ⋂
i∈J

Si = {s ∈ S | s ∈ Sk ,∀k ∈ J}.

• Let A, B be sets.

- the Cartesian product of A and B is the set

A× B = {(a, b) | a ∈ A, b ∈ B},

so that the elements of A× B are ordered pairs (a, b), with a ∈ A, b ∈ B. In particular, it is not
true that A× B = B × A.

Moreover, if (a, b), (a′, b′) ∈ A × B and (a, b) = (a′, b′), then we must necessarily have a = a′

and b = b′.
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For example, consider the following subsets of R:

A = {x ∈ R | 0 < x < 2}, B = {x ∈ R | x > 1}, C = {x ∈ R | x < 0}.

Then,
A ∪ B = (0,∞), A ∩ B = (1, 2), A ∩ C = ∅, A ∪ B ∪ C = {x ∈ R | x 6= 0}.

Also, we have
A× C = {(x , y) | 0 < x < 2, y < 0}.

0.2 Functions

Functions allow us to talk about certain relationships that exist between sets and allow us to formulate
certain operations we may wish to apply to sets. You should already know what a function is but the
notation to be introduced may not have been encountered before.

Definition 0.2.1. Let A, B be sets and suppose we have a function f : A → B. We will write the
information of the function f as follows:

f : A→ B, x 7→ f (x),

where x 7→ f (x) is to be interpreted as providing the data of the function, ie, x is the input of the
function and f (x) is the output of the function. Moreover,

- A is called the domain of f ,

- B is called the codomain of f .

For example, if we consider the function |.| : R→ [0,∞), the ‘absolute value’ function, then we write

|.| : R→ [0,∞), x 7→

{
x , if x ≥ 0,

−x , if x < 0.

The codomain of |.| is [0,∞) and the domain of |.| is R.

Definition 0.2.2. Let f : A→ B be a function.

- we say that f is injective if the following condition is satisfied:

∀x , y ∈ A, if f (x) = f (y) then x = y ,

- we say that f is surjective if the following condition is satisfied:

∀y ∈ B, ∃x ∈ A such that f (x) = y ,

- we say that f is bijective if f is both injective and surjective.

It should be noted that the injectivity of f can also be expressed as the following (logically equivalent)
condition:

if x , y ∈ A, x 6= y , then f (x) 6= f (y).

Also, the notion of bijectivity can be expressed in the following way:

∀y ∈ B, there is a unique x ∈ A such that f (x) = y .

Hence, if a function is bijective then there exists an inverse function g : B → A such that

∀x ∈ A, g(f (x)) = x , and ∀y ∈ B, f (g(y)) = y .
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The goal of the first half of this course is an attempt to try and understand the ‘linear functions’ whose
domain and codomain are vector spaces. We will investigate if there is a way to represent the function in
such a way that all desirable information we would like to know about the function is easy to obtain. In
particular, we will provide (finite) criteria that allow us to determine if a function is injective/surjective
(cf. Theorem 1.7.4).

Remark. These properties of a function can be difficult to grasp at first. Students tend to find that
injectivity is the hardest attribute of a function to comprehend. The next example is an attempt at
providing a simple introduction to the concept of injectivity/surjectivity of functions.

Example 0.2.3. Consider the set P described above (so an object in P is a person in Etcheverry, room
3109, at 10.10am on 6/18/2012) and let C denote the set of all possible cookie ice cream sandwiches
available at C.R.E.A.M. on Telegraph Avenue (for example, vanilla ice cream on white chocolate chip
cookies). Consider the following function

f : P → C ; x 7→ f (x) = x ’s favourite cookie ice cream sandwich.

In order for f to define a function we are assuming that nobody who is an element of P is indecisive so
that they have precisely one favourite cookie ice cream sandwich.2

So, for example,

f (George) = banana walnut ice cream on chocolate chip cookies.

What does it mean for f to be

- injective? Let’s go back to the definition: we require that for any two people x , y ∈ P, if
f (x) = f (y) then x = y , ie, if any two people in P have the same favourite cookie ice cream
sandwich then those two people must be the same person. Or, what is the same, no two people
in P have the same favourite cookie ice cream sandwich.

- surjective? Again, let’s go back to the definition: we require that, if y ∈ C then there exists
some x ∈ P such that f (x) = y , ie, for any possible cookie ice cream sandwich y available at
C.R.E.A.M. there must exist some person x ∈ P for which y is x ’s favourite cookie ice cream
sandwich.

There are a couple of things to notice here:

1. in order for f to be surjective, we must necessarily have at least as many objects in P as there are
objects in C. That is

f surjective =⇒ |P| ≥ |C|.

2. in order for f to be injective, there must necessarily be more objects in C as there are in P. That
is

f injective =⇒ |P| ≤ |C|.

3. if P and C have the same number of objects then f is injective if and only if f is surjective.

You should understand and provide a short proof as to why these properties hold true.

The fact that these properties are true is dependent on the fact that both P and C are finite sets. We
will see a generalisation of these properties to finite dimensional vector spaces and linear morphisms
between them: here we replace the ‘size’ of a vector space by its dimension (a linear algebra measure of
‘size’).

We will now include a basic lemma that will be useful throughout these notes. Its proof is left to the
reader.

Lemma 0.2.4. Let f : R → S and g : S → T be two functions.

2Why are we making this assumption?
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- If f and g are both injective, then g ◦ f : R → T is injective. Moreover, if g ◦ f is injective then
f is injective.

- If f and g are both surjective, then g ◦ f : R → T is surjective. Moreover, if g ◦ f is surjective
then g is surjective.

- If f and g are bijective, then g ◦ f : R → T is bijective.
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1 Vector Spaces & Linear Morphisms

This chapter is intended as a reintroduction to results that you have probably seen before in your
previous linear algebra course. However, we will adopt a slightly more grown-up viewpoint and discuss
some subtleties that arise when we are considering infinite dimensional vector spaces. Hopefully most
of the following results are familiar to you - don’t forget or disregard any previous intuition you have
gained and think of the following approach as supplementing those ideas you are already familiar with.

1.1 Fields

[[1] p. 1-3]

In your previous linear algebra course (eg. Math 54) you will have mostly worked with column (or row)
vectors with real or complex coefficients. However, most of linear algebra does not require that we work
only with real or complex entries, only that the set of ‘scalars’ we use satisfy some nice properties.

For those of you who have taken an Abstract Algebra course (eg. Math 113) you may have already
been introduced to the notion of a ring or a field. What follows is a very brief introduction to (number)
fields.

Definition 1.1.1 (Number Field). A nonempty set K3 is called an number field if

1. Z ⊂ K,

2. there are well-defined notions of addition, subtraction, multiplication and division that obey all
the usual laws of arithmetic.

Note that, by 1. we have that K contains every integer x ∈ Z. Therefore, by 2., since we must be able
to divide through by nonzero x , we necessarily have Q ⊂ K.

Example 1.1.2. 1. Q,R,C are all examples of number fields. However, Z is not a number field since
2 does not have a multiplicative inverse in Z.

2. Consider the set
Q(
√

2) = {a + b∆ | a, b ∈ Q} ,

where we consider ∆ as some symbol. Define an addition on Q(
√

2) as follows: for z = a + b∆, w =
c + d∆ ∈ Q(

√
2), define

z + w = (a + c) + (b + d)∆ ∈ Q(
√

2), −z = −a + (−b)∆,

z .w = (ac + 2bd) + (ad + bc)∆, z−1 =
a

a2 − 2b2
− b

a2 − 2b2
∆.

Note that a2 − 2b2 6= 0, for any a, b ∈ Q such that (a, b) 6= (0, 0), since
√

2 is irrational.

Then, it is an exercise to check that all the usual rules of arithmetic (eg. Rules 1-9 on p.1 of [1]) hold
for this addition and multiplication just defined. Moreover, it is easy to check that

(1.∆)2 = 2,

so that we can justify swapping the symbol
√

2 for ∆.

Be careful though: we do not care about the actual value of
√

2 (=1.414...) as a real number, we are
only interested in the algebraic properties of this number, namely that it squares to 2, and as such only

consider
√

2 as a symbol such that
√

2
2

= 2 in our number field Q(
√

2).

You should think of Q(
√

2) in the same way as C: for our purposes of arithmetic, we do not care whether√
2 is a ‘real’ number or not, we only care about its basic algebraic properties as a symbol.

3We adopt the letter K for a (number) field following the Germans. In German the word for a ‘(number) field’ is
‘(zahlen) korps’. The notation Z for the integers also comes from the German word zahlen, meaning ‘number’. Most of
the basics of modern day algebra was formulated and made precise by German mathematicians, the foremost of whom
being C. F. Gauss, D. Hilbert, R. Dedekind, E. Noether, E. Steinitz and many, many others.
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Why should we care about Q(
√

2) when we can just think about R? Most of modern number theory
is concerned with the study of number fields and there is some sense in which the deep structure of
number fields is related to seemingly unrelated areas of mathematics such as real analysis.

3. Let p > 0 be a nonsquare integer, so that there does not exist x ∈ Z such that x2 = p. Then, we
can form the number field Q(

√
p) in a similar manner as above.

4. The p-adic numbers Qp: let p be a prime number. Then, you may have heard of the p-adic numbers:
this is a number field that is obtained from Q in a similar way that R can be obtained from Q (via
Cauchy sequences; this is Math 104 material). Essentially, a p-adic number a ∈ Qp can be considered
as a formal power series

a =
∑
i≥m

ai p
i = ampm + am+1pm+1 + · · · , ai ∈ {0, 1, ... , p − 1}, m ∈ Z,

where we do not care about the fact that this ‘sum’ does not converge and add and multiply as you
would as if you were in high school (remembering to reduce coefficients modulo p). We will not talk
about this number field again and if you are interested in learning more simply Google ‘p-adic numbers’
and there will be plenty information available online.

5. The field of rational polynomials Q(t): here we have

Q(t) = {p/q | p, q ∈ Q[t], q 6= 0} ,

where Q[t] is the set of polynomials with rational coefficients. For example,

3− 5
3 t8

t2 + 2
7 t167

∈ Q(t).

Again, Q(t) is a number field and arises in algebraic geometry, that area of mathematics concerned with
solving systems of polynomials equations (it’s very hard!).

Remark. 1. The definition of ‘number field’ given above is less general than you might have seen: in
general, a field K is a nonempty set for which there are well-defined notions of addition, subtraction,
multiplication and division (and obeying all the usual laws of arithmetic) without the extra requirement
that Z ⊂ K; this is the definition given in [1]. The definition we have given in Definition 1.1.1 defines
a field of characteristic zero.

2. In this course we will only be concerned with ‘linear algebra over number fields’, meaning the scalars
we consider will have to take values in a number field K as defined in Definition 1.1.1. Moreover, most
of the time we will take K ∈ {Q,R,C} and when we come to discuss Euclidean (resp. Hermitian) spaces
we must necessarily have K = R (resp. K = C).

In grown-up mathematical language we will be studying ‘vector spaces over characteristic zero fields’
(or, in an even more grown-up language, K-modules, where K is a characteristic zero field).

From now on, K will always denote a number field.

1.2 Vector Spaces

1.2.1 Basic Definitions

[p.31-33, [1]]

Definition 1.2.1 (Vector Space). A K-vector space (or vector space over K) is a triple (V ,α,σ), where
V is a nonempty set and

α : V × V → V ; (u, v) 7→ α(u, v), σ : K× V → V ; (λ, v) 7→ σ(λ, v),

are two functions called addition and scalar multiplication, and such that the following axioms are
imposed:
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(VS1) α is associative: for every u, v , w ∈ V we have

α(u,α(v , w)) = α(α(u, v), w);

(VS2) α is commutative: for every u, v ∈ V we have

α(u, v) = α(v , u);

(VS3) there exists an element 0V ∈ V such that, for every v ∈ V , we have

α(0V , v) = α(v , 0V ) = v .

We call 0V a (in fact, the4) zero element or zero vector of V ;

(VS4) for every v ∈ V there exists an element v̂ ∈ V such that

α(v , v̂) = α(v̂ , v) = 0V .

We call v̂ the5 negative of v and denote it −v ;

(VS5) for every λ,µ ∈ K, v ∈ V , we have

σ(λ+ µ, v) = α(σ(λ, v),σ(µ, v));

(VS6) for every λ,µ ∈ K, v ∈ V , we have

σ(λµ, v) = σ(λ,σ(µ, v));

(VS7) for every λ ∈ K, u, v ∈ V , we have

σ(λ,α(u, v)) = α(σ(λ, u),σ(λ, v));

(VS8) for every v ∈ V we have
σ(1, v) = v .

In case α and σ satisfy the above axioms so that (V ,α,σ) is a vector space (over K) we will usually
write

α(u, v) = u + v , u, v ,∈ V ,
σ(λ, v) = λ · v , or simply σ(λ, v) = λv , λ ∈ K, v ∈ V .

If (V ,α,σ) is a vector space over K then we will call an element x ∈ V a vector and an element λ ∈ K
a scalar.

If v ∈ V is such that
v = λ1v1 + ... + λnvn,

for some vectors v1, ... , vn ∈ V and scalars λ1, ... ,λn ∈ K, then we say that v is a linear combination
of the vectors v1, ... , vn.

4See Proposition 1.2.3.
5We shall see (Proposition 1.2.4) that the negative of v is unique, so that this notation is well-defined.
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Remark 1.2.2. The given definition of a vector space might look cumbersome given the introduction
of the functions α and σ. However, it is important to realise that these defined notions of addition
and scalar multiplication tell us how we are to ‘add’ vectors and how we are to ‘scalar multiply’ vectors
by scalars in K; in particular, a nonempty set V may have many different ways that we can define a
vector space structure on it, ie, it may be possible that we can obtain two distinct K-vector spaces
(V ,α,σ) and (V ,α′,σ′) which have the same underlying set but different notions of addition and scalar
multiplication. In this case, it is important to know which ‘addition’ (ie, which function α or α′) we are
discussing, or which ‘scalar multiplication’ (ie, which function σ or σ′) we are discussing.

In short, the definition of a vector space is the data of providing a nonempty set together with the rules
we are using for ‘addition’ and ‘scalar multiplication’.

Notation. • Given a K-vector space (V ,α,σ) we will usually know which notions of addition and scalar
multiplication we will be discussing so we will often just write V instead of the triple (V ,α,σ), the
functions α,σ being understood a priori.

•We will also frequently denote an arbitrary vector space (V ,α,σ) by V , even when we don’t know what
α,σ are explicitly. Again, we are assuming that we have been given ‘addition’ and ‘scalar multiplication’
functions a priori.

Proposition 1.2.3. Let (V ,α,σ) be a K-vector space. Then, a zero vector 0V ∈ V is unique.

Proof: Suppose there is some element z ∈ V such that z satisfies the same properties as 0V , so
that, for every v ∈ V , we have z + v = v + z = v . Then, in particular, we have

0V = z + 0V = z ,

where the first equality is due to the characterising properties of z as a zero vector (Axiom VS3), and
the second equality is due to the characterising property of 0V as a zero vector (Axiom VS3). Hence,
z = 0V so that a zero vector is unique.

Proposition 1.2.4 (Uniqueness of negatives). Let (V ,α,σ) be a K-vector space. Then, for every v ∈ V ,
the element v̂ that exists by Axiom VS4 is unique.

Proof: Let v ∈ V and suppose that w ∈ V is such that w + v = v + w = 0V . Then,

w = w + 0V = w + (v + v̂), by defining property of v̂ ,

= (w + v) + v̂ , by Axiom VS1,

= 0V + v̂ , by assumed property of w ,

= v̂ , by Axiom VS3.

Hence, w = v̂ and the negative of v is unique.

Proposition 1.2.5 (Characterising the zero vector). Let (V ,α,σ) be a K-vector space. Then, for every
v ∈ V we have 0 · v = 0V . Moreover, λ · 0V = 0V , for every λ ∈ K. Conversely, if λ · v = 0V with
v 6= 0V , then λ = 0 ∈ K.

Proof: Let v ∈ V . Then, noting the trivial fact that 0 = 0 + 0 ∈ K, we have

0 · v = (0 + 0) · v = 0 · v + 0 · v , by Axiom VS5,

=⇒ 0V = 0 · v + (−0 · v) = (0 · v + 0 · v) + (−0 · v) = 0 · v + (0 · v + (−0 · v)), using Axiom VS1,

=⇒ 0V = 0 · v + 0V = 0 · v , using Axioms VS3 and VS4.

Furthermore, in a similar way (using Axioms VS3, VS4 and VS7) we can show that λ · 0V = 0V , for
every λ ∈ K.6

6Do this as an exercise!

11



Conversely, suppose that v 6= 0V is a vector in V and λ ∈ K is such that λv = 0V . Assume that λ 6= 0;
we aim to provide a contradiction. Then, λ−1 exists and we have

v = 1 · v = (λ−1λ) · v , using Axiom VS8,

= λ−1 · (λ · v), by Axiom VS6,

= λ−1 · 0V , using our assumption,

= 0V , by the result just proved.

But this contradicts our assumption that v is nonzero. Hence, our initial assumption that λ 6= 0 cannot
hold so that λ = 0 ∈ K.

The following examples will be fundamental for the rest of the course so make sure that you acquaint
yourself with them as they will be used frequently throughout class and on homework/exams. As such,
if you are having trouble understanding them then please ask a fellow student for help or feel free to
send me an email and I will help out as best I can.

I have only provided the triple (V ,α,σ) in each example, you should define the zero vector in each
example and the negative of an arbitrary given vector v ∈ V . Also, you should check that the Axioms
VS1-VS8 hold true.

Example 1.2.6. 1. For n ∈ N, consider the K-vector space (Kn,α,σ), where

Kn =


x1

...
xn

 | x1, ... , xn ∈ K

 ,

α


x1

...
xn

 ,

y1

...
yn


 =

x1 + y1

...
xn + yn

 , and σ

λ,

x1

...
xn


 =

λx1

...
λxn

 .

We will usually denote this vector space simply Kn. It is of fundamental importance in all that follows.

We will denote by ei ∈ Kn, the column vector that has a 1 in the i th entry and 0s elsewhere, and call it
the i th standard basis vector.

2. Let S be an arbitrary nonempty set. Then, define the K-vector space (KS ,α,σ), where

KS = {functions f : S → K},

α(f , g) : S → K ; s 7→ f (s) + g(s) ∈ K, and σ(λ, f ) : S → K ; s 7→ λf (s).

That is, we have defined the sum of two functions f , g ∈ KS to be the new function α(f , g) : S → K
such that α(f , g)(s) = f (s) + g(s) (here the addition is taking place inside the number field K).

Since this example can be confusing at first sight, I will give you the zero vector 0KS and the negative
of a vector f ∈ KS : since the elements in KS are functions we need to ensure that we define a function

0KS : S → K,

satisfying the properties required of Axiom VS3. Consider the function

0KS : S → K ; s 7→ 0,

that is, 0KS (s) = 0 ∈ K, for every s ∈ S . Let’s show that this function just defined satisfies the
properties required of a zero vector in (KS ,α,σ). So, let f ∈ KS , ie,

f : S → K ; s 7→ f (s).

12



Then, we have, for every s ∈ S ,

α(f , 0KS )(s) = f (s) + 0KS (s) = f (s) + 0 = f (s),

so that α(f , 0KS ) = f . Similarly, we have α(0KS , f ) = f . Hence, 0KS satisfies the properties required of
the zero vector in KS (Axiom VS3).

Now, let f ∈ KS . We define a function −f ∈ KS as follows:

−f : S → K ; s 7→ −f (s) ∈ K.

Then, −f satsfies the properties required of the negative of f (Axiom VS4).

For every s ∈ S , we define the characteristic function of s, es ∈ KS , where

es(t) =

{
0, if t 6= s,

1, if t = s.

For example, if S = {1, 2, 3, 4} then

KS = {functions f : {1, 2, 3, 4} → K}.

What is a function f : {1, 2, 3, 4} → K? To each i ∈ {1, 2, 3, 4} we associate a scalar f (i) ∈ K, which

we can also denote fi
def
= f (i). This choice of notation should lead you to think there is some kind of

similarity between K4 and K{1,2,3,4}; indeed, these two vector spaces are isomorphic, which means they
are essentially the same (in the world of linear algebra).

For example, we have the characteristic function e2 ∈ K{1,2,3,4}, where

e2(1) = e2(3) = e2(4) = 0, e2(2) = 1.

3. Let m, n ∈ N and consider the sets [m] = {1, ... , m}, [n] = {1, ... , n}. Then, we have the set

[m]× [n] = {(x , y) | x ∈ [m], y ∈ [n]}.

Then, we define the set of m × n matrices with entries in K to be

Matm,n(K)
def
= K[m]×[n].

Hence, an m× n matrix A is a function A : [m]× [n]→ K, ie, a matrix is completely determined by the
values A(i , j) ∈ K, for (i , j) ∈ [m]× [n]. We will denote such an m × n matrix in the usual way:

A ≡

A11 · · · A1n

...
. . .

...
Am1 · · · Amn

 ,

where we have Aij
def
= A(i , j). Thus, we add and scalar multiply m × n matrices ‘entry-wise’.

We will denote the zero vector 0Matm,n(K) ∈ Matm,n(K) by 0m,n.

4. This is a generalisation of the previous examples. Let (V ,β, τ) be a vector space and S any nonempty
set. Define the K-vector space (V S ,α,σ) where

V S def
= {functions f : S → V },

α(f , g) : S → V ; s 7→ β(f (s), g(s)), and σ(λ, f ) : S → V ; s 7→ τ(λ, f (s)).

13



This might look a bit confusing to you so let’s try and make things a bit clearer: denote the addition
afforded by β as +̂, so that if u, v ∈ V then the addition defined in V is denoted u+̂v . If we denote
the addition we have defined by α in V S as +̃, then the previous definition states that

∀f , g ∈ V S , define f +̃g(= α(f , g)) ∈ V S by (f +̃g)(s) = f (s)+̂g(s)(= β(f (s), g(s))) ∈ V .

5. Consider the set
K[t]

def
= {a0 + a1t + ... + amtm | am ∈ K, m ∈ Z≥0},

of polynomials with coefficients in K. Define the K-vector space (K[t],α,σ) where, for

f = a0 + a1t + ... + amtm, g = b0 + b1t + ... + bntn ∈ K[t],

with m ≤ n, say, we have

α(f , g) = (a0 + b0) + (a1 + b1)t + ... + (am + bm)tm + bm+1tm+1 + ... + bntn.

Also, we have, for λ ∈ K,
σ(λ, f ) = (λa0) + (λa1)t + ... + (λam)tm.

That is, for any two polynomials f , g ∈ K[t] we simply add and scalar multiply them ‘coefficient-wise’.

For n ∈ Z≥0 we define the vector spaces (Kn[t],αn,σn) where,

Kn[t] = {f = a0 + a1t + ... + amtm ∈ K[t] | m ≤ n},

αn(f , g) = α(f , g), and σn(λ, f ) = σ(λ, f ).

Here Kn[t] is the set of all polynomials with coefficients in K of degree at most n; the fact that we have
defined the addition and scalar multiplication in Kn[t] via the addition and scalar multiplication of K[t]
is encoded in the notion of a vector subspace.

(∗) There is an important (and subtle) point to make here: a vector f ∈ K[t] (or Kn[t]) is just a
formal expression

f = a0 + a1t + ... + antn, a0, ... , an ∈ K.

This means that we are only considering a polynomial as a formal symbol that we add and scalar multiply
according to the rules we have given above. In particular, two polynomials f , g ∈ K[t] are equal, so
that f = g ∈ K[t], if and only if they are equal coefficient-wise.

This might either seem obvious or bizarre to you. I have included this comment as most students are
used to seeing polynomials considered as functions

f : K→ K ; t 7→ f (t) =
n∑

i=0

ai t
i ,

and I am saying that we do not care about this interpretation of a polynomial, we are only concerned
with its formal (linear) algebraic properties. This is why I will write ‘f ’ instead of ‘f (t)’ for a polynomial.
You might wonder why we even bother writing a polynomial as

f = a0 + a1t + ... + antn,

when we don’t care about the powers of t that are appearing, we could just write

f = (a0, ... , an),

and ‘represent’ the polynomial f by this row vector (or, even a column vector). Well, the K-vector space
of polynomials has a further property, it is an example of a K-algebra: for those of you who will take
Math 113, this means K[t] is not only a K-vector space, it is also has the structure of an algebraic
object called a ring. This extra structure arises from the fact that we can multiply polynomials together
(in the usual way) and in this context we do care about the powers of t that appear.
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6. All the previous examples of K-vector spaces have underlying sets that are infinite. What happens if
we have a K-vector space (V ,α,σ) whose underlying set V is finite?

First, we give an example of a K-vector space containing one element: we define the7 trivial K-vector
space to be (Z ,α,σ) where Z = {0Z} and

α : Z × Z → Z ; (0Z , 0Z ) 7→ 0Z , and σ : K× Z → Z ; (λ, 0Z ) 7→ 0Z .

This defines a structure of a K-vector space on Z .8

Now, recall that we are assuming that K is a number field so that Z ⊂ K and K must therefore be infinite.
Also, let’s write (as we will do for the rest of these notes) λv instead of σ(λ, v), for v ∈ V ,λ ∈ K.

Since V defines a vector space then we must have the zero element 0V ∈ V (Axiom VS3). Suppose that
there exists a nonzero vector w ∈ V (ie w 6= 0V ); we aim to provide a contradiction, thereby showing
that V must contain exactly one element. Then, since λw ∈ V , for every λ ∈ K, and K is infinite we
must necessarily have distinct scalars µ1,µ2 ∈ K such that µ1w = µ2w (else, all the λw ’s are distinct,
for all possible λ ∈ K. Since there are an infinite number of these we can’t possibly have V finite).
Furthermore, we assume that both µ1 and µ2 are nonzero scalars9. Hence, we have

w = 1w = (µ−1
1 µ1)w = µ−1

1 (µ1w) = µ−1
1 (µ2w) = (µ−1

1 µ2)w ,

where we have used Axiom VS6 for the third and fifth equalities and our assumption for the fourth
equality.

Hence, adding −(µ−1
1 µ2)w to both sides of this equation gives

w + (−(µ−1
1 µ2)w) = 0V =⇒ (1− µ−1

1 µ2)w = 0V , by Axiom VS5.

Therefore, by Proposition 1.2.5, we must have

1− µ−1
1 µ2 = 0 ∈ K =⇒ µ1 = µ2,

contradicting the fact that µ1 and µ2 are distinct. Hence, our intial assumption - that there exists a
nonzero vector w ∈ V - cannot hold true, so that V = {0V }.

Any K-vector space (V ,α,σ) for which V is a finite set must be a trivial K-vector space.

7. The set of complex numbers C is a R-vector space with the usual addition and scalar multiplication
(scalar multiply z ∈ C by x ∈ R as xz ∈ C). Moreover, both R and C are Q-vector spaces with the
usual addition and scalar multiplication.

However, R is not a Q(
√
−1)-vector space, where Q(

√
−1) = {a+b

√
−1 | a, b ∈ Q} with the arithmetic

laws defined in a similar way as we have defined for C.

Moreover, Q is not a R-vector space nor a C-vector space; R is not a C-vector space.

Remark 1.2.7. From now on we will no longer denote a particular K-vector space that appears in
Example 1.2.6 as a triple (V ,α,σ) but only denote its underlying set V , the operations of addition and
scalar multiplication being understood to be those appearing above. We will also write u + v (resp. λv)
instead of α(u, v) (resp. σ(λ, v)) for these examples.

7Technically, we should say ‘a’ instead of ‘the’ as any one-point set defines a K-vector space and all of them are equally
‘trivial’. However, we can show that all of these trivial K-vector spaces are isomorphic (a notion to be defined in the next
section) so that, for the purposes of linear algebra, they are all (essentially) the same. For our purposes we will not need
to care about this (extremely subtle) distinction.

8Exercise: check this. Note that this is the only possible K-vector space structure we can put on Z . Moreover, if you
think about it, you will see that any set with one element defines a K-vector space.

9Why? Try and prove this as an exercise.
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1.2.2 Subspaces

[p.42, [1]]

Definition 1.2.8 (Subspace). Let (V ,α,σ) be a K-vector space and U ⊂ V a nonempty subset. Then,
we say that U is a vector subspace of V if the following properties hold:

(SUB1) 0V ∈ U,

(SUB2) for every u, v ∈ U, we have α(u, v) ∈ U, (closed under addition)

(SUB3) for every λ ∈ K, u ∈ U, we have σ(λ, u) ∈ U. (closed under scalar multiplication)

In fact, we can subsume these three properties into the following single property

(SUB) for every u, v ∈ U,µ,λ ∈ K, we have α(σ(µ, u),σ(λ, v)) ∈ U (ie, µu + λv ∈ U).

In this case, U can be considered as a K-vector space in its own right: we have a triple (U,α|U ,σ|U )
where α|U (resp. σ|U ) denote the functions α (resp. σ) restricted to U.10 Notice that we need to ensure
that U is closed under addition (and scalar multiplication) in order that the functions α|U and σ|U are
well-defined.

Example 1.2.9. Recall the examples from Example 1.2.6 and our conventions adopted thereafter (Re-
mark 1.2.7).

0. There are always two obvious subspaces of a K-vector space V : namely, V is a subspace of itself,
and the subset {0V } ⊂ V is a subspace of V called the zero subspace. We call these subspaces the
trivial subspaces of V . All other subspaces are called nontrivial.

1. Consider the Q-vector space Q3 and the subset

U =


x1

x2

x3

 ∈ Q3 | x1 + x2 − 2x3 = 0

 .

Then, U is a Q-vector space.

How can we confirm this? We need to show that U satisfies the Axiom SUB from Definition 1.2.8. So,
let u, v ∈ U and µ,λ ∈ Q. Thus,

u =

x1

x2

x3

 , with x1 + x2 − 2x3 = 0, and

v =

y1

y2

y3

 , with y1 + y2 − 2y3 = 0.

Then,

µu + λv =

µx1

µx2

µx3

+

λy1

λy2

λy3

 =

µx1 + λy1

µx2 + λy2

µx3 + λy3

 ,

and to show that µu + λv =

z1

z2

z3

 ∈ U we must show that z1 + z2 − 2z3 = 0: indeed, we have

z1 + z2 − 2z3 = (µx1 + λy1) + (µx2 + λy2)− 2(µx3 + λy3),

= µ(x1 + x2 − 2x3) + λ(y1 + y2 − 2y3),

= 0 + 0 = 0.

10Here is an important but subtle distinction: the functions α and α|U are not the same functions. Recall that when
we define a function we must also specify its domain and codomain. The functions α and α|U are defined as

α : V × V → V ; (u, v) 7→ α(u, v), α|U : U × U → U ; (u′, v ′) 7→ α(u′, v ′),

So, technically, even though α and α|U are defined by the same ‘rule’, they have different (co)domains so should be
considered as different functions. The same reasoning holds for σ and σ|U (how are these functions defined?)
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Hence, U is a vector subspace of Q3.

2. Consider the subset

U =

{[
x1

x2

]
| x1 = 1

}
⊂ C2,

of the C-vector space C2. Then, U is not a vector subspace of C2.

How can we show that a given subset E of a K-vector space V is not a vector subspace? We must
show that E does not satisfy all of the Axioms SUB1-3 from Definition 1.2.8, so we need to show that
at least one of these axioms fails to hold. If you are given some subset (eg. U ⊂ C2 above) and want
to determine that it is not a subspace, the first thing to check is whether the zero vector is an element
of this subset: for us, this means checking to see if 0C2 ∈ U. This is easy to check: we have

0C2 =

[
0
0

]
,

and since the first entry of 0C2 6= 1 it is not an element in the set U. Hence, Axiom SUB1 does not
hold for the subset U ⊂ C2 so that U is not a subspace of C2.

However, it is possible for a subset E ⊂ V of a vector space to contain the zero vector and still not be
a subspace.11

3. This is an example that requires some basic Calculus.

Consider the R-vector space R(0,1) consisting of all R-valued functions

f : (0, 1)→ R,

and the subset
CR(0, 1) = {f ∈ R(0,1) | f is continuous}.

Then, it is a fact proved in Math 1A that CR(0, 1) is a vector subspace of R(0,1): namely, the (constant)
zero function is continuous, the sum of two continuous functions is again a continuous function and a
scalar multiple of a continuous function is a continuous function.

4. Consider the Q-vector space Mat3(Q) of 3× 3 matrices with Q-entries. Then, for a 3× 3 matrix A
define the trace of A to be

tr(A) = tr

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11 + a22 + a33 ∈ Q.

Denote
sl3(Q) = {A ∈ Mat3(Q) | tr(A) = 0},

the set of 3 × 3 matrices with trace zero. Then, sl3(Q) is a subspace of Mat3(Q). Let’s check the
Axioms SUB1-3 from Definition 1.2.8 (or, equivalently, you can just check Axiom SUB):

SUB1: recall that the zero vector in Mat3(Q) is just the zero matrix

0Mat3(Q) =

0 0 0
0 0 0
0 0 0

 .

Thus, it is trivial to see that this matrix has trace zero so that 0Mat3(Q) ∈ sl3(Q).

11For example, consider the subset Q ⊂ R of the R-vector space R.
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SUB2: let A, B ∈ sl3(Q) be two matrices with trace zero, so that

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , with a11 + a22 + a33 = 0, and

B =

b11 b12 b13

b21 b22 b23

b31 b32 b33

 , with b11 + b22 + b33 = 0.

Then,

A + B =

a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

a31 + b31 a32 + b32 a33 + b33

 ,

and

(a11 + b11) + (a22 + b22) + (a33 + b33) = (a11 + a22 + a33) + (b11 + b22 + b33) = 0 + 0 = 0,

so that A + B ∈ sl3(Q).

SUB3: let A,∈ sl3(Q),λ ∈ Q. Then,

λA =

λa11 λa12 λa13

λa21 λa22 λa23

λa31 λa32 λa33

 ,

and
λa11 + λa22 + λa33 = λ(a11 + a22 + a33) = λ.0 = 0.

Hence, sl3(Q) is a subspace of the Q-vector space Mat3(Q).

5. Consider the subset GL3(Q) ⊂ Mat3(Q), where

GL3(Q) = {A ∈ Mat3(Q) | det(A) 6= 0}.

Here, det(A) denotes the determinant of A that you should have already seen in Math 54 (or an
equivalent introductory linear algebra course). Then, GL3(Q) is not a vector subspace.

Again, we need to show that at least one of Axioms SUB1-3 does not hold: we will show that Axiom
SUB2 does not hold. Consider the 3 × 3 identity matrix I3 ∈ Mat3(Q). Then, I3 ∈ GL3(Q) and
−I3 ∈ GL3(Q). However,

det(I3 + (−I3)) = det(0Mat3(Q)) = 0,

so that GL3(Q) is not closed under addition, therefore is not a subspace of Mat3(Q).

Note that we could have also shown that 0Mat3(Q) /∈ GL3(Q).12

6. This example generalises Examples 1 and 4 above.13 Consider the subset

U =

x =

x1

...
xn

 ∈ Kn | Ax = 0 ∈ Km

 ,

where A is an m × n matrix with entries in K. Then, U is a vector subspace of Kn.

In the next section we will see that we can interpret U as the kernel of a linear transformation

TA : Kn → Km ; x 7→ Ax ,

12Here, the symbol /∈ should be translated as ‘is not a member of’ or ‘is not an element of’.
13Once we have (re)considered linear transformations in the next section you should explain why we are generalising

those particular examples.

18



defined by the matrix A. As such, we will leave the proof that U is a subspace until then.

Note here an important point: if b 6= 0 ∈ Km then the subset

W =

x =

x1

...
xn

 ∈ Kn | Ax = b ∈ Km

 ⊂ Kn,

is not a vector subspace of Kn. For example, 0Kn /∈W . This is the generalisation of Example 2 above.

So, a slogan might be something like

‘subspaces are kernels of linear maps’.

In fact, this statement is more than just a slogan14:

Theorem. Let V be a K-vector space and U ⊂ V a subspace. Then, there exists a K-vector space W
and a K-linear morphism π : V →W such that U = ker π.

We will now provide some constructions that allow us to form new subspaces from old subspaces.

Definition 1.2.10 (Operations on Subspaces). Let V be a K-vector space, U, W ⊂ V two subspaces
of V . Then,

- the sum of U and W is the subspace15

U + W = {u + w ∈ V | u ∈ U, w ∈W },

- the intersection of U and W is the subspace16

U ∩W = {v ∈ V | v ∈ U and v ∈W },

Moreover, these notions can be extended to arbitrary families of subspace (Uj )j∈J , with each Uj ⊂ V a
subspace of V .

We say that the sum of U and W is a direct sum, if U ∩W = {0V } is the zero subspace of V . In this
case we write

U
⊕

W , instead of U + W . (cf. p.45, [1])

Proposition 1.2.11. Let V be a K-vector space and U, W ⊂ V vector subspaces. Then, V = U ⊕W
if and only if, for every v ∈ V there exists unique u ∈ U and unique w ∈W such that v = u + w.

Proof: (⇒) Suppose that V = U⊕W . By definition, this means that V = U+W and U∩W = {0V }.
Hence, for every v ∈ V we have u ∈ U, w ∈ W such that v = u + w (dy the definition of the sum
U + W ). We still need to show that this expression is unique: if there are u′ ∈ U, w ′ ∈W such that

u′ + w ′ = v = u + w ,

then we have
u′ − u = w − w ′,

and the LHS of this equation is a vector in U (since it’s a subspace) and the RHS is a vector in W
(since it’s a subspace). Hence, if we denote this vector y (so y = u′−u = w −w ′) then we have y ∈ U
and y ∈W so that y ∈ U ∩W , by definition. Therefore, as U ∩W = {0V }, we have y = 0V so that

u′ − u = 0V , and w − w ′ = 0V ,

giving u = u′ and w = w ′ and the uniqueness is verified.

14The proof of the Theorem requires the notion of a quotient space.
15You will prove this for homework.
16You will prove this for homework.
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(⇐) Conversely, suppose that every vector v ∈ V can be expressed uniquely as v = u +w for u ∈ U and
w ∈W . Then, the existence of this expression for each v ∈ V is simply the statement that V = U +W .
Moreover, let x ∈ U ∩W , so that x ∈ U and x ∈ W . Thus, there are u ∈ U and w ∈ W (namely,
u = x and w = x) such that

0V + w = x = u + 0V ,

and since U and W are subspaces (so that 0V ∈ U, W ) we find, by the uniqueness of an expression for
x ∈ U ∩W ⊂ V , that u = 0V = w . Hence, x = 0V and U ∩W = {0V }.

1.3 Linear Dependence & spanK

In this section we will make precise the notion of linear (in)dependence. This is a fundamental concept
in linear algebra and abstracts our intuitive notion of (in)dependent directions when we consider the
(Euclidean) plane R2 or (Euclidean) space R3.

Definition 1.3.1. Let V be a K-vector space17, and let {v1, ... , vn} ⊂ V be some subset. A linear
relation (over K) among v1, ... , vn is an equation

(1.3.1) λ1v1 + ... + λnvn = 0V ,

where λ1, ... ,λn ∈ K are scalars.

If λ1 = λ2 = · · · = λn = 0 then we call (1.3.1) a trivial linear relation (among v1, ... , vn).

If at least one of λ1, ... ,λn is nonzero, so thatλ1

...
λn

 6= 0Kn ,

then we call (1.3.1) a nontrivial linear relation (among v1, ... , vn).

Now, let E ⊂ V be an arbitrary nonempty subset (possibly infinite; NOT necessarily a subspace). We
say that E is linearly dependent (over K) if there exists v1, ... , vn ∈ E and a nontrivial linear relation
(over K) among v1, ... , vn.

If E is not linearly dependent (over K) then we say that E is linearly independent (over K).

Remark 1.3.2. There are some crucial remarks to make:

1. We have defined linear (in)dependence for an arbitrary nonempty subset E of a K-vector space V . In
particular, E may be infinite (for example, we could take E = V !18). However, for a subset to be linearly
dependent we need only find a linear relation among finitely many vectors in E . Hence, if there is a
linear relation (over K) of the form (1.3.1) for some vectors v1, ... , vn ∈ V and some scalars λ1, ... ,λn

(at least one of which is nonzero), then for any subset S ⊂ V such that {v1, ... , vn} ⊂ S , we must have
that S is linearly dependent.

2. We will make more precise the notion of linear independence: suppose that E ⊂ V is a linearly
independent set. What does this mean? Definition 1.3.1 defines a subset of V to be linearly independent
if it is not linearly dependent. Therefore, a subset E is linearly independent is equivalent to saying that
there cannot exist a nontrivial linear relation (over K) among any (finite) subset of vectors in E .

So, in order to show that a subset is linearly independent we need to show that no nontrivial linear
relations (over K) can exist among vectors in E . This is equivalent to showing that the only linear
relations that exist among vectors in E must necessarily be trivial:

Suppose that we can write 0V as a linear combination
λ1v1 + ... + λnvn = 0V ,

for some v1, ... , vn ∈ E and scalars λ1, ... ,λn ∈ K. Then, λ1 = · · · = λn = 0.

17Recall our conventions for notation after Remark 1.2.2.
18V is always linearly dependent. Why?
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Thus, in order to show a given subset E of a vector space E is linearly independent (this could be asked
as a homework question, for example) you must show that the above statement is true. This usually
requires some thought and ingenuity on your behalf. However, once we have the notion of coordinates
(with respect to a basis) we can turn this problem into one involving row-reduction (yay!).

However, to show that a subset E ⊂ V is linearly dependent you need to find explicit vectors v1, ... , vn ∈
E and explicit scalars λ1, ... ,λn (not all of which are zero) so that there is a nontrivial linear relation

λ1v1 + ... + λnvn = 0V .

This can sometimes be quite difficult! However, once we have the notion of coordinates then we need
only try to determine solutions to a matrix equation.

3. We have defined the notion of linear (in)dependence (over K). We will usually omit the phrase ‘over
K’ as it will be assumed implicit that we are seeking linear relations over K when we are considering
subsets of K-vector spaces.

Proposition 1.3.3. Let V be a K-vector space and E ⊂ V some nonempty subset. Then, if 0V ∈ E
then E is linearly dependent.

Proof: We must show that there exists a nontrivial linear relation among some collection of vectors
v1, ... , vn ∈ E . We know that 0V ∈ V and that there is the (obvious?) linear relation

1 · 0V = 0V ,

where we have used Proposition 1.2.5. Since we have found a nontrivial linear relation we conclude that
E must be linearly dependent.

Lemma 1.3.4. Let V be a K-vector space and E ⊂ V some subset. Then, E is linearly dependent if
and only if there exists a vector v ∈ E that can be written as a linear combination of some of the others.

Proof: (⇒) Suppose that E is linearly dependent. Then, there exists v1, ... , vn ∈ E and a nontrivial
linear relation

λ1v1 + ... + λvn = 0V .

We may assume, without loss of generality, that λ1 6= 0 and λ−1
1 therefore exists. Then, let v = v1 so

that we have
v = −λ−1

1 (λ2v2 + ... + λnvn) .

Hence, v = v1 is a linear combination of some of the other vectors in E .

The converse is left to the reader.

Corollary 1.3.5. Let V be a K-vector space, E ⊂ V a nonempty subset. If E is linearly independent
and v /∈ spanK E then E ∪ {v} is linearly independent.

Proof: This follows from Lemma 1.3.4: if E ′ = E ∪ {v} were linearly dependent then there would
exist some u ∈ E ′ such that u can be written as a linear combination of other vectors in E ′. WE can’t
have u = v , since v /∈ spanK E . Hence, u ∈ E so that it is possible to write u as a linear combination
of vectors in E . In this case, E would be linearly dependent by Lemma 1.3.4 which is absurd, since E
is assumed linearly independent. Hence, it is not possible for E ′ to be linearly dependent so it must be
linearly independent.

Question. Why did we care about finding λ1 6= 0? Why did we not just take the nontrivial relation
appearing in the proof of Lemma 1.3.4 and move everything to one side except λ1v1?

Example 1.3.6. Most of the following examples will only concern the linear (in)dependence of finite
subsets E . However, I will include a couple of examples where E is infinite to highlight different methods
of proof:

1. Consider the R-vector space R3 and the subset

E =


 1

2
−1

 ,

 0
−1
2

 ,

−1
2
0

 .
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How do we determine linear (in)dependence of E ? We must consider the vector equation

λ1

 1
2
−1

+ λ2

 0
−1
2

+ λ3

−1
2
0

 = 0R3 .

Then, if there exists a particular

λ1

λ2

λ3

 6= 0R3 satisfying this vector equation then E is linearly dependent

as we have found a nontrivial linear relation among the vectors in E . Otherwise, E must be linearly
independent.

So, determining the linear (in)dependence of E ⊂ R3 boils down to solving the homogeneous matrix
equation

Aλ = 0R3 , λ =

λ1

λ2

λ3

 ,

where A is the 3 × 3 matrix whose columns are the vectors in E . Thus, we must row-reduce A and
determine whether there exists a free variable or not: in the language of Math 54, we must determine
if there exists a column of A that is not a pivot column.

2. The previous example generalises to any finite subset E ⊂ Km, for any n ∈ N. Let E = {v1, ... , vn} ⊂
Km be a subset. Then, determining the linear (in)dependence of E is the same as solving the homoge-
neous matrix equation

Aλ = 0Km , λ =

λ1

...
λn

 ,

where A = [v1 v2 · · · vn] is the m × n matrix whose columns are the vectors in E .

If the only solution to this matrix equation is the zero solution (ie, the only solution is λ = 0Kn ) then
E is linearly independent. Otherwise, E is linearly dependent and any nonzero solution you find will
determine a nontrivial linear relation among v1, v2, ... , vn.

In general, we want to try and turn a linear (in)dependence problem into one that takes the preceeding
form as then we need only row-reduce a matrix and determine pivots.

3. This example is quite subtle and leads to number theoretic considerations: consider the Q-vector
space R. Then, the subset E = {1,

√
2} ⊂ R is linearly independent (over Q!).

Indeed, consider a linear relation (over Q)

a1.1 + a2.
√

2 = 0 ∈ R, where a1, a2 ∈ Q.

Assume that E is linearly dependent; we aim to provide a contradiction. Suppose that one of a1 or a2

is nonzero (in fact, we must have both of a1 and a2 are nonzero. Why?) Then, we have

√
2 = −a1

a2
∈ Q.

However, the Greeks discovered the (heretical19) fact that
√

2 is irrational, therefore we can’t possibly
have that

√
2 ∈ Q. As such, our intial assumption that E is linearly dependent must be false, so that

E is linearly independent (over Q).

If we consider R as a R-vector space then E is no longer linearly independent: we have

−
√

2.1 + 1.
√

2 = 0 ∈ R,

19It is believed that the Pythagorean school in ancient Greece kept the irrationality of
√

2 a secret from the public and
that Hippasus was murdered for revealing the secret!
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is a nontrivial linear relation (over R) among 1,
√

2.

This example highlights the fact that it is important to understand which scalars you are allowed
to use in a vector space as properties (for example, linear (in)dependence) can differ when we
change scalars.

4. Consider the R-vector space R3[t] given in Example 1.2.6. Then, the subset

E = {1, t, t2, t3} ⊂ R3[t],

is linearly independent.

We must show that the boxed statement in Remark 1.3.2 holds. So, assume that we have a linear
relation

λ1.1 + λ2.t + λ3.t2 + λ4.t3 = 0R3[t],

with λ1, ... ,λ4 ∈ R. Then, by definition, the zero polynomial 0R4[t] is the polynomial that has all
coefficients equal to zero. Therefore, from our remarks in Example 1.2.6 we must have λ1 = λ2 = λ3 =
λ4 = 0 (polynomials are equal if and only if they have equal coefficients).

5. This example might appear to be the same as the previous example but it is actually different:
consider CR(0, 1), the R-vector space of continuous functions f : (0, 1) → R. Let E = {f0, f1, f2, f3},
where

fi : (0, 1)→ R ; x 7→ x i .

Then, E is linearly independent.

Indeed, suppose that we have a linear relation

λ0f0 + ... + λ3f3 = 0CR(0,1), λ1, ... ,λ3 ∈ R.

Now, this is a linear relation between functions (0, 1) → R, and any two such functions f , g are equal
if and only if we have f (x) = g(x), for every x ∈ (0, 1). Hence, we are supposing that

λ0f0(x) + λ1f1(x) + λ2f2(x) + λ3f3(x) = 0CR(0,1)(x) = 0, for every x ∈ (0, 1),

=⇒ λ0 + λ1x + λ2x2 + λ3x3 = 0, for every x ∈ (0, 1).

There are now several ways to proceed: we can either use some calculus or a fundamental fact from
algebra. Using calculus, we can differentiate this equation with respect to x repeatedly to obtain that
λ3 = λ2 = λ1 = λ0 = 0. Alternatively, we can use the following basic fact from algebra: if we assume
that one of the λi ’s is nonzero then the polynomial on the LHS of the above equation (considered as a
function of x , not a formal expression) can have at most three distinct roots. However, since (0, 1) is
infinite we can choose four distinct roots (for example, x = 0.1, 0.2, 0.3, 0.4 are roots), which is absurd.
Hence, our assumption that one of the λi is nonzero is false, so that λ0 = ... = λ3 = 0 and E is linearly
independent.

There is also a linear algebra approach to this problem that will appear on a worksheet.

6. Examples 4 and 5 can be generalised to show that, if I ⊂ Z≥0 is some set of non-negative integers,
then the subsets

E1 = {t i | i ∈ I} ⊂ K[t], E2 = {fi (x) = x i | i ∈ I},
are linearly independent.

We now introduce the second fundamental notion concerning vector spaces, that of the linear span of
a subset (in [1] this is called the linear manifold defined by a subset).

Definition 1.3.7. Let V be a K-vector space, E ⊂ V some nonempty subset. Then, the K-linear span
of E is the set of all possible linear combinations of vectors in E ,

spanK E = {λ1v1 + ... + λnvn | v1, ... , vn ∈ E , λ1, ... ,λn ∈ K}.

If E ⊂ V is a subset such that spanK E = V , then we say that E spans V , or that E is a spanning set
of V .
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Proposition 1.3.8. Let V be a K-vector space, E ⊂ V some nonempty subset. Then, spanK E is a
vector subspace of V .

Proof: We will show that spanK E satsfies Axiom SUB from Definition 1.2.8: let

v = λ1v1 + ... + λnvn, u = µ1u1 + ... + µpup ∈ spanK E ,

and α,β ∈ K. Then,

αu + βv = α(µ1u1 + ... + µpup) + β(λ1v1 + ...λnvn)

= αµ1u1 + ... + αµpup + βλ1v1 + ... + βλnvn,

is a linear combination of elements of E . Hence, by the definition of spanK E , αu + βv ∈ spanK E .

Conversely, we have that every subspace U ⊂ V is the span of some subset: namely, spanK U = U.

Lemma 1.3.9. Let V be a K-vector space and E1 ⊂ E2 ⊂ V nonempty subsets of V . Then,

spanK E1 ⊂ spanK E2,

and spanK E1 is a subspace of spanK E2.

Proof: Left to the reader.

Lemma 1.3.10 (Elimination Lemma). Let V be a K-vector space and E ⊂ V some nonempty subset.
Suppose that E is linearly dependent. Then, there exists a vector v ∈ E such that, if E ′ = E \ {v}20,
then

spanK E = spanK E ′.

Hence, we can remove a vector from E without changing the subspace spanned by E .

Proof: Since E is linearly dependent then, by Lemma 1.3.4, there exists a vector v ∈ E such that v
is a linear combination of some other vectors in E , that is

v = λ1v1 + ... + λnvn,

with v1, ... , vn ∈ E and λ1, ... ,λn ∈ K. Moreover, we can assume that v 6= vj , for each j ; this is the
same as saying that v ∈ spanK E ′. We will show that this v satisfies the conditions of the Lemma.

Now, as E ′ ⊂ E then we can use the previous Lemma to conclude that

spanK E ′ ⊂ spanK E .

If we can now show that spanK E ⊂ spanK E ′ then we must have equality

spanK E ′ = spanK E .

So, let u ∈ spanK E . Therefore, by the definition of spanK E , we have

u = µ1u1 + ...µk uk ,

with u1, ... , uk ∈ E and we can assume that ui 6= uj for i 6= j . If there is some ui such that v = ui , then

u = µ1u1 + ... + µi−1ui−1 + µi v + µi+1ui+1 + ... + µk uk .

Hence, we have u1, ... , ui−1, ui+1, ... , uk ∈ E ′ ⊂ spanK E ′ and v ∈ spanK E ′, so that by Proposition
1.3.8, we must have u ∈ spanK E ′.

Now, if v 6= ui , for each i , then each ui ∈ E ′ so that u ∈ spanK E ′. In either case, we have shown that
u ∈ spanK E ′ and, since u was arbitrary, we must have spanK E ⊂ spanK E ′ and the result follows.

Remark. Lemma 1.3.10 has the following consequence: if E is a finite linearly dependent set that spans
the K-vector space V , then there is a subset of E that forms a basis of V . You should already be aware
of what a basis is; however, for completeness, we will (re)introduce this notion in an upcoming section
in a (perhaps) not so familiar way that fits better with the intuition behind a basis.

20If S ⊂ T are sets, then define
T \ S = {t ∈ T | t /∈ S},

the collection of all elements of T that are not elements of S .
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1.4 Linear Morphisms, Part I

We have given an introduction to vector spaces and we have introduced the fundamental ideas of linear
(in)dependence and spans. In this section we will consider the relationships that can exist between
distinct vector spaces and which respect the ‘linear algebraic’ structure of vector spaces: this is thel
notion of a linear morphism between vector spaces.

Definition 1.4.1. Let V and W be K-vector spaces.

• A function
f : V →W ; v 7→ f (v),

is called a K-linear morphism between V and W if the following properties hold:

(LIN1) for every u, v ∈ V , we have
f (u + v) = f (u) + f (v);

where the ‘+’ on the LHS of this equation is addition in V and the ‘+’ on the RHS of this equation
is addition in W ,

(LIN2) for every u ∈ V , λ ∈ K, we have
f (λv) = λf (v);

where the scalar multiplication on the LHS of this equation is occuring in V and on the RHS of
this equation it is occuring in W .

In fact, we can subsume both of these properties into

(LIN) for every u, v ∈ V , λ ∈ K, we have

f (u + λv) = f (u) + λf (v),

where the scalar multiplication on the LHS of this equation is occuring in V and on the RHS of
this equation it is occuring in W .

• For given K-vector spaces V and W we denote the set of all K-linear morphisms by

HomK(V , W ) = {f : V →W | f linear}.

• The set of all K-linear morphisms from a K-vector space V to itself is denoted

EndK(V )
def
= HomK(V , V ).

A vector f ∈ EndK(V ) is called an endomorphism of V . For every K-vector space V there exists the
identity morphism of V , denoted idV ∈ EndK(V ). See the upcoming examples (Example 1.4.8,).

• We will use the adjectives ‘injective’, ‘surjective’ and ‘bijective’ to describe linear morphisms that
satisfy the corresponding conditions.

• A bijective linear morphism will be called an isomorphism.

The set of all bijective K-linear morphisms from a K-vector space V to itself is denoted

GLK(V ) = {f ∈ EndK(V ) | f is bijective}.

We will see that, in the world of linear algebra, K-vector spaces that are isomorphic have the same linear
algebraic properties (and, therefore, can be regarded as ‘the same’).

Notation. You may have seen the phrases ‘linear map’, ‘linear transformation’ or ‘linear function’:
these all mean the same thing, namely, a function satisfying (LIN) above. We are using the word
‘morphism’ to emphasise the fact that a linear morphism is a function that ‘changes’ one vector space
to another. This is also the fancy grown-up word that certain mathematicians use (myself included) in
daily parlance.
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Remark 1.4.2. We will see in a later section (Theorem 1.7.4) that, for f ∈ EndK(V ), with V a finite
dimensional K-vector space

‘f injective’ =⇒ ‘f surjective’ =⇒ ’f bijective’ =⇒ ‘f injective’,

so that all of these notions are equivalent for finite-dimensional K-vector spaces.

Lemma 1.4.3. Let f ∈ HomK(V , W ) be a K-linear morphism between the K-vector spaces V and W .
Then, f (0V ) = 0W .

Proof: We have
f (0V ) = f (0V + 0V ) = f (0V ) + f (0V ), by LIN1,

and subtracting f (0V ) from both sides of this equation we obtain

0W = f (0V ).

Definition 1.4.4. Let V , W be K-vector spaces and f ∈ HomK(V , W ). Then,

- the kernel of f is the subset

ker f = {v ∈ V | f (v) = 0W } ⊂ V ,

- the image of f is the subset

imf = {w ∈W | w = f (v), for some v ∈ V } ⊂W .

Proposition 1.4.5. Let f ∈ HomK(V , W ), for K-vector spaces V , W . Then,

- ker f is a subspace of V ,

- imf is a subspace of W .

Proof: Left to the reader.

Definition 1.4.6. Let V , W be K-vector spaces. Then, we will define the structure of a K-vector space
on the set HomK(V , W ): define the K-vector space (HomK(V , W ),α,σ) where

α : HomK(V , W )×HomK(V , W )→ HomK(V , W ) ; (f , g) 7→ (α(f , g) : V →W ; v 7→ f (v) + g(v)) ,

σ : K× HomK(V , W )→ HomK(V , W ) ; (λ, f ) 7→ (σ(λ, f ) : V →W ; v 7→ λf (v)) .

As usual we will write
α(f , g) = f + g , and σ(λ, f ) = λf .

Whenever we discuss HomK(V , W ) as a K-vector space, it will be this K-vector space structure
that we mean.

There are a couple of things that need to be checked to ensure that the above defintion of K-vector
space on HomK(V , W ) makes sense:

1. You need to check that the new functions f + g and λf that we have defined, for f , g ∈
HomK(V , W ),λ ∈ K, are actually elements in HomK(V , W ), that is, that they are K-linear
morphisms.

2. The zero vector 0HomK(V ,W ) ∈ HomK(V , W ) is the K-linear morphism

0HomK(V ,W ) : V →W ; v 7→ 0W .
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3. Given f ∈ HomK(V , W ) we define the negative of f to be the K-linear morphism

−f : V →W ; v 7→ −f (v),

where −f (v) is the negative (in W ) of the vector f (v), for each v ∈ V .

Remark 1.4.7. 1. The fact that HomK(V , W ) has the structure of a K-vector space will be important
when we come to consider the Jordan canonical form. In that case, we will be considering the K-vector
space EndK(V ) and using some of its basic linear algebraic structure to deduce important properties of
K-linear morphisms f : V → V .

2. We can consider HomK(V , W ) ⊂ W V as a subset of the K-vector space of (arbitrary) functions
(recall Example 1.2.6)

W V = {f : V →W }.

In fact, HomK(V , W ) ⊂W V is a vector subspace.

However, the condition of K-linearity that we have imposed on the functions is very strong and there are
far ‘fewer’ K-linear functions than there are arbitrary functions. For example, we will see in a proceeding
section that HomK(V , W ) is finite-dimensional, whereas W V is infinite-dimensional (assuming W 6= Z ,
the trivial vector space introduced in Example 1.2.6, 621).

3. It is not true that GLK(V ) is a vector subspace of EndK(V ), for any K-vector space V that is
not the trivial K-vector space Z with one element (cf. Example 1.2.6). For example, the zero vector
0EndK(V ) /∈ GLK(V ) since 0EndK(V ) : V → V is not an injective function: if v ∈ V is nonzero in V then

0EndK(V )(v) = 0V = 0EndK(V )(0V ),

where we have used Lemma 1.4.3 for the RHS equality.

We will now give some basic examples of K-linear morphisms. Most of these should be familiar from
your first linear algebra class and, as such, you should feel pretty at ease with showing that the given
functions are linear.

Example 1.4.8. 1. Consider the function

f : Q4 → Q2 ;


x1

x2

x3

x4

 7→ [
x1 − x4

x3 + 2
7 x1

]
.

Then, f is Q-linear.

2. The function

f : R2 7→ R3 ;

[
x1

x2

]
7→

 x3
1 + 2x2

2

−x1 +
√

2x2

x1

 ,

is not R-linear. For example, if it were, then we must have (recall the definition of ei from Example 1
1.2.6)

f (−e2) =

 2

−
√

2
0

 ,

whereas

−f (e2) = −

 2√
2

0

 =

 −2

−
√

2
0

 .

Hence,
f (−e2) 6= −f (e2),

21What happens when W = Z?
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so that Axiom LIN2 does not hold.

The problem we have here is the appearance of ‘nonlinear’ terms x2
2 etc. In general, we must only have

single powers of xi appearing as in Example 1.

3. In general, a function
f : Kn → Km ; x 7→ f (x),

is a K-linear morphism if and only there exists an m× n matrix A ∈ Matm×n(K) with entries in K such
that

f (x) = Ax , for every x ∈ Kn.

You should have already seen this result from your first linear algebra class.

Conversely, given A ∈ Matm,n(K) we define the K-linear morphism

TA : Kn → Km ; x 7→ Ax .

This notation will reappear through these notes.

4. Let V be a K-vector space. Then, the identity morphism of V is the K-linear morphism

idV : V → V ; v 7→ v .

It is easy to see that idV ∈ GLK(V ), ie, that idV is an isomorphism.

5. Let V be a K-vector space and U ⊂ V be a vector subspace. Then, there is a K-linear morphism

iU : U → V ; u 7→ u,

called the inclusion morphism of U. It is trivial to verify that this is K-linear. Moreover, iU is an injective
morphism, for any subspace U ⊂ V .

6. Let V be a K-vector space and suppose that there are subspaces U, W ⊂ V such that V = U ⊕W .
Then, define the projection morphisms onto U and W as follows:

pU : V → U ; v = u + w 7→ u,

pW : V →W ; v = u + w 7→ w .

These morphisms are surjective.

Note that these functions are well-defined because V = U ⊕W and so every v ∈ V can be uniquely
written as v = u + w (by Proposition 1.2.11). Therefore, we need not worry about whether pU , pW are
functions.22

7. The following are examples from calculus: consider the R-vector space CR[0, 1] of continuous functions
f : [0, 1]→ R. Then, the function∫ 1

0

: CR[0, 1]→ R ; f 7→
∫ 1

0

f (x)dx ,

is R-linear. This should be well-known to all.

If we denote by C 1(0, 1) ⊂ CR(0, 1) the set of all continuous functions f : (0, 1) → R that are
differentiable, then we have an R-linear map23

d

dx
: C 1(0, 1)→ CR(0, 1) ; f 7→ df

dx
,

22If we did not have the uniqueness property, and only knew that V = U = W , then it could be possible that
v = u + w = u′ + w with u 6= u′ ∈ U. Then, pU (v) could equal either u or u′, so that pU can’t be a function (recall that
a function f : S →W must assign a unique value f (s), to every s ∈ S).

23It is not necessarily true that a function that can be differentiated once can be differentiated twice. It is actually
surprisingly hard to find such an example but if you take Math 104 you should see the following example of such a function

f : R→ R ; x 7→
{

x2 sin(x−1), if x 6= 0,

0, if x = 0.
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which is just the ‘derivative with respect to x ’ morphism. It is R-linear.

8. This example exhibits a subtlety that we shall come back to in later sections: recall the set of natural
numbers N. Define a function

T : KN → KN ; (i 7→ f (i)) 7→

(
i 7→

{
0, if i = 1,

f (i − 1), if i 6= 1.

)
.

That is, if we represent a function (f : N→ K ; i 7→ f (i)) ∈ KN by an infinite sequence

(fi ) = (f1, f2, f3, ...),

where fi
def
= f (i), then

T ((fi )) = (0, f1, f2, f3, ...).

So, T is the ‘shift to the right by one place’ function defined on infinite sequences of numbers in K.

Then, it is relatively straightforward to see that T is K-linear and is injective. However, T is not
surjective: thus, we have an example of an injective linear endomorphism of a K-vector space that is
not surjective. As we will see in an upcoming section, this is impossible if KN were finite-dimensional
(cf. Theorem 1.7.4). Hence, this implies that KN is an infinite dimensional K-vector space.

We now recall an important result that allows us to characterise when K-linear morphisms are injective.
In practice, whenever you want to show that a morphism is injective you should use the following

Lemma 1.4.9 (Characterising injective linear morphisms). Let V , W be K-vector spaces, f : V → W
a K-linear morphism. Then, f is injective if and only if ker f = {0V }.

Proof: (⇒) Suppose that f is injective. Let v ∈ ker f ; we want to show that v = 0V . Now, since
v ∈ ker f , then f (v) = 0W , by the definition of ker f . Furthermore, by Lemma 1.4.3, we know that
f (0V ) = 0W . Hence, as f is injective then

f (v) = f (0V ) =⇒ v = 0V ,

so that ker f = {0V }.

(⇐) Conversely, suppose that ker f = {0V }. We must show that f is injective: therefore, we need to
show that, whenever f (v) = f (w), for some v , w ∈ V , then we necessarily have v = w . So suppose
that there are v , w ∈ V with f (v) = f (w). Then

f (v) = f (w) =⇒ f (v)− f (w) = 0W =⇒ f (v − w) = 0W , since f linear,

so that v − w ∈ ker f = {0V }. Hence, v = w . Therefore, f must be an injective function.

Remark 1.4.10. In this section, we have given a (re)introduction to linear morphisms (or linear maps,
transformations, whatever) and stated some basic properties and examples. However, in practice it is
usually pretty difficult to prove certain things about linear morphisms (for example, injectivity, surjectivity
etc.) in a direct manner.

In order to make questions easier to understand and solve we will most often represent a linear morphism
using a matrix representation. This will be done in the proceeding sections. However, it should be
noted that this approach to attacking problems only works for finite-dimensional vector spaces and the
morphisms between them (infinite matrices are difficult to manipulate!).

We finish this section with some important facts that we will use throughout the remainder of these
notes.

Theorem 1.4.11 (Invariance of Domain). Suppose that there exists an isomorphism

f : Kn → Km.

Then, n = m.
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Proof: This is an exercise in row-reduction and one which you should already be familiar with.

Recall that for any linear morphism f : Kn → Km, there is a matrix Af called the standard matrix
associated to f such that

for every x ∈ Kn, f (x) = Af x .

Af is defined to be the m × n matrix whose i th column is the column vector f (ei ), where ei is the i th

standard basis vector of Kn (Example 1.2.6).
Then, it will be an exercise to show the following:

- f is injective if and only if Af has a pivot in every column, and

- f is surjective if and only if Af has a pivot in every row.

Therefore, since we are assuming that f is an isomorphism it must, by definition, be a bijective morphism.
Hence, it is both injective and surjective. By the preceding comments we must therefore have a pivot
in every column and every row. The only way that this can happen is if n = m.

We will see later, after the introduction of bases for vector spaces, that the converse if also true: namely,
if n = m then Kn and Km are isomorphic.

Proposition 1.4.12. Let V , W be K-vector spaces, E ⊂ V a subset of V . Let f : V → W be an
isomorphism from V to W and denote f (E ) = {f (e) | e ∈ E}, the image set of E .24 Then,

- E is linearly independent if and only if f (E ) is linearly independent.

- E spans V if and only if f (E ) spans W .

Proof: Left to the reader.

1.5 Bases, Dimension

In this section we will introduce the notion a basis of a K-vector space. We will provide several equivalent
approaches to the definition of a basis and see that the size of a basis is an invariant25 of a K-vector
space which we will call its dimension. You should have already seen the words basis and dimension in
your previous linear algebra course so do not abandon what you already know! We are just simply going
to provide some interesting(?) ways we can think about a basis; in particular, these new formulations
will allow us to extend our results to infinite dimensional vector spaces.

First, we must introduce a (somewhat annoying) idea to keep us on the straight and narrow when we
are considering bases, that of an ordered set.

Definition 1.5.1 (Ordered Set). An ordered set is a nonempty set S for which we have provided a
‘predetermined ordering’ on S .

Remark 1.5.2. 1. This definition might seem slightly confusing (and absurd); indeed, it is both of these
things as I have not rigorously defined what a ‘predetermined ordering’ is. Please don’t dwell too much
on this as we will only concern ourselves with orderings of finite sets (for which it is easy to provide an
ordering) or the standard ordering of N. An ordered set is literally just a nonempty set S whose elements
have been (strictly) ordered in some way.

For example, suppose that S = [3] = {1, 2, 3}. We usually think of S has having its natural ordering
(1, 2, 3). However, when we consider this ordering we are actually considering the ordered set (1, 2, 3)
and not the set S ... Confused? I thought so. We could also give the objects in S the ordering (2, 1, 3)
and when we do this we have a defined a different ordered set to (1, 2, 3).

24This is not necessarily the same as the image of f , imf , introduced before.
25In mathematics, when we talk of an invariant we usually mean an atrribute or property of an object that remains

unchanged whenever that object is transformed to another via an isomorphism (in an appropriate sense). For example,
you may have heard of the genus of a (closed) geometric surface: this is an invariant of a surface that counts the number
of ‘holes’ that exist within a (closed) surface. Perhaps you have heard or read the phrase that a mathematician thinks a
coffee mug and a donut are indistuingishable. This is because we can continuously deform a donut into a coffee mug, and
vice versa. This continuous deformation can be regarded as an ‘isomorphism’ in the world of (closed) geometric surfaces.
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If you are still confused, do not worry. Here is another example: consider the set

S = {Evans Hall, Doe Library, Etcheverry Hall}.

Now, there is no predetermined way that we can order this set: I might choose the ordering

(Evans Hall, Etcheverry Hall, Doe Library),

whereas you might think it better to choose an ordering

(Doe Library, Etcheverry Hall, Evans Hall).

Of course, neither of these choices of orderings is ‘right’ and we are both entitled to our different choices.
However, these ordered sets are different.

The reason we require this silly idea is when we come to consider coordinates (with respect to a given
ordered basis). Then, it will be extremely important that we declare an ordering of a basis and that we
are consistent with this choice.

2. Other examples of ordered sets include N,Z,Q and R with their usual orderings. We can also order
C in an ordering called a lexicographic ordering : here we say that z = a1 + b1

√
−1 < w = a2 + b2

√
−1

if and only if either, a1 < a2, or, a1 = a2 and b1 < b2. Think of this as being similar to the way that
words are ordered in the dictionary, except now we consider only ‘words’ consisting of two ‘letters’, each
of which is a real number.

3. What about some really bizarre set that might be infinite; for example, RR, the set of all functions
R→ R. How can we order this set? In short, I have no idea! However, there are some very deep results
from mathematical logic that say that, if we assume a certain axiom of mathematics (the so-called
Axiom of Choice), then every set can be ordered in some manner. In fact, it has been shown that the
Axiom of Choice of logically equivalent to this ordering property of sets! If you want to learn more then
you should consult Wikipedia and take Math 125A in the Fall Semester.26

Therefore, no matter how weird or massively infinite a set is, if you are assuming the Axiom of Choice
(which we are) then you can put an ordering on that set, even though you will (a priori) have no idea
what that ordering is! All that matters is that such an ordering exists.

Definition 1.5.3 (Basis; Ordered Basis). Let V be a K-vector space. A nonempty subset B ⊂ V is
called a (K)-basis of V if

- B is linearly independent (over K), and

- if B ⊂ B′ and B′ is linearly independent (over K), then B′ = B.

In this case, we say that B is maximal linearly independent.

An ordered (K)-basis of V is a (K)-basis of V that is an ordered set.

Remark 1.5.4. 1. You may have seen a basis of a K-vector space V defined as a subset B ⊂ V such
that B is linearly independent (over K) and such that spanK B = V . The definition given above is
equivalent to this and it has been used as the definition of a basis to encapsulate the intuition behind
a basis: namely, if K = R, we can think of a basis of an R-vector space as a choice of ‘independent
directions’ that allows us to consider well-defined coordinates. This idea of ‘independent directions’ is
embodied in the fact that a basis must be a linearly independent set; and the assumption of maximal
linear independence is what allows us to obtain well-defined coordinates.

However, just to keep our minds at ease our next result will show the equivalence between Definition
1.5.3 and the definition you have probably seen before.

26I have to admit that I do not know any mathematical logic but have come across these ideas during my own excursions
in mathematics. There are lots of many interesting results that can be obtained if one assumes the Axiom of Choice: one
is called the Banach-Tarski Paradox; another, which is directly related to our studies, is the existence of a basis for any
K-vector space. In fact, the Axiom of Choice is logically equivalent to the existence of a basis for any K-vector space.
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2. We will also see in the homework that we can consider a basis to be a minimal spanning set (in an
appropriate sense to be defined later); this is recorded in Proposition 1.5.9.

3. It is important to remember that a basis is a subset of V and not a subspace of V .

4. We will usually not call a basis of a K-vector space a ‘K-basis’, it being implicitly assumed that we
are considering only K-bases when we are talking about K-vector spaces. As such, we will only use the
terminology ‘basis’ from now on.

Proposition 1.5.5. Let V be a K-vector space and B ⊂ V a basis of V . Then, spanK B = V .
Conversely, if B ⊂ V is a linearly independent spanning set of V , then B is a basis of V

Proof: Let us denote W = spanK B. Then, because B ⊂ V we have W ⊂ V . To show that W = V
we are going to assume otherwise and obtain a contradiction. So, suppose that W 6= V . This means
that there exists v0 ∈ V such that v0 /∈ W . In particular, v0 /∈ B ⊂ W . Now, consider the subset
B′ = B ∪ {v0} ⊂ V .

Then, by Corollary 1.3.5, B′ is linearly independent.

Now, we use the maximal linear independence property of B: since B ⊂ B′ and B′ is linearly independent
we must have B′ = B, because B is a basis. Hence, v0 ∈ B. But this contradicts that fact that v0 /∈ B.
Therefore, our intial assumption, that W 6= V , must be false and we must necessarily have W = V .

Conversely, suppose that B is a linearly independent subset of V such that spanK B = V . We want to
show that B is a basis, so we must show that B satisfies the maximal linearly independent property of
Definition 1.5.3.

Therefore, suppose that B ⊂ B′ and that B′ is linearly independent; we must show that B′ = B. Now,
since B ⊂ B′ we have V = spanK B ⊂ spanK B′ ⊂ V , using Lemma 1.3.9. Hence, spanK B′ = V =
spanK B. Assume that B 6= B′; we aim to provide a contradiction. Then, for each w ∈ B′ \ B we have
w ∈ spanK B′ = spanK B, so that there exists an expression

w = λ1b1 + ... + λnbn,

where b1, ... , bn ∈ B. But this means that we have a nontrivial27 linear relation among vectors in B′
(recall that, as B ⊂ B′, we have b1, ... , bn ∈ B′). However, B′ is linearly independent so that no such
nontrivial linear relation can exist. Hence, our initial assumption of the existence of w ∈ B′ \ B is false,
so that B′ = B. The result follows.

Corollary 1.5.6. Let V be a K-vector space, B ⊂ V a basis of V . Then, for every v ∈ V there exists
a unique expression

v = λ1b1 + ... + λnbn,

where b1, ... , bn ∈ B, λ1, ... ,λn ∈ K, n ∈ N.

Proof: By Proposition 1.5.5, we have that spanK B = V so that, for every v ∈ V , we can write v as
a linear combination of vectors in B

v = λ1b1 + ... + λnbn, b1, ... , bn ∈ B,

where we can further assume that none of λ1, ... ,λn is equal to zero.

We need to show that this expression is unique: so, suppose that we can write v as a different linear
combination

v = µ1b′1 + ... + µk b′k , b′1, ... , b′k ∈ B,

again assuming that none of the µ1, ... ,µk are equal to zero.

Therefore, we have
λ1b1 + ... + λnbn = v = µ1b′1 + ... + µk b′k ,

giving a linear relation
λ1b1 + ... + λnbn − (µ1b′1 + ... + µk b′k ) = 0V .

27Why is this linear relation nontrivial?
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Thus, since B is linearly independent this linear relation must be trivial and, furthermore, since we have
assumed that none of the λ’s or µ’s are zero, the only way that this can happen is if n = k and, without
loss of generality, bi = b′i and λi = µi . Hence, the linear combination given above is unique.

Corollary 1.5.7. Let V be a K-vector space, B = (b1, ... , bn) ⊂ V an ordered basis containing finitely
many vectors. Then, V is isomorphic to Kn.

Proof: This is just a simple restatement of Corollary 1.5.6: we define a function

[−]B : V → Kn ; v 7→ [v ]B =

λ1

...
λn

 ,

where
v = λ1b1 + ... + λnbn,

is the unique expression for v coming from Corollary 1.5.6. Uniqueness shows that [−]B is indeed a
well-defined function.

It will be left to the reader to show that [−]B is a bijective K-linear morphism, thereby showing that it
is an isomorphism.

Definition 1.5.8. Let V be a K-vector space, B = {b1, ... , bn} ⊂ V an ordered basis containing finitely
many vectors. Then, the linear morphism

[−]B : V → Kn ; v 7→ [v ]B =

λ1

...
λn

 ,

introduced above is called the B-coordinate map or B-coordinate morphism.

The following Proposition provides yet another viewpoint of the idea of a basis: it says that a basis is a
spanning set that satisfies a certain minimality condition.

Proposition 1.5.9. Let V be a K-vector space, B ⊂ V a basis of V . Then, B is a minimal spanning
set - namely,

- spanK B = V , and

- if B′ ⊂ B is such that spanK B′ = V then B′ = B.

A proof of this Proposition will appear as a homework exercise.

Despite all of these results on bases of vector spaces we have still yet to give the most important fact
concerning a basis: that a basis exists in an arbitrary K-vector space.

The proof of the general case requires the use of a particularly subtle lemma, called Zorn’s Lemma. You
can read about Zorn’s Lemma on Wikipedia and there you will see that Zorn’s Lemma is equivalent to
the Axiom of Choice (although the proof of this fact is quite difficult). You will also read on Wikipedia
that Zorn’s Lemma is logically equivalent to the existence of a basis for an arbitrary K-vector space.

Theorem 1.5.10. Let V be a K-vector space. Then, there exists a basis B ⊂ V of V .

Proof: Case 1: There exists a finite subset E ⊂ V such that spanK E = V .

In this case we will use the Elimination Lemma (Lemma 1.3.10) to remove vectors from E until we obtain
a linearly independent set. Now, if E is linearly independent then E is a linearly independent spanning
set of V and so, by Proposition 1.5.5, E is a basis of V . Therefore, assume that E is linearly dependent.
Then, if we write E as an ordered set E = {e1, ... , en}, we can use Lemma 1.3.10 to remove a vector
from E so that the resulting set is also a spanning set of V ; WLOG, we can assume that the vector we
remove is en. Then, define E (n−1) = E \ {en} so that we have spanK E (n−1) = V . If E (n−1) is linearly
independent then it must be a basis (as it is also a spanning set). If E (n−1) is linearly dependent then
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we can again use Lemma 1.3.10 to remove a vector from E (n−1) so that the resulting set is a spanning
set of V ; WLOG, we can assume that the vector we remove is en−1. Then, define E (n−2) = E \ {en−2}
so that we have spanK E (n−2) = V . Proceeding in a similar fashion as before we will either have that
E (n−2) is linearly independent (in which case it is a basis) or it will be linearly dependent and we can
proceed as before, removing a vector to obtain a new set E (n−3) etc.

Since E is a finite set this procedure must terminate after finitely many steps. The stage at which it
terminates will have a produced a linearly independent spanning set of V , that is, a basis of V (by
Proposition 1.5.5).

Case 2: There does not exist a finite spanning set of V .

In this case we must appeal to Zorn’s Lemma: basically, the idea is that we will find a basis by considering
a maximal linearly independent subset of V . Zorn’s Lemma is a technical result that allows us to show
that such a subset always exists and therefore, by definition, must be a basis of V .

Theorem 1.5.11 (Basis Theorem). Let V be a K-vector space and B ⊂ V a basis such that B has only
finitely many vectors. Then, if B′ is another basis of V then B′ has the same number of vectors as B.

Proof: Let B = {b1, ... , bn} and B′ = {b′1, ... , b′m} be two distinct bases of V . Then, by Corollary
1.5.7, we have isomorphisms

[−]B : V → Kn, and [−]B′ : V → Km.

Hence, we obtain an isomorphism (since the composition of two isomorphisms is again an isomorphism,
by Lemma 0.2.4)

[−]B′ ◦ [−]−1
B : Kn → Km,

where [−]−1
B′ : Km → V is the inverse morphism of [−]B′ . Thus, using Theorem 1.4.11, we must have

n = m, so that B and B′ have the same size.

Theorem 1.5.11 states that if V is a K-vector space admitting a finite basis B, then every other basis
of V must have the same size as the set B.

Definition 1.5.12. Let V be a K-vector space, B ⊂ V a basis of V containing finitely many vectors.
Then, the size of B, |B|, is called the dimension of V (over K) and is denoted dimK V , or simply dim V
when no confusion can arise. In this case we will also say that V is finite dimensional. If V is a K-vector
space that does not admit a finite basis then we will say that V is infinite dimensional.

The Basis Theorem (Theorem 1.5.11) ensures that the dimension of a K-vector space is a well-defined
number (ie, it doesn’t change when we choose a different basis of V ).

Now that we have introduced the notion of dimension of a K-vector space we can give one of the
fundamental results of finite dimensional linear algebra.

Theorem 1.5.13. Let V and W be K-vector spaces such that dimK V = dimK W <∞ is finite. Then,
V is isomorphic to W .

This result, in essence, classifies all finite dimensional K-vector spaces by their dimension. It tells us
that any linear algebra question we can ask in a K-vector space V (for example, a question concerning
linear independence or spans) can be translated to another K-vector space W which we know has the
same dimension as V . This follows from Proposition 1.4.12.

This principle underlies our entire approach to finite dimensional linear algebra: given a K-vector space
V such that dimK V = n, Theorem 1.5.13 states that V is isomorphic to Kn and Corollary 1.5.7 states
that, once we have a basis B of V , we can use the B-coordinate morphism as an isomorphism from V
to Kn. Of course, we still need to find a basis! We will provide an approach to this problem after we
have provided the (simple) proof of Theorem 1.5.13.

Proof: The statement that V and W have the same dimension is just saying that any basis of these
vector spaces have the same number of elements. Let B ⊂ V be a basis of V , C ⊂ W a basis of W .
Then, we have the coordinate morphisms

[−]B : V → Kn and [−]C : W → Kn,
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both of which are isomorphisms. Then, the morphism

[−]−1
C ◦ [−]B : V →W ,

is an isomorphism between V and W .

Example 1.5.14. 1. The ordered set B = (e1, ... , en) ⊂ Kn is an ordered basis of Kn, where ei is
the column vector with a 1 in the i th entry and 0 elsewhere.

We will denote this basis S(n).

It is easy to show that S(n) is linearly independent and that spanK S(n) = Kn. Hence, we have
that dimK Kn = n.

2. Let S be a finite set and denote S = {s1, ... , sk}. Then, B = (es1 , ... , esk
) is an ordered basis of

KS , where esi is the elementary functions defined in Example 1.2.6.

We have that B is linearly independent: for, if there is a linear relation

c1es1 + ... + ck esk
= 0KS ,

then, in particular, evaluating both sides of this equation (of functions) at si gives

ci = c1es1 (si ) + ... + ck esk
(si ) = (c1es1 + ... + ck esk

) (si ) = 0KS (si ) = 0.

Hence, ci = 0, for every i , and B is linearly independent.

Furthermore, B is a spanning set of KS : let f ∈ KS . Then, we have an equality of functions

f = f (s1)es1 + f (s2)es2 + ... + f (sn)esn ,

which can be easily checked by showing that

f (t) = (f (s1)es1 + f (s2)es2 + ... + f (sn)esn ) (t), ∀t ∈ S .

Hence, f ∈ spanK B so that, since f was arbitrary, we find spanK B = KS .

Hence, we see that dimK KS = |S |.

3. It is not true that if S is an infinite set then B = {es | s ∈ S} is a basis of KS , even though B is
a linearly independent set. This is discussed in a worksheet.

4. As a particular example of 2 above, we see that Matm,n(K) has as a basis the elementary matrices
B = {eij | (i , j) ∈ {1, ... , m} × {1, ... , n}}. These are those matrices that have 0s for all entries
except for a 1 in the ij-entry.

Hence, we see that dimK Matm,n(K) = mn.

1.5.1 Finding a basis

In this section we will provide criteria for determining when a subset E of a finite dimensional K-vector
space V is a basis. Hopefully, this is just a recollection of results that you have seen before in your first
linear algebra course.

Throughout this section we will fix a finite dimensional K-vector space V such that dimK V = n and an
ordered basis B = (b1, ... , bn) (which we know exists by Theorem 1.5.10).

Proposition 1.5.15. Let E ⊂ V be a nonempty subset of V .

a) If E is linearly independent, then |E | ≤ n.
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b) If spanK E = V , then |E | ≥ n,

c) If E ⊂ V is linearly independent and F ⊂ V is a spanning set, so that spanK F = V , then either
k = n and E is a basis of V ; or, E can be extended to a basis of V by adding to E vectors from F .
This means, if E = {e1, ... , ek} then we can find fk+1, ... , fn ∈ F such that {e1, ... , ek , fk+1, ... , fn}
is a basis of V .

Proof: a) Suppose that E is linearly independent, finite and nonempty and that |E | > n, say
|E | = k > n and denote E = {e1, ... , ek}; we aim to provide a contradiction.

In this case, E can’t be a basis of V , for otherwise we would contradict the Basis Theorem (Theorem
1.5.11), as E does not have n vectors. Hence, since E is linearly independent we must have that
spanK E 6= V (otherwise E would be a basis, by Proposition 1.5.5). Moreover, we can’t have B ⊂
spanK E as then we would have V = spanK B ⊂ spanK E implying that V = spanK E (because we
would have spanK E ⊂ V and V ⊂ spanK E ). Therefore, we can assume, without loss of generality,
that b1 /∈ spanK E so that, by the Elimination Lemma (Lemma 1.3.10), we have that E1 = E ∪ {b1} is
a linearly independent set. Then, we can’t have that spanK E1 = V , else we would contradict the Basis
Theorem. Thus, spanK E1 6= V . Now, without loss of generality, we can assume that b2 /∈ spanK E1;
otherwise, b2, ... , bn ∈ spanK E1 and b1 ∈ spanK E1, so that B ⊂ spanK E1 giving V = spanK E1. Denote
E2 = E1 ∪ {b2}. Then, again by the Elimination Lemma, we have that E2 is a linearly independent
set such that spanK E2 6= V (else we would contradict the Basis Theorem). Proceeding in this way we
obtain subsets

Ei = Ei−1 ∪ {bi}, i = 1, ... , n, with E0
def
= E ,

that are linearly independent. In particular, we obtain the subset En = E ∪B that is linearly independent
and strictly contains B, contradicting the maximal linearly independent property of a basis. Therefore,
our initial assumption that |E | > n must be false, so that |E | ≤ n.

If E is infinite, then every subset of E is linearly independent. Hence, we can find arbitrarily large
linearly independent finite subsets of E . Choose a subset E ′ such that |E ′| > n. Then we are back in
the previous situation, which we have just cannot hold. Hence, we can’t have that E is infinite.

b) This is consequence of the method of proof for Case 1 of Theorem 1.5.10. Indeed, either E is an
infinite set and there is nothing to prove, or E is a finite set. Then, as in the proof of Theorem 1.5.10,
we can find a basis E ′ ⊂ E contained in E . Hence, by the Basis Theorem, we see that n = |E ′| ≤ |E |.

c) Let E ⊂ V be a linearly independent subset of V . Then, by a) we know that |E | ≤ n. Let us write
E = {e1, ... , ek}, so that k ≤ n.

Case 1: k = n : In this case we have that E is a basis itself. This follows by the maximal linear
independence property defining a basis as follows: by a) we know that every linearly independent set
must have at most n vectors in it. Thus, if E ⊂ E ′ and E ′ is linearly independent, then we must
necessarily have E ′ = E , since E ′ cannot have any more than n vectors. This is just the maximal linear
independence property defining a basis. Hence, E is a basis of V .

Case 2: k < n: Now, by b), we know that any spanning set of V must have at least n vectors in it.
Hence, since k < n we have spanK E ⊂ V while spanK E 6= V . We claim that there exists fk+1 ∈ F
such that fk+1 /∈ spanK E . For, if not, then we would have F ⊂ spanK E , so that V = spanK F ⊂
spanK E ⊂ V , which is absurd as spanK E 6= V . Then, F1 = E ∪ {fk+1} is a linearly independent
set, by the Elimination Lemma. If spanK F1 = V then we have that F1 is a basis and we are done.
Otherwise, spanK F1 6= V . As before, we can find fk+2 ∈ F such that fk+2 /∈ spanK F1 and obtain linearly
independent set F2 = F1 ∪ {fk+2}. Then, either spanK F2 = V and we are done, or spanK F2 6= V and
we can define a linearly independent set F3. Proceeding in this manner we either obtain a basis Fi , for
some i < n − k , or we obtain a linearly independent set Fn−k and we are back in Case 1, so that Fn−k

must be a basis. In either case, we find a basis of the required form.

Corollary 1.5.16. Let V be a K-vector space such that dimK V = n and E ⊂ V .

- If E is linearly independent and |E | = n, then E is a basis of V .

- If spanK E = V and |E | = n, then E is a basis of V .

36



Proof: The first statement was shown in c). The second statement is left to the reader.

Corollary 1.5.17. Let V be a K-vector space such that dimK V = n, U ⊂ V a subspace. Then,
dimK U ≤ n. Moreover, if dimK U = n, then U = V .

Proof: Let B′ ⊂ V be a basis of U. Then, B′ is a linearly independent subset of U, therefore a
linearly independent subset of V . Hence, by Proposition 1.5.15, we have that B′ contains no more than
n vectors. By the definition of dimension the result follows.

Moreover, suppose that dimK U = n. Then, there is a subset B′ of U that is linearly independent and
contains exactly n vectors. Hence, by the previous Corollary, B′ is a basis of V . So, since spanK B′ = U
and spanK B′ = V we have U = V .

Corollary 1.5.18. Let V be a K-vector space, U ⊂ V a subspace. Then, any basis of U can be extended
to a basis of V .

Proof: Let B′ = {b′1, ... , b′r} be a basis of U and B = {b1, ... , bn} a basis of V ; in particular,
spanK B = V . Then, by Proposition 1.5.15, part c), we can extend B′ to a basis of V using vectors
from B.

Corollary 1.5.19. Let V be a K-vector space, U ⊂ V a subspace. Then, there exists a subspace W ⊂ V
such that V = U ⊕W . Moreover, in this case we have

dim V = dim U + dim W ,

and if B′ is any basis of U and B′′ is any basis of W then B = B′ ∪ B′′ is a basis of V .

Proof: Let B′ = {b′1, ... , b′r} be a basis of U and extend to a basis B = {b′1, ... , b′r , br+1, ... , bn} of
V , using the previous Corollary. Then, let W = spanK{br+1, ... , bn}. Then, since B is a basis we have
that V = U + W (as every vector in v can be expressed as a linear combination of vectors from B). We
need to show that U ∩W = {0V }. So, let x ∈ U ∩W . Then, we have

x = λ1b′1 + ... + λr b′r ∈ U,

and
x = µ1br+1 + ... + µn−r bn ∈W .

Hence,
µ1br+1 + ... + µn−r bn = x = λ1b′1 + ... + λr b′r ,

giving a linear relation

λ1b′1 + ... + λr b′r − (µ1br+1 + ... + µn−r bn) = 0V .

Thus, as B is linearly independent then this linear relation must be trivial so that

µ1 = ... = µn−r = λ1 = ... = λr = 0;

hence, x = 0V so that U ∩W = {0V }.

The statement concerning the dimension of V follows from the above proof.

The final statement follows from a dimension count and a simple argument showing that B = B′ ∪ B′′
is a linearly independent set. Now we can use Corollary 1.5.16 to deduce that B is a basis of V . The
details are left to the reader.

We end this section with an important formula relating the dimension of subspaces, the so-called di-
mension formula.

Proposition 1.5.20 (Dimension formula). Let V be a K-vector space, U, W ⊂ V two subspaces of V .
Then,

dim(U + W ) = dim U + dim W − dim U ∩W .

Note that here we are not assuming that V = U + W .
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Proof: Let X = U + W so that X ⊂ V is a subspace of V and can be considered as a K-vector
space in its own right. Moreover, we have that U, W , U ∩W ⊂ X are all subspaces of X and U ∩W is
a subspace of both U and W .

Now, if U ⊂W (resp. W ⊂ U) then we have U + W = W (resp. U + W = U) and U ∩W = U (resp.
U ∩W = W ). So, in this case the result follows easily.

Therefore, we will assume that U * W and W * U so that U ∩W ⊂ U and U ∩W ⊂ W while
U ∩W 6= U, W . Using the previous Corollary we have that there are subspaces U ′ ⊂ U and W ′ ⊂ W
such that

U = (U ∩W )⊕ U ′, and W = (U ∩W )⊕W ′.

Let B1 be a basis of U ∩W , B2 a basis of U ′ and B3 a basis of W ′. We claim that B = B1 ∪ B2 ∪ B3

is a basis of U + W . Indeed, since B1 ∪B2 is a basis of U and B1 ∪B3 is a basis of W (by the previous
Corollary), we certainly have that spanK B = U + W 28. Furthermore, it is straightforward to show that
B is linearly independent29 thereby giving that B is a basis of U + W . Thus,

dim(U + W ) = dim U ′ + dim U ∩W + dim W ′,

and
dim U = dim U ′ + dim U ∩W , and dim W = dim W ′ + dim U ∩W .

Comparing these equations gives the result.

Example 1.5.21. 1. The subset

E =


1

1
0

 ,

−1
0
1

 ,

3
1
1

 ⊂ Q3,

defines a basis of Q3. Since E has consists of 3 vectors and dimQ Q3 = 3, we need only show that
E is linearly independent (Corollary 1.5.16). So, by Example 1.3.6, this amounts to showing that
the homogeneous matrix equation

Ax = 0,

has only one solution, namely the zero solution, where A is the matrix whose columns are the
vectors in E . Now, since we can row-reduce1 −1 3

1 0 1
0 1 1

 ∼ I3,

we find that E is indeed linearly independent, so that it must be a basis, by Corollary 1.5.16.

2. Consider the subset

E =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 1
−1 0

]}
⊂ Mat2(R).

Then, E is a basis of Mat2(Q). Again we use Corollary 1.5.16: since E has 4 vectors and
dimR Mat2(R) = 2.2 = 4 we need only show that E is linearly independent or that it spans
Mat2(R). We will show that spanR E = Mat2(R). So, let

A =

[
a11 a12

a21 a22

]
.

28The reader should check this.
29Again, this is an exercise left to the reader.
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Then, we have

A = a11

[
1 0
0 0

]
+ a22

[
0 0
0 1

]
+

(a12 + a21)

2

[
0 1
1 0

]
+

(a12 − a21)

2

[
0 1
−1 0

]
,

so that A ∈ spanR E . Since A was arbitrary we must have spanR E = Mat2(R).

Furthermore, if we consider the ordered basis

B =

([
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 1
−1 0

])
,

then the B-coordinate morphism is the linear morphism

[−]B : Mat2(R)→ R4 ; A =

[
a11 a12

a21 a22

]
7→


a11

(a12 + a21)/2
a22

(a12 − a21)/2


1.6 Coordinates

([1], Ch. 5)

Throughout this section we assume that all K-vector spaces are finite dimensional.

1.6.1 Solving problems

The results of the previous section form the theoretical underpinning of how we hope to solve linear
algebra problems in practice. The existence of an ordered basis B = (b1, ... , bn) of a K-vector space V
from Theorem 1.5.10, such that n = dim V , along with Corollary 1.5.6 and Corollary 1.5.7 allow us to
introduce the notion of B-coordinates on V : we have an isomorphism

[−]B : V → Kn ; v 7→ [v ]B =

λ1

...
λn

 ,

where v = λ1b1 + ... + λnbn is the unique expression determined in Corollary 1.5.6. Then, using
Proposition 1.4.12, we know that questions concerning linear independence and spans of subsets in V
have the same answers if we translate them to questions in Kn via the B-coordinate map. Since we are
then talking about sets of column vectors we can use row-reduction methods to answer the question
that was originally posed concerning vectors in V .

So, we have the following approach to solving questions about linear independence/spans of subsets
E ⊂ V in finite dimensional K-vector spaces V (we suppose that n = dim V ):

0. If |E | > n then E is linearly dependent; if |E | < n then it is not possible that E spans V . This
follows from Proposition 1.5.15.

1. Determine an ordered basis B of V using, for example, Corollary 1.5.16.

2. Using the B-coordinate morphism [−]B : V → Kn, determine the set [E ]B = {[e]B | e ∈ E}.

3. Using row-reduction determine the linear independence/spanning properties of the set [E ]B.

4. By Proposition 1.4.12, linear independence/spanning properties of [E ]B are the same as those of
E ⊂ V .
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1.6.2 Change of basis/change of coordinates

We have just seen an approach to solving linear independence/spanning property problems for a (finite
dimensional) K-vector space V . However, it is not necessarily true that everyone will choose the same
ordered basis B of V : for example, we could choose a different ordering on the same set B, leading to
a different ordered basis; or, you could choose an ordered basis that is a completely distinct set from an
ordered basis I may choose.

Of course, this should not be a problem when we solve problems as the linear independence/spanning
properties of a subset E should not depend on how we want to ‘view’ that subset, ie, what coordinates
we choose. However, given two distinct ordered bases B1 and B2 of V , it will be the case in general that
[E ]B1 and [E ]B2 are different sets so that if we wanted to compare our work with another mathematician
we we would need to know how to translate between our two different ‘viewpoints’ we’ve adopted, ie,
we need to know how to change coordinates.

Proposition 1.6.1 (Change of coordinates). Let B = {b1, ... , bn} and C = {c1, ... , cn} be two ordered
bases of V . Let PC←B be the n × n matrix

PC←B = [[b1]C[b2]C · · · [bn]C] ,

so that the i th column is [bi ]C , the C-coordinates of bi . Then, for every v ∈ V , we have

[v ]C = PC←B[v ]B.

Moreover, if A ∈ Matn(K) is such that

[v ]C = A[v ]B, ∀v ∈ V ,

then A = PC←B.

We call PC←B the change of coordinates matrix from B to C. The formula just given tells us that, given
the B-coordinates of a vector v ∈ V , to obtain the C-coordinates of v we must multiply the B-coordinate
vector of v on the left by PC←B. Moreover, we see that the change of coordinate matrix from B to C
is uniquely characterised by this property.

Remark 1.6.2. 1. We can organise this data into a diagram

V

	

Kn

TPC←B

-

[−]B

�
Kn

[−]C

-

where
TPC←B : Kn → Kn ; x 7→ PC←Bx .

is the linear morphism defined by the matrix PC←B.

The symbol ‘	’ that appears is to be translated as

‘the composite morphism TPC←B ◦ [−]B : V → Kn equals the morphism [−]C : V → Kn.’

That is, if we start at (the domain) V and follow the arrows either to the left or right then we get the
same answer in (the codomain) Kn (at the bottom right of the diagram). In this case, we say that the
diagram commutes.

We could also write this diagram as

V
idV - V

	

Kn

[−]B
?

TPC←B

- Kn

[−]C
?
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where idV : V → V is the identity morphism from Example 1.4.8. The reason we are also considering
this diagram will become apparent in the following sections.

2. Suppose that PB←C is the change of coordinate matrix from C to B. This means that for every
v ∈ V we have

[v ]B = PB←C[v ]C .

Then, if we want to change back to C-coordinates, we simply multply on the left by PC←B so that

[v ]C = PC←B[v ]B = PC←BPB←C[v ]C , ∀v ∈ V .

This means that the morphism

TPC←BPB←C : Kn → Kn ; x 7→ PC←BPB←Cx ,

is the identity morphism idKn of Kn; this uses the fact that V is isomorphic to Kn.30

We will see later on that this implies that PC←B and PB←C are invertible matrices and are inverse to
each other:

PC←BPB←C = In = PB←CPC←B,

where In is the n × n identity matrix.

This should not be surprising: all we have shown here is that the operations ‘change coordinates from
B to C’ and ‘change coordinates from C to B’ are inverse to each other.

Of course, you can also obtain this result knowing that a matrix with linearly independent columns is
invertible; this should be familiar to you from your first linear algebra course. However, we have just
stated a stronger result: not only have we determined that a change of coordinate matrix is invertible,
we have provided what the inverse actually is.

Example 1.6.3. 1. Consider the two ordered bases S(3) = (e1, e2, e3) and

B =

0
2
1

 ,

 0
1
−1

 ,

1
1
1


of Q3. Then, what is the change of coordinate matrix from B to S(3)? We use the formula given above:
we have

PS(3)←B = [[b1]S(3) [b2]S(3) [b3]S(3) ] =

0 0 1
2 1 1
1 −1 1

 .

Therefore, the change of coordinate matrix from B to S(3) is simply the matrix whose i th column is the
i th basis vector of the ordered basis B.

Moreover, if we want to determine the change of coordinate matrix from S(3) to B we need to determine
the inverse matrix of PS(3)←B, using row-reduction methods, for example.

2. In general, if S(n) = (e1, ... , en) is the standard ordered basis of Kn and B = (b1, ... , bn) is any other
ordered basis of Kn, then the change of coordinate matrix from B to S(n) is

PS(n)←B = [b1 b2 · · · bn].

Again, if we wish to determine the change of coordinate matrix from S(n) to B we need to determine
the inverse matrix of PS(n)←B. This may not be so easy for large matrices.

30Why is this true?
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1.7 Linear morphisms II

In this section we will discuss the relationship between linear morphisms (of finite dimensional K-vector
spaces) and matrices. This material should be familiar to you from your first linear algebra course.

Throughout this section all K-vector spaces will be assumed finite dimensional.

Definition 1.7.1. Let f : V →W be a linear morphism of K-vector spaces, B = (b1, ... , bn) ⊂ V , C =
(c1, ... , cm) ⊂ W ordered bases of V , W . Then, the matrix of f with respect to B and C is the m × n
matrix

[f ]CB = [[f (b1)]C [f (b2)]C · · · [f (bn)]C] ,

so that the i th column of [f ]CB is the C-coordinate vector of f (bi ) ∈W .

If V = W and B = C then we write [f ]B
def
= [f ]BB.

Lemma 1.7.2. Let f : V →W be a linear morphism of K-vector spaces, B ⊂ V , C ⊂W ordered bases
of V , W . Then, for every v ∈ V , we have

[f (v)]C = [f ]CB[v ]B.

Moreover, if A is an m × n matrix such that

[f (v)]C = A[v ]B, for every v ∈ V ,

then A = [f ]CB.

This result should be familiar to you. Note that the standard matrix Af we defined previously for a linear
morphism f ∈ HomK(Kn,Km) is just

Af = [f ]S
(m)

S(n) .

We can record the conclusion of the Lemma 1.7.2 in a diagram in a similar fashion as we did in the
previous section for PC←B. We have the commutative diagram

V
f - W

	

Kn

[−]B
?

T
[f ]CB

- Km

[−]C
?

where T[f ]CB
: Kn → Km is the ‘multiplication by [f ]CB’ morphism and the symbol ‘	’ is translated to

mean

‘the composite morphism [−]C ◦ f : V → Km equals the composite morphism T[f ]CB
◦ [−]B : V → Km’;

this is precisely the statement of Lemma 1.7.2.

So, given ordered bases B = (b1, ... , bn) ⊂ V and C = (c1, ... , cm) ⊂ W of K-vector space V and W ,
we have just defined a function

[−]CB : HomK(V , W )→ Matm,n(K) ; f 7→ [f ]CB.

In fact, this correspondence obeys some particularly nice properties:

Theorem 1.7.3. The function

[−]CB : HomK(V , W )→ Matm,n(K) ; f 7→ [f ]CB,

satisfies the following properties:
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a) [−]CB is an isomorphism of K-vector spaces,

b) if f ∈ HomK(U, V ), g ∈ HomK(V , W ) and A ⊂ U,B ⊂ V , C ⊂W are bases of U, V , W , then

[g ◦ f ]CA = [g ]CB[f ]BA.

Here
g ◦ f : U → V →W ∈ HomK(U, W ),

is the composite morphism and on the RHS of the equation we are considering multiplication of
matrices.

c) for the identity morphism idV ∈ HomK(V , V ) we have

[idV ]CB = In,

where In is the n × n identity matrix.

d) if V = W then
[idV ]CB = PC←B.

e) If A ∈ Matm,n(K) and
TA : Kn → Km ; x 7→ Ax ,

so that TA ∈ HomK(Kn,Km). Then, if S(i) = (e1, ... , ei ) is the standard basis of Ki , then

[TA]S
(m)

S(n) = A.

We will now show how we can translate properties of morphisms into properties of matrices:

Theorem 1.7.4. Let f ∈ HomK(V , W ) be a linear morphism of K-vector spaces V , W and let B ⊂
V , C ⊂W be ordered bases of V , W . Then,

a) f is injective if and only if [f ]CB has a pivot in every column,

b) f is surjective if and only if [f ]CB has a pivot in every row,

c) f is an isomorphism if and only if [f ]CB is a square matrix and has a pivot in every row/column,

d) Suppose dim V = dim W . Then, f is injective if and only if f is surjective. In particular,

‘f injective =⇒ f surjective =⇒ f bijective =⇒ f injective’.

Remark 1.7.5. 1. Theorem 1.7.3 states various properties that imply that the association of a linear
morphism to its matrix (with respect to some ordered bases) behaves well and obeys certain desirable
properties.

- a) implies that any question concerning the linear algebra properties of the set of K-linear mor-
phisms can be translated into a question concerning matrices. In particular, since it can be easily
seen that dimK Matm,n(K) = mn and isomorphic K-vector spaces have the same dimension, we
must therefore have that

dimK HomK(V , W ) = mn,

so that HomK(V , W ) is finite dimensional.

- b) can be summarised by the slogan

‘matrix multiplication is composition of morphisms’.

Together with e) this implies that, for an m × n matrix A and an n × p matrix B, we have
TA ◦ TB = TAB .
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2. Theorem 1.7.4 provides a way to show that a linear morphism satisfies certain properties, assuming
we have found bases of the domain and codomain.

Conversely, Theorem 1.7.4 is also useful in determining properties of matrices by translating to a property
of morphisms. For example, suppose that A, B are n × n matrices such that AB = In. By definition, a
square matrix P is invertible if and only if there is a square matrix Q such that PQ = QP = In. Thus,
even though we know that AB = In, in order to show that A (or B) is invertible, we would need to
show also that BA = In. This is difficult to show directly (ie, only using matrices) if you only know that
AB = In. However, if we consider the linear maps TA and TB then

AB = In =⇒ TA ◦ TB = TAB = idKn . (Theorem 1.7.3, b), c), e))

Now, by Lemma 0.2.4, since idKn is injective then TB is injective. Thus, TB is an isomorphism by
Theorem 1.7.4 so there exists a morphism g ∈ HomK(Kn,Kn) such that g ◦TB = TB ◦ g = idKn . Since
TA ◦ TB = idKn , then

g = idKn ◦ g = (TA ◦ TB ) ◦ g = TA ◦ (TB ◦ g) = TA ◦ idKn = TA,

because f ◦ idKn = f , for any function f with domain Kn, and idKn ◦ f = f , for any function f with
codomain Kn. Hence, we have shown that g = TA so that idKn = TB ◦ g = TB ◦TA = TBA. Therefore,
In = BA. Note that we have repeatedly used (various parts of) Theorem 1.7.3 in this last collection of
justifications.

Suppose that we have distinct ordered bases B1,B2 ⊂ V and C1, C2 ⊂W of the K-vector spaces V , W
and f ∈ HomK(V , W ). How are the matrices [f ]C1

B1
and [f ]C2

B2
related?

Proposition 1.7.6. The matrices [f ]C1

B1
and [f ]C2

B2
satsify the following relation

[f ]C2

B2
= PC2←C1 [f ]C1

B1
PB1←B2 ,

where we are considering multiplication of matrices on the RHS of this equation. Moreover, if there
exists a matrix B such that

B = PC2←C1 [f ]C1

B1
PB1←B2 ,

then B = [f ]C2

B2
.

Proof: The proof is trivial once we have Theorem 1.7.3. If we consider that PB1←B2 = [idV ]B1

B2
and

PC2←C1 = [idW ]C2

C1
then the RHS of the desired relation is

PC2←C1 [f ]C1

B1
PB1←B2 = [idW ]C2

C1
[f ]C1

B1
[idV ]B1

B2
= [idV ◦ f ◦ idV ]C2

B2
= [f ]C2

B2
.

Corollary 1.7.7. Let f ∈ EndK(V ) be an endomorphism of a K-vector space V (recall Definition 1.4.1),
B, C ⊂ V ordered bases of V . Then, if we denote P = PB←C , we have

(∗) [f ]C = P−1[f ]BP.

Example 1.7.8. 1. Consider the linear morphism

f : Q3 → Q2 ;

x1

x2

x3

 7→ [
x1 + 2x2

− 1
2 x2 + 3x3

]
.

Then, f is linear since we can write

f (x) =

[
1 2 0
0 − 1

2 3

]
x , for every x ∈ Q3.
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Here, we have

Af = [f ]S
(2)

S(3) =

[
1 2 0
0 − 1

2 3

]
.

Consider the ordered bases

B =

0
2
1

 ,

 0
1
−1

 ,

1
1
1

 ⊂ Q3, C =

([
1
−1

]
,

[
1
1

])
⊂ Q2.

Then, we can use Proposition 1.7.6 to determine [f ]CB.

We have seen in Example 1.6.3 that

PS(3)←B =

0 0 1
2 1 1
1 −1 1

 , PS(2)←C =

[
1 1
−1 1

]
,

so that

PC←S(2) = P−1
S(2)←C =

[
1
2 − 1

2
1
2

1
2

]
.

Hence,

[f ]CB = PC←S(2) [f ]S
(2)

S(3) PS(3)←B =

[
1
2 − 1

2
1
2

1
2

] [
1 2 0
0 − 1

2 3

]0 0 1
2 1 1
1 −1 1

 =

[
1 11

4
1
4

3 − 3
4 4

]
.

2. Consider the linear morphism

g : Mat2(R)→ Mat2(R) ; A 7→ A− At ,

where At is the transpose of A. It is an exercise to check that g is linear.

We have the standard ordered basis of Mat2(R), S = (e11, e12, e21, e22), where eij is the 2 × 2
matrix with 0 everywhere except a 1 in the ij-entry. Also, we have the ordered bases31

B = (e12, e21, e11 − e22, e11 + e22) , C = (e11, e22, e12 + e21, e12 − e21) ⊂ Mat2(R).

Now, we see that

g(e11) = 0, g(e12) = e12 − e21, g(e21) = −e12 + e21, g(e22) = 0,

so that

[g ]S =


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 .

We use Proposition 1.7.6 to determine [g ]CB. We have

PS←B =


0 0 1 1
1 0 0 0
0 1 0 0
0 0 −1 1

 , PS←C =


1 0 0 0
0 0 1 1
0 0 1 −1
0 1 0 0

 .

31Check that these are bases of Mat2(R).
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Then,

PC←S = P−1
S←C =


1 0 0 0
0 0 0 1
0 1

2
1
2 0

0 1
2 − 1

2 0

 ,

and we have

[g ]CB = PC←S [g ]SPS←B =


1 0 0 0
0 0 0 1
0 1

2
1
2 0

0 1
2 − 1

2 0




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0




0 0 1 1
1 0 0 0
0 1 0 0
0 0 −1 1



=


0 0 0 0
0 0 0 0
0 0 0 0
1 −1 0 0


Indeed, we have that g(e12) = e12 − e21, which gives

[g(e12)]C =


0
0
0
1

 .

Using the definition of [g ]CB this should be the first column, so that the matrix we have obtained
above corroborates this.

Remark 1.7.9. The relationship established in Proposition 1.7.6 can be indicated in the following
‘rooftop’ or ‘prism’ diagram (think of the arrow V →W as the top of the rooftop)

V
f - W

Kn

[−]B1

�

T
[f ]
C1
B1

- Km

[−]C1

�

Kn

[−]B2

?

T
[f ]
C2
B2

-
TPB2←B1

-

Km

[−]C2

?TPC2←C1

-

Here we are assuming that all squares that appear are the commutative squares appearing after Lemma
1.7.2, and that the triangles that appear at the end of the prism are the commutative triangles that
appeared in Remark 1.6.2. So, Proposition 1.7.6 corresponds to the ‘bottom square’ being a commutative

diagram.

This diagram can be confusing at first but the more you try and understand it the better you will
understand the relationship between linear morphisms, matrices and change of coordinates.

Note that in the rooftop diagram all arrows which have some vertical component are isomorphisms; this
means that we can go forward and backwards along these arrows.

For example, suppose we start at V and go along the sequence of arrows (↓,→). Then, the commutativity
of the bottom square and the fact that that the arrows ↘ are isomorphisms means we have

→ = (↖,→,↘) ,

where ↖ denotes the inverse morphism to ↘.
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Then, because we write composition of functions in the reverse order (g ◦ f means ‘do f first, then g ’)
we have

T
[f ]
C2
B2

◦ [−]B2 = TPC2←C1
◦ T

[f ]
C1
B1

◦ TPB1←B2
◦ [−]B2 ;

that is, for every v ∈ V , we have

[f ]C2

B2
[v ]B2 = PC2←C1 [f ]C1

B1
PB1←B2 [v ]B2 ,

and this is Proposition 1.7.6.

Definition 1.7.10 (Similar matrices). Let A, B ∈ Matn(K). We say that A is similar to B if and only
if there exists an invertible matrix Q such that

A = Q−1BQ.

This definition is symmetric with respect to A and B: namely, A is similar to B if and only if B is similar
to A, since

A = Q−1BQ =⇒ QAQ−1 = B,

so that if we let P = Q−1 then we have a relation

B = P−1AP.

Here we have used the (assumed known) fact that (P−1)−1 = P, for any invertible matrix P.

Moreover, if A is similar to B and B is similar to C , so that

A = Q−1BQ, and B = P−1CP,

then
A = Q−1BQ = Q−1P−1CPQ = (PQ)−1C (PQ),

so that A is similar to C .32

Corollary 1.7.7 states that matrices of linear endomorphisms with respect to different bases are similar.
There is a converse to this result.

Proposition 1.7.11. Let A, B ∈ Matn(K) be similar matrices, so that A = P−1BP, where P ∈ GLn(K)
is an invertible n×n matrix. Then, there exists a linear endomorphism f ∈ EndK(Kn) and ordered bases
B, C ⊂ Kn such that

[f ]B = A, and [f ]C = B.

Proof: We take C = S(n) = (e1, ... , en), B = (b1, ... , bn), where bi is the i th column of P, and
f = TB ∈ EndK(Kn). The details are left to the reader.

Hence, Proposition 1.7.11 tells us that we can think of similar matrices A and B as being the matrices
of the same linear morphism with respect to different ordered bases. As such, we expect that similar
matrices should have certain equivalent properties; namely, those properties that can arise by considering
the linear morphism TA (or, equivalently, TB ), for example, rank, diagonalisability, invertibility.

1.7.1 Rank, classification of linear morphisms

Let f ∈ HomK(V , W ) be a linear morphism and recall the definition of the kernel of f and the image
of f (Definition 1.4.4).

32These facts, along with the trivial statement that A is similar to A, imply that the notion of similarity defines an
equivalence relation on Matn(K).
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Definition 1.7.12. We define the rank of f , denoted rank f , to be the number

rank f = dim imf .

We define the nullity of f , denoted nul f , to be the number

nul f = dim ker f .

If A is an m × n matrix then we define the rank of A, denoted rank A, to be the rank of the linear
morphism TA determined by A. Similary, we define the nullity of A, denoted nul A, to be the nullity of
the linear morphism TA.

There exists a basic relationship between rank and nullity.

Theorem 1.7.13 (Rank Theorem). Let f ∈ HomK(V , W ). Then,

dim V = nul f + rank f .

Proof: By Corollary 1.5.19 we know that there is a subspace U ⊂ V such that V = ker f ⊕ U. Let
B = (b1, ... , br ) be an ordered basis for U. Then, we claim that C = (f (b1), ... , f (br )) is an ordered
basis of imf .

First, it is easy to see that the set {f (b1), ... , f (br )} ⊂W is a subset of imf . If v ∈ imf , then v = z +u,
where z ∈ ker f , u ∈ U (since V = ker f ⊕ U). Moreover, if u = λ1b1 + ... + λr br then

f (v) = f (z + u) = f (z) + f (u) = 0W + f (λ1b1 + ... + λr br ) = λ1f (b1) + ... + λr f (br ) ∈ spanK C.

Hence, since imf = {f (v) ∈W | v ∈ V } then we must have spanK C = imf .

It remains to show that {f (b1), ... , f (br )} is linearly independent: indeed, suppose we have a linear
relation

λ1f (b1) + ... + λr f (br ) = 0W .

Then, since f is linear, this implies that λ1b1 + ... + λr br ∈ ker f and λ1b1 + ... + λr br ∈ U (because B
is a basis of U). Hence,

λ1b1 + ... + λr br ∈ ker f ∩ U = {0V },

so that
λ1b1 + ... + λr br = 0V .

Now, as B is linearly independent then

λ1 = λ2 = · · · = λr = 0.

Hence, C is linearly independent and therefore a basis of imf .

Now, using Corollary 1.5.19, we see that

dim V = nul f + r = nul f + rank f ,

by the previous discussion.

Lemma 1.7.14. Let A be an m × n matrix. Then, the rank of A is equal to the maximal number of
linearly independent columns of A.

Proof: Let us write
A = [a1 a2 · · · an],

so that the i th column of A is the vector ai ∈ Km.

Consider the linear morphism TA ∈ HomK(Kn,Km). Then, we have defined rank A = rank TA =
dim imTA. Then, since

TA


x1

...
xn


 = x1a1 + ... + xnan,
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we see that
(∗) spanK{a1, ... , an} = imTA.

Suppose that A 6= 0m,n. Thus, one of the columns of A is nonzero. Suppose that ai 6= 0Km . Then, {ai}
is a linearly independent set and can be extended to a basis of imTA using vectors from {a1, ... , an},
by (∗). Hence, rank A = dim imTA is equal to the number of columns of A that form a basis of imTA.
Moreover, by Proposition 1.5.15, every linearly independent set in imTA has size no greater than rank A.
In particular, every linearly independent subset of the columns of A has size no greater than rank A while
there does exist some subset having size exactly rank A.

If A = 0m,n then TA ∈ HomK(V , W ) is the zero morphism and rank TA = dim{0W } = 0. The result
follows.

The proof that we have just given for the Rank Theorem implies the following result.

Theorem 1.7.15. Let f ∈ HomK(V , W ) be a K-linear morphism and denote r = rank f . Then, there
exists ordered bases B ⊂ V , C ⊂W such that

[f ]CB =

[
Ir 0r ,n−r

0m−r ,r 0m−r ,n−r

]
,

where n = dim V , m = dim W and 0i ,j ∈ Mati ,j (K) is the zero matrix.

Proof: Consider an ordered basis B1 = (b1, ... , bn−r ) of ker f and extend to an ordered basis

B = (b1, ... , bn−r , bn−r+1, ... , bn)

of V . Then, as in the proof of the Rank Theorem, we see that (f (bn−r+1), ... , f (bn)) is an ordered basis
of imf . Extend this to an ordered basis

C = (f (bn−r+1), ... , f (bn), c1, ... , cm−r ),

of W . Then,

[f ]CB =

[
Ir 0r ,n−r

0m−r ,r 0m−r ,n−r

]
.

Corollary 1.7.16. Let A ∈ Matm,n(K) such that rank A = r . Then, there exists P ∈ GLn(K), Q ∈
GLm(K) such that

Q−1AP =

[
Ir 0r ,n−r

0m−r ,r 0m−r ,n−r

]
.

Corollary 1.7.17. Let A, B ∈ Matm,n(K). Then, A, B are the matrices of the same linear map with
respect to different bases if and only if they have the same rank.

Proof: By the previous Corollary we can find Q1, Q2 ∈ GLm(K), P1, P2 ∈ GLn(K) such that

Q−1
1 AP1 =

[
Ir 0r ,n−r

0m−r ,r 0m−r ,n−r

]
= Q−1

2 BP2.

Then, we have
Q2Q−1

1 AP1P−1
2 = B.

Recall that Q2Q−1
1 = (Q1Q−1

2 )−1. Then, as Q1Q−1
2 and P1P−1

2 are invertible matrices (products of
invertible matrices are invertible) their different sets of columns are linearly independent and therefore
form ordered bases C ⊂ Km and B ⊂ Kn. Then, if we consider the linear map TA, the above equation
says that

PC←S(m) [TA]S
(m)

S(n) PS(n)←B = B,

so that Proposition 1.7.6 implies that [TA]CB = B.

Remark 1.7.18. 1. The rank of a matrix A is usually defined to be the maximum number of linearly
independent columns of A. However, we have shown that our definition is equivalent to this
definition.
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2. Theorem 1.7.15 is just a restatement in terms of linear morphisms of a fact that you might have
come across before: every m × n matrix can be row-reduced to reduced echelon form using row
operations. Moreover, if we allow ‘column operations’, then any m×n matrix can be row/column-
reduced to a matrix of the form appearing in Theorem 1.7.15.

This requires the use of elementary (row-operation) matrices and we will investigate this result
during discussion.

3. Corollary 1.7.17 allows us to provide a classification of m×n matrices based on their rank: namely,
we can say that A and B are equivalent if there exists Q ∈ GLm(K), P ∈ GLn(K) such that

B = Q−1AP.

Then, this notion of equivalence defines an equivalence relation on Matm,n(K). Hence, we can
partition Matm,n(K) into dictinct equivalence classes. Corollary 1.7.17 says that the equivalence
classes can be labelled by the rank of the matrices that each class contains.

1.8 Dual Spaces (non-examinable)

In this section we are going to try and understand a ‘coordinate-free’ approach to solving systems of
linear equations and to prove some basic results on row-reduction; in particularm we will prove that
‘row-reduction works’. This uses the notion of the dual space of a K-vector space V . We will also
see the dual space appear when we are discussing bilinear forms and the adjoint of a linear morphism
(Chapter 3).

Definition 1.8.1. Let V be a K-vector space. We define the dual space of V , denoted V ∗, to be the
K-vector space

V ∗
def
= HomK(V ,K).

Therefore, vectors in V ∗ are K-linear morphisms from V to K; we will call such a linear morphism a
linear form on V .

Notice that dimK V ∗ = dimK V .

Example 1.8.2. Let V be a K-vector space, B = (b1, ... , bn) an ordered basis of V . Then, for each
i = 1, ... , n, we define b∗i ∈ V ∗ to be the linear morphism defined as follows: since B is a basis we know
that for every v ∈ V we can write a unique expression

v = c1b1 + ... + cnbn.

Then, define
b∗i (v) = ci ,

so that b∗i is the function that ‘picks out’ the i th entry in the B-coordinate vector [v ]B of v .

Proposition 1.8.3. Let V be a K-vector space, B = (b1, ... , bn) an ordered basis of V . Then, the
function

θB : V → V ∗ ; v = c1b1 + ... + cnbn 7→ c1b∗1 + ... + cnb∗n ,

is a bijective K-linear morphism. Moreover, B∗ = (b∗1 , ... , b∗n ) is a basis of V ∗ called the dual basis of
B.

Proof: Linearity is left as an exercise to the reader.

To show that θB is bijective it suffices to show that θB is injective, by Theorem 1.7.4. Hence, we will
show that ker θB = {0V }: let v ∈ ker θB and suppose that

v = c1b1 + ... + cnbn.

Then,
0V ∗ = θB(v) = c1b∗1 + ... + cnb∗n ∈ V ∗.
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Hence, since this is an equality of morphisms, we see that evaluating both sides of this equality at bi ,
and using the defintion of b∗k , we have

0 = 0V ∗(bi ) = (c1b∗1 + ... + cnb∗n )(bi ) = c1b∗1 (bi ) + ... + cnb∗n (bi ) = ci , for every i ,

so that c1 = ... = cn = 0 ∈ K. Hence, v = 0 and the result follows.

Definition 1.8.4. Let f ∈ HomK(V , W ) be a linear morphism between K-vector spaces V , W . Then,
we define the dual of f , denoted f ∗, to be the function

f ∗ : W ∗ → V ∗ ; α 7→ f ∗(α) = α ◦ f .

Remark 1.8.5. 1. Let’s clarify just exactly what f ∗ is, for a given f ∈ HomK(V , W ): we have
defined f ∗ as a function whose inputs are linear morphisms α : W → K and whose output is the
linear morphism

f ∗(α) = α ◦ f : V →W → K ; v 7→ α(f (v)).

Since the composition of linear morphisms is again a linear morphism we see that f ∗ is a well-
defined function

f ∗ : W ∗ → V ∗.

We say that f ∗ pulls back forms on W to forms on V . Moreover, the function f ∗ is actually
a linear morphism, so that f ∗ ∈ HomK(W ∗, V ∗).33

2. Dual spaces/morphisms can be very confusing at first. It might help you to remember the following
diagram

V
f- W

K

α

?f ∗(α)
-

It now becomes clear why we say that f ∗ pulls back forms on W to forms on V .

3. The (−)∗ operation satisfies the following properties, which can be easily checked:

- for f , g ∈ HomK(V , W ) we have (f + g)∗ = f ∗ + g∗ ∈ HomK(W ∗, V ∗); for λ ∈ K we have
(λf )∗ = λf ∗ ∈ HomK(W ∗, V ∗),

- if f ∈ HomK(V , W ), g ∈ HomK(W , X ), then (g ◦ f )∗ = f ∗ ◦ g∗ ∈ HomK(X ∗, V ∗); id∗V =
idV ∗ ∈ EndK(V ∗).

4. Let B = (b1, ... , bn) ⊂ V , C = (c1, ... , cm) ⊂ W be ordered bases and f ∈ HomK(V , W ). Let
B∗, C∗ be the dual bases of B and C. Then, we have that the matrix of f ∗ with respect to C∗,B∗
is

[f ∗]B
∗

C∗ = [[f ∗(c∗1 )]B∗ · · · [f ∗(c∗m)]B∗ ],

an n ×m matrix.

Now, for each i , we have
f ∗(c∗i ) = λ1i b

∗
1 + ... + λni b

∗
n ,

so that

[f ∗(c∗i )]B∗ =

λ1i

...
λni

 , and λki = f ∗(c∗i )(bk ) = c∗i (f (bk )).

As c∗i (f (bk )) is the i th entry in the C-coordinate vector of f (bk ), we see that the ik th entry of
[f ]CB is λki , which is the ki th entry of [f ∗]B

∗

C∗ . Hence, we have, if A = [f ]CB, then

[f ∗]B
∗

C∗ = At .

33Check this.
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Lemma 1.8.6. Let V , W be finite dimensional K-vector spaces, f ∈ HomK(V , W ). Then,

- f is injective if and only if f ∗ is surjective.

- f is surjective if and only if f ∗ is injective.

- f is bijective if and only if f ∗ is bijective.

Proof: The last statement is a consequence of the first two.

(⇒) Suppose that f is injective, so that ker f = {0V }. Then, let β ∈ V ∗ be a linear form on V , we
want to find a linear form α on W such that f ∗(β) = α. Let B = (b1, ... , bn) be an ordered basis of V ,
B∗ the dual basis of V ∗. Then, since f is injective, we must have that f (B) = (f (b1), ... , f (bn)) is a
linearly independent subset of W 34. Extend this to a basis C = (f (b1, ... , f (bn), cn+1, ... , cm) of W and
consider the dual basis C∗ of W ∗.

In terms of the dual basis B∗ we have

β = λ1b∗1 + ... + λnb∗n ∈ V ∗.

Consider
α = λ1f (b1)∗ + ...λnf (bn)∗ + 0c∗n+1 + ... + 0c∗m ∈W ∗.

Then, we claim that f ∗(α) = β. To show this we must show that f ∗(α)(v) = β(v), for every v ∈ V
(since f ∗(β),α are both functions with domain V ). We use the result (proved in Short Homework 4):
if f (bi ) = g(bi ), for each i , with f , g linear morphisms with domain V , then f = g . So, we see that

f ∗(α)(bi ) = λ1f ∗(f (b1)∗)(bi ) + ... + λnf ∗(f (bn)∗)(bi ) + 0V , using linearity of f ∗,

= λ1f (b1)∗(f (bi )) + ... + λnf (bn)∗(f (bi )) = λi , since f ∗ pulls back forms.

Then, it is easy to see that β(bi ) = λi , for each i . Hence, we must have f ∗(α) = β.

The remaining properties are left to the reader. In each case you will necessarily have to use some bases
of V and W and their dual bases.

Remark 1.8.7. 1. Lemma 1.8.6 allows us to try and show properties of a morphism by showing the
‘dual’ property of its dual morphism. You will notice in the proof that we had to make a choice
of a basis of V and W and that this choice was arbitrary: for a general K-vector space there is
no ‘canonical’ choice of a basis. In fact, every proof of Lemma 1.8.6 must make use of a basis
- there is no way that we can obtain these results without choosing a basis at some point. This
is slightly annoying as this means there is no ‘God-given’ way to prove these statements, all such
attempts must use some arbitrary choice of a basis.

2. Lemma 1.8.6 does NOT hold for infinite dimensional vector spaces. In fact, in the infinite dimen-
sional case it is not true that V is isomorphic to V ∗: the best we can do is show that there is an
injective morphism V → V ∗. This a subtle and often forgotten fact.

In light of these remarks you should start to think that the passage from a vector space to its dual can
cause problems because there is no ‘God-given’ way to choose a basis of V . However, these problems
disappear if we dualise twice.

Theorem 1.8.8. Let V be a finite dimensional K-vector space. Then, there is a ‘canonical isomorphism’

ev : V → (V ∗)∗ ; v 7→ (evv : α 7→ α(v))

Before we give the proof of this fact we will make clear what the function ev does: since V ∗ is a K-vector

space we can take its dual, to obtain (V ∗)∗
def
= V ∗∗. Therefore, evv must be a linear form on V ∗, so

must take ‘linear forms on V ’ as inputs, and give an output which is some value in K. Given the linear
form α ∈ V ∗, the output of evv (α) is α(v), so we are ‘evaluating α at v ’.

34You have already showed this in Short Homework 3.
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The reason we say that this isomorphism is ‘canonical’ is due to the fact that we did not need to use a
basis to define ev - the same function ev works for any vector space V , so can be thought of as being
‘God-given’ or ’canonical’ (there is no arbitrariness creeping in here).

Proof: ev is injective: suppose that evv = 0V ∗∗ , so that evv is the zero linear form on V ∗. If
v 6= 0V then we can extend the (linearly independent) set {v} to a basis of V (simply take a maximal
linearly independent subset of V that contains v). Then, v∗ ∈ V ∗ is the linear form that ‘picks out
the v -coefficient’ of an arbitrary vector u ∈ V when written as a linear combination using the basis
containing v . Then, we must have

0 = evv (v∗) = v∗(v) = 1,

which is absurd. Hence, we can’t have that v 6= 0V so that ev is injective.

Hence, since dim V = dim V ∗ = dim V ∗∗ we see that ev is an isomorphism.

1.8.1 Coordinate-free systems of equations or Why row-reduction works

We know that a system of m linear equations in n variables is the same thing as a matrix equation

Ax = b,

where A is the coefficent matrix of the system and x is the vector of variables. We are going to try and
consider systems of linear equations using linear forms.

Let S(n) = (e1 ... , en) be the standard basis of Kn, S(n),∗ the dual basis. Then, if α is a linear form on
Kn we see that

α = λ1e∗1 + ... + λne∗n .

Hence, if x = x1e1 + ... + xnen ∈ Kn then

α(x) = 0 ⇔ λ1x1 + ... + λnxn = 0.

Hence, kerα = {x ∈ Kn | λ1x1 + ... + λnxn = 0}.

Now, suppose that α1,α2, ... ,αm ∈ Kn ∗ are linear forms. Then,

m⋂
i=1

kerαi = {x ∈ Kn | αi (x) = 0, for every i} .

So, if αi = λi1e∗1 + ... + λine∗n , then

m⋂
i=1

kerαi =

x =

x1

...
xn

 ∈ Kn |
λ11x1 + ... + λ1nxn = 0

...
...

λm1x1 + ... + λmnxn = 0

 .

This is precisely the solution set of the matrix equation

Ax = 0,

where A = [λij ]. Hence, we have translated our ‘systems of linear equations’ problem into one involving
linear forms: namely, we want to try and understand

⋂
i kerαi , for some linear forms αi ∈ Kn ∗.

Now, how can we interpret elementary row operations in this new framework? Of course, swapping rows
is the same as just reordering the forms αi . What happens if we scale a row by λ ∈ K? This is the same
as considering the linear form λα ∈ Kn ∗. Similarly, adding row i to row j is the same as adding αi to
αj to obtain the linear form αi + αj . In summary, performing elementary row operations is the same as
forming linear combinations of the linear forms αi .

The whole reason we row-reduce a matrix A to a reduced echelon form U is because the solution sets of
Ax = 0 and Ux = 0 are the same (a fact we will prove shortly), and it is easier to determine solutions for
the matrix equation defined by U. Since we obtain U by applying elementary row operations to A, this
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is the same as doing calculations in spanK{αi} ⊂ Kn ∗, by what we have discussed above. Moreover,
since U is in reduced echelon form this means that the rows of U are linearly independent (this is easy
to see, by the definition of reduced echelon form) and because elementary row operations correspond to
forming linear combinations of linear forms, we have that the linear forms that correspond to the rows
of U must form a basis of the subspace spanK{αi} ⊂ Kn ∗.

Definition 1.8.9. Let V be a finite dimensional K-vector space, V ∗ its dual space. Let U ⊂ V be a
subspace of V and X ⊂ V ∗ a subspace of V ∗. We define

annV ∗U = {α ∈ V ∗ | α(u) = 0, for every u ∈ U}, and

annV X = {v ∈ V | evv (α) = 0, for every α ∈ X},
the annihilators of U (resp. X ) in V ∗ (resp. V ). They are subspaces of V ∗ (resp. V ), for any U (resp.
X ).

Proposition 1.8.10. Let V be a K-vector space, U ⊂ V a subspace. Then,

dim V = dim U + dim annV ∗U.

Proof: Let A = (a1, ... , ak ) be a basis of U and extend to a basis B = (a1, ... , ak , ak+1, ... , an) of V .
Then, it is easy to see that a∗k+1, ... , a∗n ∈ annV ∗U. Moreover, if α ∈ annV ∗U then

α = λ1a∗1 + ... + λna∗n ,

and we must have, for every i = 1, ... , k, that

0 = α(ai ) = λi .

Hence, α ∈ spanK{a∗k+1, ... , a∗n} implying that (a∗k+1, ... , a∗n) is a basis of annV ∗U. The result now
follows.

Corollary 1.8.11. Let f ∈ HomK(V , W ) be a linear morphism between finite dimensional vector spaces.
Suppose that A = [f ]CB = [aij ] is the matrix of f with respect to the bases B = (bi ) ⊂ V , C = (cj ) ⊂W .
Then,

rank f = max. no. of linearly ind’t columns of A = max. no. of linearly ind’t rows of A.

Proof: The first equality was obtained in Lemma 1.7.14. The maximal number of linearly independent
rows is equal to dim spanK{αi}, where

αi = ai1b∗1 + ... + ainb∗n ∈ V ∗.

Now, we have that

annV spanK{αi} = {v ∈ V | evv (αi ) = 0, for every i} = {v ∈ V | αi (v) = 0, for every i},

and this last set is nothing other than ker f .35 Thus, by the Rank Theorem (Theorem 1.7.13) we have

dim V = dim imf + dim ker f = rank f + dim annV spanK{αi} = rank f + (dim V − dim spanK{αi}),

using Proposition 1.8.10 in the last equality. Hence, we find

rank f = dim spanK{αi},

which is what we wanted to show.

Proposition 1.8.12 (Row-reduction works). Let A ∈ Matm,n(K), U be its reduced echelon form. Then,
x satisfies Ux = 0 if and only if Ax = 0.

Proof: Let α1, ... ,αm ∈ Kn ∗ be the linear forms corresponding to the rows of A, β1, ... ,βr be the
linear forms corresponding to the (nonzero) rows of U (we have just seen that r = rank A). Then, by our
discussions above, we know (βj ) is a basis of W = spanK{αi}m

i=1 ⊂ Kn ∗. In particular, spanK{βj} = W .
Now, we have

annKn W = {x ∈ Kn | αi (x) = 0, for every i} = {x ∈ Kn | βj (x) = 0, for every j}.

The result follows from this equality of sets since this common set is the solution set of Ax = 0 and
Ux = 0.

35Think about this!
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2 Jordan Canonical Form

In this chapter we are going to classify all C-linear endomorphisms of a n-dimensional C-vector space V .
This means that we are going to be primarily studying EndC(V ), the C-vector space of C-endomorphisms
of V (up to conjugation). For those of you that know about such things, we are going to identify the
orbits of the group GLC(V ) acting on the set EndC(V ) by conjugation. Since there exists an isomorphism

EndC(V )→ Matn(C) ; f 7→ [f ]B,

(once we choose an ordered basis B of V ) this is the same thing as trying to classify all n× n matrices
with C-entries up to similarity.

You may recall that given any square matrix A with C-entries we can ask whether A is diagonalisable
and that there exists matrices that are not diagonalisable. For example, the matrix

A =

[
1 1
0 1

]
,

is not diagonalisable.36

In fact, this example is typical, in the following sense: let A ∈ Mat2(C). Then, A is similar to one of
the following types of matrices[

a 0
0 b

]
, a, b ∈ C, or

[
c 1
0 c

]
, c ∈ C.

In general, we have the following

Theorem (Jordan Canonical Form). Let A ∈ Matn(C). Then, there exists P ∈ GLn(C) such that

P−1AP =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 · · · · · · Jk

 ,

where, for each i = 1, ... , k, we have an ni × ni matrix

Ji =


λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
. . .

. . .
...

0 · · · 0 λi 1
0 · · · · · · 0 λi

 , λi ∈ C.

Hence, every n × n matrix with C-entries is similar to an almost-diagonal matrix.

We assume throughout this chapter that we are working with C-vector spaces and C-linear
morphisms. Furthermore, we assume that all matrices have C-entries.

2.1 Eigenthings

([1], p.108-113)

This section should be a refresher on the notions of eigenvectors, eigenvalues and eigenspaces of an
n × n matrix A (equivalently, of a C-linear morphism f ∈ EndC(V )).

Definition 2.1.1. Let f ∈ EndC(V ) be a C-linear endomorphism of the C-vector space V . Let λ ∈ C.

36Try and recall why this was true.
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- The λ-eigenspace of f is the set

Eλ
def
= {v ∈ V | f (v) = λv}.

This is a vector subspace of V (possibly the zero subspace).

If Eλ 6= {0V } and v ∈ Eλ is a nonzero vector, then we say that v is an eigenvector of f with
associated eigenvalue λ.

- If A is an n×n matrix with C-entries then we define the λ-eigenspace of A to be the λ-eigenspace
of the linear morphism TA. Similarly, we say that v ∈ Cn is an eigenvector of A with associated
eigenvalue λ if v is an eigenvector of TA with associated eigenvalue λ.

Lemma 2.1.2. Let f ∈ EndC(V ), v1, ... , vk ∈ V be eigenvectors of f with associated eigenvalues
λ1, ... ,λk ∈ C. Assume that λi 6= λj whenever i 6= j . Then, {v1, ... , vk} is linearly independent.

Proof: Let S = {v1, ... , vk}. Let T ⊂ S denote a maximal linearly independent subset (we know
that a linearly independent subset exists, just take {v1}; then choose a linearly independent subset of
largest size). We want to show that T = S . Suppose that T 6= S , we aim to provide a contradiction.
As T 6= S , then we can assume, without loss of generality, that vk /∈ T .

We are going to show that vk /∈ spanC T , and then use Corollary 1.3.5 to deduce that T ∪ {vk} is
linearly independent, contradicting the maximality of T .

Suppose that vk ∈ spanC T , we aim to provide a contradiction. So, as vk ∈ spanC T then

vk = c1vi1 + ... + csvis ,

where c1, ... , cs ∈ C, vi1 , ... , vis ∈ T . Apply f to both sides of this equation to obtain

λk vk = c1λi1 vi1 + ... + csλis vis .

Taking this equation away from λk times the previous equation gives

0V = c1(λi1 − λk )vi1 + ... + cs(λis − λk )vis .

This is a linear relation among vectors in T so must be the trivial linear relation since T is linearly
independent. Hence, we have, for each j = 1, ... , s,

cj (λij − λk ) = 0,

and as vk /∈ T (by assumption) we have λij 6= λk . Hence, we must have that cj = 0, for every j . Then,
we have vk = 0V , which is absurd as vk is an eigenvector, hence nonzero by definition.

Therefore, our initial assumption that vk ∈ spanC T must be false, so that vk /∈ spanC T . As indicated
above, this implies that T ∪{vk} is linearly independent, which contradicts the maximality of T . There-
fore, T must be equal to S (otherwise T 6= S and we run into the previous ‘maximality’ contradiction)
so that S is linearly independent.

Corollary 2.1.3. Let λ1, ... ,λk denote all eigenvalues of f ∈ EndC(V ). Then,

Eλ1 + ... + Eλk
= Eλ1 ⊕ ...⊕ Eλk

,

that is, the sum of all eigenspaces is a direct sum.

Proof: Left to the reader.

Consider the case when
Eλ1 ⊕ ...⊕ Eλk

= V ;

what does this tell us? In this case, we can find a basis of V consisting of eigenvectors of f (each
λi -eigenspace Eλi is a subspace we can find a basis of it Bi say. Then, since we have in this case

dim V = dim Eλ1 + ... + dim Eλk
,
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we see that
B = B1 ∪ ... ∪ Bk ,

is a basis of V .37) If we write B = (b1, ... , bn) (where n = dim V ) then we see that

[f ]B = [[f (b1)]B · · · [f (bn)]B],

and since f (bi ) is a scalar multiple of bi we see that [f ]B is a diagonal matrix.

Theorem 2.1.4. Let f ∈ EndC(V ) be such that

Eλ1 ⊕ ...⊕ Eλk
= V .

Then, there exists a basis of V such that [f ]B is a diagonal matrix.

Corollary 2.1.5 (Diagonalisation). Let A ∈ Matn(C) be such that there exists a basis of Cn consisting
of eigenvectors of A. Then, there exists a matrix P ∈ GLn(C) such that

P−1AP = D,

where D is a diagonal matrix. In fact, the entries on the diagonal of D are the eigenvalues of A.

Proof: Let B = (b1, ... , bn) be an ordered basis of Cn consisting of eigenvectors of A. Then, if
P = PS(n)←B we have

P−1AP = D,

by applying Corollary 1.7.7 to the morphism TA ∈ EndC(Cn). Here we note that [TA]B = D is a diagonal
matrix by Theorem 2.1.4.

Definition 2.1.6. We say that an endomorphism f ∈ EndC(V ) is diagonalisable if there exists a basis
B ⊂ V of V such that [f ]B is a diagonal matrix

We say that an n × n matrix A ∈ Matn(C) is diagonalisable if TA is diagonalisable. This is equivalent
to: A is diagonalisable if and only if A is similar to a diagonal matrix (this is discussed in the following
Remark).

Remark 2.1.7. Corollary 2.1.5 implies that if there exists a basis of Cn consisting of eigenvectors of A
then A is diagonalisable. In fact, the converse is true: if A is diagonalisable and P−1AP = D then there
is a basis of Cn consisting of eigenvectors of A. Indeed, if we let B = (b1, ... , bn) where bi is the i th

column of P, then bi is an eigenvector of A. Why does this hold? Since we have

P−1AP = D = diag(d1, ... , dn),

where diag(d1, ... , dn) denotes the diagonal n × n matrix with d1, ... , dn on the diagonal, then we have

AP = PD.

Then, the i th column of the matrix AP is Abi , so that AP = PD implies that Abi = di bi (equate the
columns of AP and PD). Therefore, each column of P is an eigenvector of A.

2.1.1 Characteristic polynomial, diagonalising matrices

Corollary 2.1.5 tells us conditions concerning when we can we can diagonalise a given matrix A ∈ Matn(C)
- we must find a basis of Cn consisting of eigenvectors of A. In order to this we need to determine how
we can find any eigenvectors, let alone a basis consisting of eigenvectors.

Suppose that v ∈ Cn is an eigenvector of A with associated eigenvalue λ ∈ C. This means we have

Av = λv =⇒ (A− λIn)v = 0Cn ,

37Why must this be a basis?
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that is, v ∈ ker TA−λIn . Conversely, any nonzero v ∈ ker TA−λIn is an eigenvector of A with associated
eigenvalue λ. Note that

Eλ = ker TA−λIn .

Since TA−λIn ∈ EndC(Cn) we know, by Proposition 1.7.4, that injectivity of TA−λIn is the same thing
as bijectivity. Now, bijectivity of TA−λIn is the same thing as determining whether the matrix A− λIn is
invertible (using Theorem 1.7.4). Hence,

ker TA−λIn 6= {0Cn} ⇔ TA−λIn not bijective ⇔ det(A− λIn) = 0.

Therefore, if v is an eigenvector of A with associated eigenvalue λ then we must have that det(A−λIn) =
0 and v ∈ ker TA−λIn . Moreover, if λ ∈ C is such that det(A − λIn) = 0 then ker TA−λIn 6= {0Cn} and
any nonzero v ∈ ker TA−λIn is an eigenvector of A with associated eigenvalue λ.

Definition 2.1.8 (Characteristic polynomial). Let f ∈ EndC(V ). Define the characteristic polynomial
of f , denoted χf (λ), to be the polynomial in λ with complex coefficients

χf (λ) = det([f − λidV ]B),

where B is any ordered basis of V .38

If A ∈ Matn(C) then we define the characteristic polynomial of A, denoted χA(λ), to be χTA
(λ). In this

case, we have (using the standard basis S(n) of Cn)

χA(λ) = det(A− λIn).

Note that we are only considering λ as a ‘variable’ in the determinants, not an actual number. Also,
note that the degree of χf (λ) = dim V 39 and the degree of χA(λ) = n.

The characteristic equation of f (resp. A) is the equation

χf (λ) = 0, (resp. χA(λ) = 0.)

Example 2.1.9. Let

A =

[
1 −3
2 −1

]
.

Then,

A− λI2 =

[
1− λ −3

2 −1− λ

]
.

Hence, we have
χA(λ) = (1− λ)(−1− λ)− 2.(−3) = λ2 + 5.

Remark 2.1.10. 1. It should be apparent from the discussion above that the eigenvalues of a given
linear morphism f ∈ EndC(V ) (or matrix A ∈ Matn(C)) are precisely the zeros of the characteristic
equation χf (λ) = 0 (or χA(λ) = 0).

2. Example 2.1.9 highlights an issue that can arise when we are trying to find eigenvalues of a
linear morphism (or matrix). You’ll notice that in this example there are no R-eigenvalues: the
eigenvalues are ±

√
−5 ∈ C\R. Hence, we have complex eigenvalues that are not real. In general,

given a matrix A with C-entries (or a C-linear morphism f ∈ EndC(V )) we will always be able to
find eigenvalues - this follows from the Fundamental Theorem of Algebra:

38If C is any other basis of V then there is an invertible matrix P such that

[f − λidV ]C = P−1[f − λidV ]BP.

Then, since det(AB) = det A det B, for any matrices A, B, we see that det([f − λidV ]C) = det([f − λidV ]B) (where we
have also used det P−1 = (det P)−1).

39This will be shown in homework.
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Theorem (Fundamental Theorem of Algebra). Let p(T ) be a nonconstant polynomial with C-
coefficients. Then, there exists λ0 ∈ C such that p(λ0) = 0. Hence, every such polynomial can
be written as a product of linear factors

p(T ) = (T − λ1)n1 (T − λ2)n2 · · · (T − λk )nk .

Note that this result is false if we wish to find a real root: for p(T ) = T 2 + 1 there are no real
roots (ie, no λ0 ∈ R such that p(λ0) = 0).

It is a consequence of this Theorem that we are considering in this section only K = C as this
guarantees that eigenvalues exist.

We are now in a position to find eigenvectors/eigenvalues of a given linear morphism f ∈ EndC(V ) (or
matrix A ∈ Matn(C)):

0. Find an ordered basis B = (b1, ... , bn) of V to obtain [f ]B. Let A = [f ]B. This step is not
required if you are asked to find eigenthings for a given A ∈ Matn(C).

1. Determine the characteristic polynomial χA(λ) and solve the equation χA(λ) = 0. The roots of
this equation are the eigenvalues of A (and f ), denote them λ1, ... ,λk .

2. v ∈ V is an eigenvector with associated eigenvalue λi if and only if v ∈ ker(f −λi idV ) if and only
if [v ]B is a solution to the matrix equation

(A− λi In)x = 0.

Example 2.1.11. This follows on from Example 2.1.9 and we have already determined Step 1. above,
we have

λ1 =
√
−5, λ2 = −

√
−5.

If we wish to find eigenvectors with associated eigenvalue λ1 then we consider the matrix

A− λ1I2 =

[
1−
√
−5 −3

2 −1−
√
−5

]
∼
[

1 −3
0 0

]
,

and so obtain that

ker TA−λ1I2 =

{[
x1

x2

]
∈ C2 | x1 − 3x2 = 0

}
=

{[
3x
x

]
| x ∈ C

}
.

In particular, if we choose x = 1, we see that

[
3
1

]
is an eigenvector of A with associated eigenvalue

√
−5. Any eigenvector of A with associated eigenvalue

√
−5 is a nonzero vector in ker TA−

√
−5I2

.

Definition 2.1.12. Let f ∈ EndC(V ) (or A ∈ Matn(C)). Supoose that

χf (λ) = (λ− λ1)n1 (λ− λ2)n2 · · · (λ− λk )nk

so that λ1, ... ,λk are the eigenvalues of f .

- define the algebraic multplicity of λi to be ni ,

- define the geometric multiplicity of λi to be dim Eλi .

Lemma 2.1.13. Let f ∈ EndC(V ) and λ be an eigenvalue of f . Then,

‘alg. multplicity of λ’ ≥ ‘geom. multiplicity of λ’

Proof: This will be proved later after we have introduced the polynomial algebra C[t] and the notion
of a representation of C[t] (Definition 2.4.2)
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Proposition 2.1.14. Let A ∈ Matn(C). Denote the eigenvalues of A by λ1, ... ,λk . Then, A is diago-
nalisable if and only if, for every i , the algebraic multplicity of λi is equal to the geometric multiplicity
of λi .

Proof: (⇒) Suppose that A is diagonalisable and that

χA(λ) = (λ− λ1)n1 (λ− λ2)n2 · · · (λ− λk )nk .

Then, by Remark 2.1.7, we can find a basis of eigenvectors of Cn. Hence, we must have

Cn = Eλ1 ⊕ · · · ⊕ Eλk
.

Then, by Lemma 2.1.13 and Corollary 1.5.19, we have

n = dim Eλ1 + ... + dim Eλk
≤ n1 + ... + nk = n,

where we have used that the degree of the characteristic polynomial is n.
This implies that we must have dim Eλi = ni , for every i : indeed, we have

dim Eλ1 + ... dim Eλk
= n1 + ... + nk ,

with dim Eλi ≤ ni , for each i . If dim Eλi < ni , for some i , then we would coontradict this previous
equality. The result follows.

(⇐) Assume that dim Eλi = ni , for every i . Then, we know that

V ⊃ Eλ1 + ... + Eλk
= Eλ1 ⊕ ...⊕ Eλk

.

Then, since
dim(Eλ1 ⊕ ...⊕ Eλk

) = dim Eλ1 + ... + dim Eλk
= n1 + ... + nk = n,

we see that V = Eλ1 ⊕ ... ⊕ Eλk
, by Corollary 1.5.17. Hence, there is a basis of V consisting of

eigenvectors of A so that A is diagonalisable.

As a consequence of Proposition 2.1.14 we are now in a position to determine (in practice) when a
matrix A is diagonalisable. Following on from the above list to find eigenvectors we have

3. For each eigenvalue λi determine a basis of ker TA−λi In (by row-reducing the matrix A − λi In to

reduced echelon form, for example). Denote this basis Bi = (b
(i)
1 , ... , b

(i)
mi ).

4. If |Bi | = mi = ni , for every i , then A is diagonalisable. Otherwise, A is not diagonalisable. Recall
that in Step 1. above you will have determined χA(λ), and therefore ni .

5. If A is diagonalisable then define the matrix P to be the n × n matrix

P = [b
(1)
1 · · · b

(1)
n1

b
(2)
1 · · · b

(2)
n2
· · · b(k)

1 · · · b
(k)
nk

].

Then, Remark 2.1.7 implies that

P−1AP = diag(λ1, ... ,λ1,λ2, ... ,λ2, ... ,λk , ... ,λk ),

with each eigenvalue λi appearing ni times on the diagonal.

Note that the order of the eigenvalues appearing on the diagonal depends on the ordering
we put on B.

Corollary 2.1.15. Let A ∈ Matn(C). Then, if A has n distinct eigenvalues λ1, ... ,λn, then A is diago-
nalisable.
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Proof: Saying that A has n distinct eigenvalues is equivalent to saying that

χA(λ) = (λ− λ1) · · · (λ− λn),

so that the algebraic multiplicity ni of each eigenvalue is 1. Furthermore, λi is an eigenvalue if and only
if there exists a nonzero v ∈ Cn such that Av = λi v . Hence, we have

1 ≤ dim Eλi ≤ ni = 1,

by Lemma 2.1.13, so that dim Eλi = 1 = ni , for every i . Hence, A is diagonalisable by the previous
Proposition.

Example 2.1.16. Consider the matrix

A =

[
1 −3
2 −1

]
,

from the previous examples. Then, we have χA(λ) = (λ−
√
−5)(λ− (−

√
−5)), so that Corollary 2.1.15

implies that A is diagonalisable.

In this section we have managed to obtain a useful criterion for when a given matrix A is diagonalisable.
Moreover, this criterion is practically useful in that we have obtained a procedure that allows us to
determine the diagonalisability of A by hand (or, at least, a criterion we could program a computer to
undertake).

2.2 Invariant subspaces

([1], p.106-108)

In the proceeding sections we will be considering endomorphisms f of a C-vector space V and some
natural subspaces of V that we can associate to f . You may have seen some of these concepts before
but perhaps not the terminology that we will adopt.

Definition 2.2.1 (Invariant subspace). Let f ∈ EndC(V ) be a linear endomorphism of V , U ⊂ V a
vector subspace of V . We say that U is f -invariant or invariant with respect to f if, for every u ∈ U we
have f (u) ∈ U.

If A ∈ Matn(C), U ⊂ Cn a subspace, then we say that U is A-invariant or invariant with respect to A
if U is TA-invariant.

Example 2.2.2. 1. Any subspace U ⊂ V is invariant with respect to idV ∈ EndC(V ). In fact, any
subspace U ⊂ V is invariant with respect to the endomorphism c · idV ∈ EndC(V ), where

(c · idV )(v) = cv , for every v ∈ V .

In particular, every subspace is invariant with respect to the zero morphism of V .

2. Suppose that V = U⊕W and pU , pW are the projection morphisms introduced in Example 1.4.8.
Then, U is pU -invariant: let u ∈ U, we must show that pU (u) ∈ U. Recall that if v = u +w is the
unique way of writing v ∈ V as a linear combination of vectors in U and W (since V = U ⊕W ),
then

pU (v) = u, pW (v) = w .

Hence, since u ∈ V can be written as u = u + 0V , then pU (u) = u ∈ U, so that U is pU -invariant.
Also, if w ∈ W then w = 0V + w (with 0V ∈ U), so that pU (w) = 0V ∈ W . Hence, W is also
pU -invariant. Similarly, we have U and W are both pW -invariant.

In general, if V = U1 ⊕ · · · ⊕ Uk , with Ui ⊂ V a subspace, then each Ui is pUj -invariant, for any
i , j .

3. Let f ∈ EndC(V ) and suppose that λ is an eigenvalue of f . Then, Eλ is f -invariant: let v ∈ Eλ.
Then, we have f (v) = λv ∈ Eλ, since Eλ is a vector subspace of V .
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Lemma 2.2.3. Let f ∈ EndC(V ) and U ⊂ V an f -invariant subspace of V .

- Denote f k = f ◦ f ◦ · · · ◦ f (the k-fold composition of f on V ) then U is also f k -invariant.

- If U is also g-invariant, for some g ∈ EndC(V ), then U is (f + g)-invariant.

- If λ ∈ C then U is a λf -invariant subspace.

Proof: Left to reader.

Remark 2.2.4. It is important to note that the converse of the above statements in Lemma
2.2.3 do not hold.

For example, consider the matrix

A =

[
0 1
1 0

]
,

and the associated endomorphism TA ∈ EndC(C2). Then, T 2
A = TA2 = TI2 = idC2 (because A2 = I2),

so that every subspace of C2 is A2-invariant. However, the subspace U = spanC(e1) is not A-invariant
since Ae1 = e2.

We can also see that A + (−A) = 02 so that every subspace of C2 is (A + (−A))-invariant, while
U = spanC(e1) is neither A-invariant nor (−A)-invariant.

Let f ∈ EndC(V ) and U be an f -invariant subspace. Suppose that B′ = (b1, ... , bk ) is an ordered basis
of U and extend to an ordered basis B = (b1, ... , bk , bk+1, ... , bn) of V . Then, the matrix of f relative
to B is

[f ]B = [[f (b1)]B · · · [f (bk )]B · · · [f (bn)]B] =

[
A B

0n−k,k C

]
,

where A ∈ Matk (C), B ∈ Matk,n−k (C), C ∈ Matn−k,n−k (C). This follows because f (bi ) ∈ spanC{b1, ... , bk},
for each i = 1, ... , k .

Moreover, we can see that if V = U ⊕W with U and W both f -invariant, and if B = B1 ∪ B2 is an
ordered basis of V , where B1 is an ordered basis of U, B2 is an ordered basis of W , then the matrix of
f relative to B is

[f ]B =

[
A 0
0 B

]
,

where A ∈ Matdim U (C), B ∈ Matdim W (C).

Definition 2.2.5. Let A ∈ Matn(C). We say that A is block diagonal if there are matrices Ai ∈
Matni (C), i = 1, ... , k , such that

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 · · · · · · Ak

 .

So, our previous discussion implies the following

Lemma 2.2.6. Let f ∈ EndC(V ), U1, ... , Uk ⊂ V subspaces of V that are all f -invariant and suppose
that

V = U1 ⊕ · · · ⊕ Uk .

Then, there exists an ordered basis B of V such that

[f ]B =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 · · · · · · Ak

 ,
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is a block diagonal matrix, with Ai ∈ Matdim Ui (C). In fact, we can assume that B = B1 ∪ ...∪Bk , with
Bi an ordered basis of Ui , and that

Ai = [f|Ui
]Bi ,

where f|Ui
: Ui → Ui is the restriction of f to Ui .

40

2.3 Nilpotent endomorphisms

([1], p.133-136)

In this section we will consider those linear endomorphisms f ∈ EndC(V ) whose only eigenvalue is 0.
This necessarily implies that

χf (λ) = λn.

We will see that for such endomorphisms there is a (ordered) basis B of V such that [f ]B is ‘nearly
diagonal’.

Definition 2.3.1. An endomorphism f ∈ EndC(V ) is called nilpotent if there exists r ∈ N such that
f r = 0EndC(V ), so that f r (v) = 0V , for every v ∈ V .

A matrix A ∈ Matn(C) is called nilpotent if the endomorphism TA ∈ EndC(Cn) is nilpotent.

Lemma 2.3.2. Let f ∈ EndC(V ) be a nilpotent endomorphism. Then, the only eigenvalue of f is λ = 0
so that χf (λ) = λdim V .

Proof: Suppose that v ∈ V is an eigenvector of f with associated eigenvalue λ. Therefore, we have
v 6= 0 and f (v) = λv . Suppose that f r = 0. Then,

0 = f r (v) = f ◦ · · · ◦ f (v) = f ◦ · · · ◦ f (λv) = λr v .

Thus, as v 6= 0 we must have λr = 0 (Proposition 1.2.5) implying that λ = 0.

For a nilpotent endomorphism f (resp. matrix A ∈ Matn(C)) we define the exponent of f (resp. of A),
denoted η(f ) (resp. η(A)), to be the smallest r ∈ N such that f r = 0 (resp. Ar = 0). Therefore, if
η(f ) = r then there exists v ∈ V such that f r−1(v) 6= 0V .

For v ∈ V we define the height of v (with respect to f ), denoted ht(v), to be the smallest integer m
such that f m(v) = 0V , while f m−1(v) 6= 0V . Hence, for every v ∈ V we have ht(v) ≤ η(f ).

Define Hk = {v ∈ V | ht(v) ≤ k}, the set of vectors that have height no greater than k ; this is a
subspace of V .41

Let f ∈ EndC(V ) be a nilpotent endomorphism. Then, we obviously have Hη(f ) = V , H0 = {0V } and
a sequence of subspaces

{0V } = H0 ⊂ H1 ⊂ · · · ⊂ Hη(f )−1 ⊂ Hη(f ) = V .

Let us denote
dim Hi = mi ,

so that we have
0 = m0 ≤ m1 ≤ ... ≤ mη(f )−1 ≤ mη(f ) = dim V .

We are going to construct a basis of V : for ease of notation we let η(f ) = k. Assume that k 6= 1,
so that f is not the zero endomorphism of V .

1. Let Gk be a complementary subspace of Hk−1 so that

Hk = Hk−1 ⊕ Gk ,

and let (z1, ... , zp1 ) be an ordered basis of Gk . Then, since zj ∈ Hk \Hk−1 we have that f k−1(zj ) 6=
0V , for each j .

40This is a well-defined function since Ui is f -invariant.
41Exercise: show this.
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2. Consider the vectors f (z1), f (z2), ... , f (zp1 ). We have, for each j ,

f k−1(f (zj )) = f k (zj ) = 0V , since zj ∈ Hk ,

so that f (zj ) ∈ Hk−1, for each j . In addition, we can’t have f (zj ) ∈ Hk−2, else

0V = f k−2(f (zj )) = f k−1(zj ),

implying that zj ∈ Hk−1.

Moreover, the set S1 = {f (z1), f (z2), ... , f (zp1 )} ⊂ Hk−1 \ Hk−2 is linearly independent: indeed,
suppose that there is a linear relation

c1f (z1) + ... + cp1 f (zp1 ) = 0V .

with c1, ... , cp1 ∈ C. Then, since f is a linear morphism we obtain

f (c1z1 + ... + cp1 zp1 ) = 0V ,

so that c1z1 + ... + cp1 zp1 ∈ H1 ⊂ Hk−1.

Hence, we have c1z1 + ... + cp1 zp1 ∈ Hk−1 ∩ Gk = {0V }, so that c1z1 + ... + cp1 zp1 = 0V . Hence,
because {z1, ... , zp1} is linearly independent we must have c1 = ... = cp1 = 0 ∈ C. Thus, S1 is
linearly independent.

3. spanC S1 ∩ Hk−2 = {0V }: otherwise, we could find a linear combination

c1f (z1) + ... + cp1 f (zp1 ) ∈ Hk−2,

with some ci 6= 0. Then, we would have

0V = f k−2(c1f (z1) + ... + cp1 f (zp1 )) = f k−1(c1z1 + ... + cp1 zp1 ),

so that c1z1 + ... + cp1 zp1 ∈ Hk−1 ∩ Gk = {0V } which gives all cj = 0, by linear independence
of the zj ’s. But this contradicts that some ci is nonzero so that our initial assumption that
spanC S1 ∩ Hk−2 6= {0V } is false.

Hence, we have
spanC S1 + Hk−2 = spanC S1 ⊕ Hk−2 ⊂ Hk−1.

In particular, we see that mk −mk−1 ≤ mk−1 −mk−2.

4. Let Gk−1 be a complementary subspace of Hk−2 ⊕ spanC S1 in Hk−1, so that

Hk−1 = Hk−2 ⊕ spanC S1 ⊕ Gk−1,

and let (zp1+1, ... , zp2 ) be an ordered basis of Gk−1.

5. Consider the subset S2 = {f 2(z1), ... , f 2(zp1 ), f (zp1+1), ... , f (zp2 )}. Then, as in 2, 3, 4 above we
have that

S2 ⊂ Hk−2 \ Hk−3,

S2 is linearly independent and spanC S2 ∩ Hk−3 = {0V }. Therefore, we have

spanC S2 + Hk−3 = spanC S2 ⊕ Hk−3 ⊂ Hk−2,

so that mk−1 −mk−2 ≤ mk−2 −mk−3.
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6. Let Gk−2 be a complementary subspace of spanC S2 ⊕ Hk−3 in Hk−2, so that

Hk−2 = Hk−3 ⊕ spanC S2 ⊕ Gk−2,

and (zp2+1, ... , zp3 ) be an ordered basis of Gk−2.

7. Consider the subset S3 = {f 3(z1), ... , f 3(zp1 ), f 2(zp1+1), ... , f 2(zp2 ), f (zp2+1), ... , f (zp3 )}. Again,
it can be shown that

S3 ⊂ Hk−3 \ Hk−4,

S3 is linearly independent and spanC S3∩Hk−4 = {0V }. We obtain mk−2−mk−3 ≤ mk−3−mk−4.

8. Proceed in this fashion to obtain a basis of V . We denote the vectors we have obtained in a table

z1, ... zp1 ,
f (z1), ... f (zp1 ), zp1+1, ... zp2 ,

...
...

f k−1(z1), ... f k−1(zp1 ), f k−2(zp1+1), ... f k−2(zp2 ), ... zpk−1+1, ... zpk
,

(2.3.1)

where the vectors in the i th row have height k − i + 1, so that vectors in the last row have height
1.

Also, note that each column determines an f -invariant subspace of V , namely the span of the
vectors in the column.

Lemma 2.3.3. Let Wi denote the span of the i th column of vectors in the table above. Set p0 = 1.
Then,

dim Wi = k − j , if pj + 1 ≤ i ≤ pj+1.

Proof: Suppose that pj + 1 ≤ i ≤ pj+1. Then, we have

Wi = spanC{zi , f (zi ), ... , f k−j−1(zi )}.

Suppose that there exists a linear relation

c0zi + c1f (zi ) + ... + ck−j−1f k−j−1(zi ) = 0V .

Then, applying f k−j−1 to both sides of this equation gives

c0f k−j−1(zi ) + c1f k−j (zi ) + ... + ck−j−1f 2k−2j−2(zi ) = 0V .

Now, as zi has height k− j (this follows because the vector at the top of the i th column is in the (k− j)th

row, therefore as height (k − j)) the previous equation gives

c0f k−j−1(zi ) + 0V + ... + 0V = 0V ,

so that c0 = 0, since f k−j−1(zi ) 6= 0V . Thus, we are left with a linear relation

c1f (zi ) + ... + ck−j−1f k−j−1(zi ) = 0V ,

and applying f j−k−2 to this equation will give c1 = 0, since f (zi ) has height k − j − 1. Proceeding in
this manner we find that c0 = c1 = ... cj−k−1 = 0 and the result follows.

Thus, the information recorded in (2.3.1) and Lemma 2.3.3 proves the following

Theorem 2.3.4. Let f ∈ EndC(V ) be a nilpotent endomorphism with exponent η(f ) = k. Then, there
exists integers d1, ... , dk ∈ Z≥0 so that

kd1 + (k − 1)d2 + ... + 2dk−1 + 1dk = dim V ,
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and f -invariant subspaces

W
(k)
1 , ... , W

(k)
d1

, W
(k−1)
1 , ... , W

(k−1)
d2

, ... , W
(1)
1 , ... , W

(1)
dk
⊂ V ,

with dimC W
(j)
i = j , such that

V = W
(k)
1 ⊕ · · · ⊕W

(k)
d1
⊕W

(k−1)
1 ⊕ · · · ⊕W

(k−1)
d2

⊕ · · · ⊕W
(1)
1 ⊕ · · · ⊕W

(1)
dk

.

Moreover, there is an ordered basis B(j)
i of W

(j)
i such that

[f|W (j)
i

]B(j)
i

=



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 · · · · · · · · · 0 1
0 · · · · · · · · · 0 0


.

We call such matrices 0-Jordan blocks. Hence, we can write the matrix of f relative to B =
⋃

i ,j B
(j)
i as

a block diagonal matrix for which all of the blocks are 0-Jordan blocks and are of nonincreasing size as
we move from left to right.

Moreover, the geometric multiplicity of 0 as an eigenvalue of f is equal to the number of blocks of the
matrix [f ]B and this number equals the sum

d1 + d2 + ... + dk = dim E0.

Proof: Everything except for the final statement follows from the construction of the basis B made
prior to the Theorem.

The last statement is shown as follows: we have that E0 = H1, so that the 0-eigenspace of f consists
of the set of all height 1 vectors in V .42 Moreover, the construction of the basis B shows that a basis
of H1 is given by the bottom row of the table (2.3.1) and that this basis has the size specified.

Corollary 2.3.5. Let A ∈ Matn(C) be a nilpotent matrix. Then, A is similar to a block diagonal matrix
for which all of the blocks are 0-Jordan blocks.

Proof: Consider the endomorphism TA ∈ EndC(Cn) and apply Theorem 2.3.4. Then, we have a
basis B such that [TA]B takes the desired form. Now, use Corollary 1.7.7 and [TA]S(n) = A to deduce
the result.

Definition 2.3.6. Let n ∈ N. A partition of n is a decomposition of n into a sum of positive integers.
If we have a partition of n

n = n1 + ... + nl , with n1, ... , nl ∈ N, n1 ≤ n2 ≤ ... ≤ nl ,

then we denote this partition
1r1 2r2 · · · nrnl

l ,

where we are assuming that 1 appears r1 times in the partition of n, 2 appears r2 times etc.

For example, consider the partition of 13

13 = 1 + 1 + 1 + 2 + 4 + 4,

then we denote this partition
132142.

42Check this.
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For a nilpotent endomorphism f ∈ EndC(V ) we define its nilpotent class to be the set of all nilpotent
endomorphisms g of V for which there is some ordered basis C ⊂ V with

[f ]B = [g ]C ,

where B is the basis described in Theorem 2.3.4.

We define the partition associated to the nilpotent class of f , denoted π(A), to be the partition
1dk 2dk−1 · · · kd1 obtained in Theorem 2.3.4. We will also call this partition the partition associated
to f .

For a matrix A ∈ Matn(C) we define its nilpotent class (or similarity class) to be the nilpotent class of
the endomorphism TA. We define the partition associated to A to be the partition associated to TA.

Theorem 2.3.7 (Classification of nilpotent endomorphisms). Let f , g ∈ EndC(V ) be nilpotent endo-
morphisms of V . Then, f and g lie in the same nilpotent class if and only if the partitions associated
to f and g coincide.

Corollary 2.3.8. Let A, B ∈ Matn(C) be nilpotent matrices. Then, f and g are similar if and only if
the partitions associated to A and B coincide.

Proof: We simply note that if TA and TB are in the same nilpotent class then there are bases
B, C ⊂ Cn such that

[TA]B = [TB ]C .

Hence, if P1 = PS(n)←B, P2 = PS(n)←C then we must have

P−1
1 AP1 = P−1

2 BP2,

so that
P2P−1

1 AP1P−1
2 = B.

Now, since P2P−1
1 = (P1P−1

2 )−1 we have that A and B are similar precisely when TA and TB are in the
same nilpotent class. The result follows.

2.3.1 Determining partitions associated to nilpotent endomorphisms

Given a nilpotent endomorphism f ∈ EndC(V ) (or nilpotent matrix A ∈ Matn(C)) how can we determine
the partition associated to f (resp. A)?

Once we have chosen an ordered basis B of V we can consider the nilpotent matrix [f ]B. Then, the
problem of determining the partition associated to f reduces to determining the partition associated to
[f ]B. As such, we need only determine the partition associated to a nilpotent matrix A ∈ Matn(C).

1. Determine the exponent of A, η(A), by considering the products A2, A3, etc. The first r such that
Ar = 0 is the exponent of A.

2. We can determine the subspaces Hi since

Hi = {x ∈ Cn | ht(x) ≤ i} = ker TAi .

In particular, we have that dim Hi is the number of non-pivot columns of Ai .

3. d1 = dim Hη(A) − dim Hη(A)−1.

4. d2 = dim Hη(A)−1 − dim Hη(A)−2 − d1.

5. d3 = dim Hη(A)−2 − dim Hη(A)−3 − d2.

6. Thus, we can see that di = dim Hη(A)−(i−1) − dim Hη(A)−i − di−1, for 1 ≤ i ≤ η(A).

Hence, the partition associated to A is

π(A) : 1dη(A) 2dη(A)−1 · · · η(A)d1 .
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Example 2.3.9. Consider the endomorphism

f : C5 → C5 ;


x1

x2

x3

x4

x5

 7→


x2

0
x4

0
0

 .

Then, with respect to the standard basis S(5) we have that

A
def
= [f ]S(5) =


0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .

You can check that A2 = 0 so that η(A) = 2. Then,

- d1 = dim H2 − dim H1 = 5 − 3 = 2, since H1 = ker TA has dimension 3 (there are 3 non-pivot
columns of A).

- d2 = dim H1 − dim H0 − d1 = 3− 0− 2 = 1, since H0 = {0}.

Hence, the partition associated to A is

π(A) : 122 ↔ 1 + 2 + 2 = 5;

there are three 0-Jordan blocks - two of size 2 and one of size 1.

You can check that the following matrix B is nilpotent

B =


1 −1 1 −1 1
1 −1 1 −1 1
0 0 0 0 0
1 −1 1 −1 1
1 −1 1 −1 1


and that the partition associated to B is

π(B) : 132↔ 1 + 1 + 1 + 2 = 5

- We have B2 = 0 so that η(B) = 2.

- d1 = dim H2 − dim H1 = 5 − 4 = 1, since H1 = ker TB has dimension 4 (there are 4 non-pivot
columns of B).

- d2 = dim H1 − dim H0 − d1 = 4− 0− 1 = 3, since H0 = {0}.

Thus, A and B are not similar, by Corollary 2.3.8. However, since the matrix

C =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

has associated partition
π(C ) : 132,

then we see that B is similar to C , by Corollary 2.3.8.

Moreover, there are four 0-Jordan blocks of B (and C ) - one of size 2 and three of size 1.
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2.4 Algebra of polynomials

([1], p.136-142)

In this section we will give a brief introduction to the algebraic properties of the polynomial algebra
C[t]. In particular, we will see that C[t] admits many similarities to the algebraic properties of the set
of integers Z.

Remark 2.4.1. Let us first recall some of the algebraic properties of the set of integers Z.

- division algorithm: given two integers w , z ∈ Z, with |w | ≤ |z |, there exist a, r ∈ Z, with
0 ≤ r < |w | such that

z = aw + r .

Moreover, the ‘long division’ process allows us to determine a, r . Here r is the ‘remainder’.

- prime factorisation: for any z ∈ Z we can write

z = ±pa1
1 pa2

2 · · · p
as
s ,

where pi are prime numbers. Moreover, this expression is essentially unique - it is unique up to
ordering of the primes appearing.

- Euclidean algorithm: given integers w , z ∈ Z there exists a, b ∈ Z such that

aw + bz = gcd(w , z),

where gcd(w , z) is the ‘greatest common divisor’ of w and z . In particular, if w , z share no
common prime factors then we can write

aw + bz = 1.

The Euclidean algorithm is a process by which we can determine a, b.

We will now introduce the polynomial algebra in one variable. This is simply the set of all polynomials
with complex coefficients and where we make explicit the C-vector space structure and the multiplicative
structure that this set naturally exhibits.

Definition 2.4.2. - The C-algebra of polynomials in one variable, is the quadruple (C[t],α,σ,µ)43

where (C[t],α,σ) is the C-vector space of polynomials in t with C-coefficients defined in Example
1.2.6, and

µ : C[t]× C[t]→ C[t] ; (f , g) 7→ µ(f , g),

is the ‘multiplication’ function.

So, if
f = a0 + a1t + ... + antn, g = b0 + b1 + ... + bmtm ∈ C[t],

with m ≤ n say, then
µ(f , g) = c0 + c1t + ... + cm+ntm+n,

where
ci =

∑
j+k=i ,
0≤j≤n,
0≤k≤m

aj bk .

43This is a particular example of a more general algebraic object called a C-algebra: a C-algebra is a set A that is a
C-vector space and for which there is a well-defined commutative multiplication map that interacts with addition in a
nice way - for example, distributivity, associativity hold. One usually also requires that a C-algebra A has a multiplicative
identity, namely an element e such that f · e = e · f = f , for every f ∈ A. It is common to denote this element by 1.
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We write
µ(f , g) = f · g , or simply fg .

µ is nothing more than the function defining the ‘usual’ multiplication of polynomials with
C-coefficients. In particular, for every f , g ∈ C[t] we have fg = gf .

We will write C[t] instead of the quadruple above when discussing C[t] as a C-algebra. Note that
the polynomial 1 ∈ C[t] satisfies the property that 1 · f = f · 1 = f , for every f ∈ C[t].

- A representation of C[t] is a C-linear morphism

ρ : C[t]→ EndC(V ),

for some finite dimensional C-vector space V , such that

(∗) ρ(fg) = ρ(f ) ◦ ρ(g), and ρ(1) = idV ,

where we are considering composition of linear endomorphisms of V on the RHS of the first
equality.44

Remark 2.4.3. Suppose that
ρ : C[t]→ EndC(V ),

is a representation of C[t]. Then, for any f = a0 + a1t + a2t2 + ... + antn ∈ C[t], we have

ρ(f ) = ρ(a0 + a1t + ... + antn) = a0ρ(1) + a1ρ(t) + ... + anρ(tn), as ρ is C-linear,

= a0idV + a1ρ(t) + a2ρ(t)2 + ... + anρ(t)n, by (∗),

where we have written ρ(t)k = ρ(t) ◦ · · · ◦ ρ(t), the k-fold composition of ρ(t).

Hence, a represention of C[t] is the same thing as specifying a C-linear endomorphism ρ(t) ∈
EndC(V ): the multiplicative property of ρ then implies that ρ(f ) only depends on ρ(t), for any
f ∈ C[t].

Conversely, given a C-linear endomorphism of V , L ∈ EndC(V ) say, then we can define a representation
ρL of C[t] as follows: define

ρL : C[t]→ EndC(V ) ; a0 + a1t + ... + antn 7→ a0idv + a1L + ... + anLn ∈ EndC(V ),

where Lk = L ◦ · · · ◦ L and the addition and scalar multiplication on the RHS is occuring in EndC(V ).

We are going to study an endomorphism L ∈ EndC(V ) by studying the representation ρL of
C[t] it defines. If A ∈ Matn(C) then we define ρA to be the representation defined by the
endomorphism TA of Cn.

Suppose we are given a representation of C[t]

ρ : C[t]→ EndC(V ),

and denote n = dimC V , L = ρ(t) ∈ EndC(V ) (so that ρ = ρL) and suppose that L 6= idV .45

We know that EndC(V ) is n2-dimensional (since we know that EndC(V ) is isomorphic to Matn(C)).
Therefore, there must exist a nontrivial linear relation

λ0idV + λ1L + λ2L2 + ... + λn2 Ln2

= 0EndC(V ),

44This means that ρ is a morphism of (unital) C-algebras.
45If L = idV then we call the representation ρidV

the trivial representation. In this case, we have that

imρ = {c · idV ∈ EndC(V ) | c ∈ C} ⊂ EndC(V ).

70



with λi ∈ C, since the set {idV , L, L2, ... , Ln2} contains n2 + 1 vectors. Thus, we have

0EndC(V ) = λ0idV + λ1L + λ2L2 + ... + λn2 Ln2

= λ0ρ(1) + λ1ρ(t) + ... + λn2ρ(t)n2

= ρ(λ0 + λ1t + ... + λn2 tn2

),

so that the polynomial

f = λ0 + λ1t + ... + λn2 tn2

∈ ker ρ.

In particular, we have that ker ρ 6= {0C[t]}. We will now make a detailed study of the kernel of
representations of C[t].

Keep the same notation as above. We have just seen that ker ρ is nonzero. Let mL ∈ ker ρ be
a nonzero polynomial for which ρ(mL) = 0EndC(V ) and such that mL has minimal degree.46 We must
have deg mL 6= 0, otherwise mL is a constant polynomial, say mL = c · 1 with c ∈ C, c 6= 0, and
ρ(c · 1) = cρ(1) = c idV 6= 0EndC(V ), contradicting that mL ∈ ker ρ. Hence, we can assume that
deg mL = m > 0.

Now, let f ∈ ker ρ be any other polynomial in the kernel of ρ. Denote deg f = p. Thus, by our choice of
mL (it must have minimal degree) we see that p ≥ m. Now use the division algorithm for polynomials47

to find polynomials g , h ∈ C[t] such that

f = gmL + h,

where deg h < m.

Then, as f ∈ ker ρ, we must have

0EndC(V ) = ρ(f ) = ρ(gmL + h) = ρ(g)ρ(mL) + ρ(h) = 0EndC(V ) + ρ(h),

so that h ∈ ker ρ. If h were a nonzero polynomial then we have obtained an element in ker ρ that has
strictly smaller degree that mL, contradicting our choice of mL. Hence, we must have that h = 0 and
f = gmL. We say that mL divides f .

We have just shown the following

Proposition 2.4.4. Suppose that
ρ : C[t]→ EndC(V ),

is a representation of C[t]. Denote L = ρ(t) ∈ EndC(V ) and suppose that mL ∈ ker ρ is nonzero and
has minimal degree. Then, for any f ∈ ker ρ there exists g ∈ C[t] such that

f = gmL.

Remark 2.4.5. Proposition 2.4.4 is stating the fact that the C-algebra C[t] is a principal ideal domain,
namely, every ideal in C[t] is generated by a single polynomial (ie, ‘principal’).

Definition 2.4.6. Let L ∈ EndC(V ) and consider the representation

ρL : C[t]→ EndC(V ),

defined above. We define the minimal polynomial of L, denoted µL ∈ C[t], to be the unique nonzero
polynomial µL ∈ ker ρ that has minimal degree and has leading coefficient 1: this means that

µL = a0 + a1t + ... + am−1tm−1 + tm.

46Recall that the degree, deg f , of a polynomial

f = a0 + a1t + ... + ak tk ∈ C[t],

is defined to be deg f = k. We have the property that

deg fg = deg f + deg g .

47If you have not seen this before, don’t worry, as I will cover this in class.
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This polynomial is well-defined (ie, it’s unique) by Proposition 2.4.4: if mL ∈ ker ρ has minimal degree
and leading coefficient a ∈ C, then we have µL = a−1mL. If f ∈ ker ρ is any other polynomial of minimal
degree and with leading coefficient 1, then we must have deg f = degµL and, by Proposition 2.4.4, we
know that there exists g ∈ C[t] such that

f = gµL.

Since deg f = deg(gµL) = deg g + deg µL we must have that deg g = 0, so that g = c · 1 ∈ C[t]. As
both f and µL have leading coefficient 1, the only way this can hold is if c = 1, so that f = µL.

For A ∈ Matn(C) we write µA instead of µTA
and call it the minimal polynomial of A.

Corollary 2.4.7. Let L ∈ EndC(V ), µL be the minimal polynomial of L. For f = a0 + a1t + ... + ak tk ∈
C[t] we denote

f (L) = ρL(f ) = a0idV + a1L + ... + ak Lk ∈ EndC(V ).

If f (L) = 0EndC(V ) then f = µLg, for some g ∈ C[t].

Proof: This is simply a restatement of Proposition 2.4.4.

Example 2.4.8. 1. Consider the endomorphism TA of C3 defined by the matrix

A =

2 0 0
0 1 −1
0 2 −1

 .

Then, you can check that the following relation holds

−A3 + 2A2 − A + 2I3 = 03.

Consider the representation ρA defined by A. Then, since the above relation holds we must have

f = −λ3 + 2λ2 − λ+ 2 ∈ ker ρA.

You can check that we can decompose f as

f = (2− λ)(λ−
√
−1)(λ+

√
−1).

Hence, we must have that µA is one of the following polynomials48

(λ−
√
−1)(λ+

√
−1), (2− λ)(λ−

√
−1), (2− λ)(λ+

√
−1), f .

In fact, we have µA = f .

You may have noticed that f = χA(λ) - this is the Cayley-Hamilton Theorem (to be proved later
and in homework): if A ∈ Matn(C) then χA(λ) ∈ ker ρA, so that χA(A) = 0 (using the above
notation from Corollary 2.4.7).

- Consider the matrix

A =

1 1 0
0 1 0
0 0 1

 .

You can check that we have the relation

−A3 + 3A2 − 3A + I3 = 03,

so that
f = −λ3 + 3λ2 − 3λ+ 1 = (1− λ)3 ∈ ker ρA.

48Why can’t we have µA be one of (2− λ), (λ−
√
−1), (λ+

√
−1)?
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Now, we see that we must have µA being one of the following polynomials49

(1− λ)2, f .

It can be checked that
A2 − 2A + I3 = 03,

so that
µA = (1− λ)2.

You will notice that
χA(λ) = (1− λ)3.

In both of these examples you can see that the roots of the minimal poynomial of A are precisely the
eigenvalues of A (possibly with some repeated multiplicity). In fact, this is always true: for a matrix A
the roots of µA are precisely the eigenvalues of A. This will be proved in the next section.

Recall that a polynomial f ∈ C[t] can be written as a product of linear factors

f = a(t − c1)n1 (t − c2)n2 · · · (t − ck )nk ,

where a, c1, ... , ck ∈ C, n1, ... , nk ∈ N.

This is the analogue in C[t] of the ‘prime factorisation’ property of Z mentioned at the beginning of
this section: the ‘primes’ of C[t] are degree 1 polynomials.

Definition 2.4.9. We say that the (nonzero) polynomials f1, ... , fp ∈ C[t] are relatively prime if there
is no common linear factor for all of the fi .

Example 2.4.10. The polynomials f = t2 + 1 and g = t2 − 1 are relatively prime. Indeed, we have

f = t2 + 1 = (t −
√
−1)(t +

√
−1), g = (t − 1)(t + 1),

so that there is no common linear factor of either.

However, the polynomials g and h = tn − 1 are not relatively prime as

h = tn − 1 = (t − 1)(t − ω)(t − ω2) · · · (t − ωn−1),

where ω = cos(2π/n) +
√
−1 sin(2π/n) ∈ C. Hence, the linear factor (t − 1) appears in both g and h.

We now give another basic algebraic property of the C-algebra C[t] whose proof you would usually see
in Math 113. As such, we will not prove this result here although the proof is exactly the same as the
corresponding result for Z (with the appropriate modifications): it involves the C[t]-analogue of the
‘Euclidean algorithm’ for Z.

Lemma 2.4.11. Let f1, ... , fp ∈ C[t] be a collection of relatively prime polynomials. Then, there exists
g1, ... , gp ∈ C[t] such that

f1g1 + ... + fpgp = 1 ∈ C[t].

Example 2.4.12. 1. The polynomials f = t2 + 1, g = t2 − 1 are relatively prime and

1

2
(t2 + 1)− 1

2
(t2 − 1) = 1.

2. The polynomials f = t2 + 1, g = t3 − 1 are relatively prime and

1

2
(t − 1)(t3 − 1)− 1

2
(t2 − t − 1)(t2 + 1) = 1.

49Why can’t we have 1− λ?
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Remark 2.4.13. The mathematical reason that Z and C[t] obey the same algebraic properties is that
they are both examples of Euclidean domains: these are commutative rings for which there exists a
division algorithm, Euclidean algorithm and the notion of prime elements.

More specifically, a Euclidean domain is a commutative ring without zerodivisors for which there exists
a well defined ‘degree’ function. As a consequence of the existence of the degree function the division
algorithm and Euclidean algorithm hold. Moreover, it can be show that such commutative rings are
principal ideal domains and are therefore unique factorisation domains: this means that the ‘unique
factorisation’ property holds.

2.5 Canonical form of an endomorphism

([1], p.142-146)

Throughout this section we fix a linear endomorphism L ∈ EndC(V ), for some finite dimensional
C-vector space V . We denote n = dimC V .

We recall the notation from Corollary 2.4.7: for L ∈ EndC(V ), f = a0 + a1t + ... + ak tk ∈ C[t], we
define the endomorphism

f (L) = ρL(f ) = a0idV + a1L + a2L2 + ... + ak Lk ∈ EndC(V ),

where Li = L ◦ · · · ◦ L is the i-fold composition of the endomorphism L.

Definition 2.5.1. Any nonzero f ∈ ker ρL is called an annihilating polynomial of L.

In particular, the minimal polynomial µL of L is an annihilating polynomial of L.

The following theorem is the culmination of our discussion regarding polynomials and representations of
the polynomial algebra. It allows us to use the minimal polynomial of L to decompose V into a direct
sum of L-invariant subspaces. Hence, we can find a basis of V for which the matrix of L with respect to
this basis is block diagonal. We will then see that we can use our results on nilpotent endomorphisms
to find a basis of V for which the matrix of L is ‘almost diagonal’ - this is the Jordan canonical form
(Theorem 2.5.12).

Theorem 2.5.2. Suppose that f ∈ ker ρ is an annihilating polynomial of L and that f = f1f2, with f1

and f2 relatively prime. Then, we can write

V = U1 ⊕ U2,

with U1 and U2 both L-invariant (Definition 2.2.1), and such that

f1(L)(u2) = 0V , f2(L)(u1) = 0V ,

for every u1 ∈ U1, u2 ∈ U2.

Moreover,
U1 = ker f2(L), U2 = ker f1(L).

Proof: As f1 and f2 are relatively prime we know that there exists g1, g2 ∈ C[t] such that

f1g1 + f2g2 = 1 ∈ C[t].

This follows from Lemma 2.4.11. Hence, we have

idv = ρL(1) = ρL(f1g1 + f2g2) = ρL(f1)ρL(g1) + ρL(f2)ρL(g2) = f1(L)g1(L) + f2(L)g2(L).

Define
U1 = imf1(L), U2 = imf2(L).

Then, since
f1(L) ◦ L = L ◦ f1(L), f2(L) ◦ L = L ◦ f2(L),
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(you should check this) we have that, if u1 = f1(L)(x1) ∈ U1, u2 = f2(L)(x2) ∈ U2, then

L(u1) = L◦f1(L)(x1) = f1(L)◦L(x1) ∈ imf1(L) = U1, L(u2) = L◦f2(L)(x2) = f2(L)◦L(x2) ∈ imf2(L) = U2.

Hence, U1, U2 are L-invariant.

Now, let u1 ∈ U1 = imf1(L) so that u1 = f1(L)(x1), for some x1 ∈ V . Then,

f2(L)(u1) = f2(L)(f1(L)(x1)) = f (L)(x1),

since f1f2 = f and ρL(f ) = ρL(f1f2) = ρL(f1)ρL(f2) (ρL is a representation of C[t]). Our assumption is
that f is an annhiliating polynomial of L so that f (L) = 0EndC(V ) and we obtain

f2(L)(u1) = f (L)(x1) = 0V .

Similarly we obtain that
f1(L)(u2) = 0V , for every u2 ∈ U2.

Let v ∈ V . Then,

v = idV (v) = (f1(L)g1(L) + f2(L)g2(L))(v) = f1(L)(g1(L)(v)) + f2(L)(g2(L)(v)) ∈ U1 + U2.

Hence, V = U1 + U2.

Now, let x ∈ U1 ∩U2. Therefore, we have f1(L)(x) = 0V = f2(L)(x) by what we showed above. Hence,

x = f1(L)(g1(L)(x))+f2(L)(g2(L)(x)) = g1(L)(f1(L)(x))+g2(L)(f2(L)(x)) = g1(L)(0V )+g2(L)(0V ) = 0V .

Here we have used that h(L) ◦ g(L) = g(L) ◦ h(L), for any g , h ∈ C[t], which can be easily verified.

Hence, we have
V = U1 ⊕ U2,

Finally, suppose that f2(L)(w) = 0V , for some w ∈ V . Then, we want to show that w ∈ U1. Since
V = U1 ⊕ U2 then we have

w = u1 + u2,

where u1 ∈ U1, u2 ∈ U2. Thus, we have x1, x2 ∈ V such that

u1 = f1(L)(x1), x2 = f2(L)(x2).

Thus,
0V = f2(L)(w) = f2(L)(u1 + u2) = f2(L)(u1) + f2(L)(u2) = 0V + f2(L)(u2),

and
f1(L)(u2) = 0,

as u2 ∈ U2. Therefore,

u2 = g1(L)(f1(L)(u2)) + g2(L)(f2(L)(u2)) = 0V + 0V = 0V ,

so that w = u1 ∈ U1. We obtain that ker f1(L) = U2 similarly.

Corollary 2.5.3 (Primary Decomposition Theorem). Let f ∈ C[t] be an annihilating polynomial of
L ∈ EndC(V ). Suppose that f is decomposed into the following linear factors:50

f = a(t − λ1)n1 (t − λ2)n2 · · · (t − λk )nk .

Then, there are L-invariant subspaces U1, ... , Uk ⊂ V such that

V = U1 ⊕ ...⊕ Uk ,

and such that each Ui is annihilated by the endomorphism

(L− λi idV )ni = (L− λi idV ) ◦ · · · ◦ (L− λi idV ).

50This is always possible by the Fundamental Theorem of Algebra.
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Proof: This is a direct consequence of Theorem 2.5.2: apply Theorem 2.5.2 to

f1 = (t − λ1)n1 , g1 = (t − λ2)n2 · · · (t − λk )nk ,

which are obviously relatively prime polynomials, to obtain

V = U1 ⊕ V1,

where U1 = ker f1(L), V1 = ker g1(L). Then, V1 is L-invariant so that L restricts to a well-defined
endomorphism of V1, denoted L1 ∈ EndC(V1). Then, g1 is an annihilating polynomial of L1.

Now, we can write
g1 = f2g2,

where
f2 = (t − λ2)n2 , g2 = (t − λ3)n3 · · · (t − λk )nk .

Then, f2 and g2 are relatively prime so we can apply Theorem 2.5.2 to V1 to obtain

V1 = U2 ⊕ V2.

with U2 = ker f2(L), V2 = ker g2(L). Then, V2 is L1-invariant (and also L-invariant, when we consider V2

as a subspace of V ) so that L1 restricts to a well-defined endomorphism of V2, denoted L2 ∈ EndC(V2).
Then, g2 is an annihilating polynomial of L2.

Proceeding in this way we see that we can write

V = U1 ⊕ · · · ⊕ Uk ,

where Ui = ker(L− λi idv )ni .

Remark 2.5.4. Theorem 2.5.2 and the Primary Decomposition Theorem (Corollary 2.5.3) form the
theoretical basis for the study of endomorphisms of a finite dimensional C-vector space. These results
allow us to deduce many properties of an endomorphism L if we know its minimal polynomial (or its
characteristic polynomial). The next few Corollaries demonstrate this.

Corollary 2.5.5. Let L ∈ EndC(V ). Then, L is diagonalisable if and only if µL is a product of distinct
linear factors, ie,

µL = (t − c1)(t − c2) · · · (t − ck ),

with ci 6= cj for i 6= j .

Proof: (⇒) Suppose that L is diagonalisable so that we have

E L
λ1
⊕ · · · ⊕ E L

λk
= V ,

with E L
λi

the λi -eigenspace of L. Consider the polynomial

f = (t − λ1) · · · (t − λk ) ∈ C[t].

Then, we claim that ρL(f ) = 0 ∈ EndC(V ): indeed, let v ∈ V and write v = e1 + ... + ek with ei ∈ E L
λi

.
Then, for each i , we have

ρL(f )(ei ) = (L− λ1idV ) · · · (L− λk idV )(ei ) = 0V ,

because (L − λs idV )(L − λt idV ) = (L − λt idV )(L − λs idV ), for every s, t.51 Hence, we must have
ρL(f )(v) = 0V , for every v ∈ V , so that ρL(f ) = 0 ∈ EndC(V ). Hence, by Proposition 2.4.4, there is
some g ∈ C[t] such that

f = µLg .

As f is a product of distinct linear factors the same must be true of µL.

51We can move (L− λi idV ) to the front of ρL(f ) and, since L(ei ) = λi ei , we obtain (L− λi idV )(ei ) = 0V .
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(⇐) Suppose that
µL = (t − c1) · · · (t − ck ) ∈ C[t].

Then, by Corollary 2.5.3, we obtain a direct sum decomposition

V = U1 ⊕ · · · ⊕ Uk ,

where Ui = ker(L− ci idV ). Hence,

Ui = {v ∈ V | (L− ci idV )(v) = 0V } = {v ∈ V | L(v) = ci v} = E L
ci

is precisely the ci -eigenspace of L. Thus, as we have written V as a direct sum of eigenspaces of L we
must have that L is diagonalisable.

Example 2.5.6. 1. Let A ∈ Matn(C) be such that

Ak − In = 0n,

for some k ∈ N. Then, we see that

f = tk − 1 ∈ ker ρA,

where ρA = ρTA
is the representation of C[t] defined by the endomorphism TA ∈ EndC(Cn).

Therefore, the minimal polynomial of A, µA, must divide f so that there is g ∈ C[t] such that

f = µAg .

Now, we have
f = (t − 1)(t − ω) · · · (t − ωk−1),

where ω = cos(2π/k) + sin(2π/k)
√
−1; in particular, f has distinct linear factors. Thus, the same

must be true of µA. Hence, by Corollary 2.5.5 we have that A is diagonalisable.

For those of you that are taking Math 113 this has an important consequence:

‘every commutative finite group can be realised as a subgroup of Dn, for some n’

where Dn is the group of diagonal n × n complex matrices. This uses Cayley’s theorem (for
groups) and the fact that a family of commuting diagonalisable matrices can be simultaneously
diagonalised (mentioned as a footnote on LH3).

2. More generally, A ∈ Matn(C) is such that there exists a polynomial relation

0 = f (A) = ρA(f ),

for some f ∈ C[t] with distinct linear factors, then A is diagonalisable. For example, if

A2 − 3A + 2In = 0n,

then A is diagonalisable.

The previous Corollary shows that the zeros of the minimal polynomial are eigenvalues of L, for L
diagonalisable. In fact, this is true for any L ∈ EndC(V ).

Corollary 2.5.7. Let L ∈ EndC(V ) and µL ∈ C[t] the minimal polynomial of L. Then, µL(c) = 0 if and
only if c ∈ C is an eigenvalue of L.
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Proof: Suppose that
µL = (t − c1)n1 · · · (t − ck )nk .

Then, µL(c) = 0 if and only if c = ci , for some i ∈ {1, ... , k}. We will show that each ci is an eigenvalue
of L and, conversely, if λ is an eigenvalue of L then λ = ci , for some i . This shows that the set of
eigenvalues of L is precisely {c1, ... , ck}.

Let U1, ... , Uk ⊂ V be the L-invariant subspaces such that

V = U1 ⊕ · · · ⊕ Uk ,

from Corollary 2.5.3. Then, the proof of Corollary 2.5.3 shows that Ui = ker(L − ci idV )ni . As ni ≥ 1
we can find nonzero w ∈ V such that (L− ci idV )(v) = 0V : namely, we take

w = (L− ci idV )r−1(v),

where r = ht(v) is equal to the height of any nonzero v ∈ Ui with respect to the nilpotent endomorphism
(L|Ui

− ci idUi ) ∈ EndC(Ui ).52 Hence,

(L− ci idV )(w) = (L− ci idV )r (v) = 0V ,

so that w is eigenvector of L with associated eigenvalue ci . In particular, ci is an eigenvalue of L.

Conversely, suppose that c ∈ C is an eigenvalue of L and that v is an eigenvector such that L(v) = cv ;
in particular, v 6= 0V . Then, since

V = U1 ⊕ · · · ⊕ Uk ,

we have a unique expression
v = u1 + ... + uk , ui ∈ Ui .

Then,
L(u1) + ... + L(uk ) = L(v) = cv = cu1 + ... + cuk ,

and since L(ui ) ∈ Ui (each Ui is L-invariant) we must have L(ui ) = cui , for each i : this follows because
every z ∈ V can be written as a unique linear combination of vectors in U1, ... , Uk .

Let Γ1 = {i ∈ {1, ... , k} | ui = 0V } and Γ2 = {1, ... , k} \ Γ1: as v 6= 0V we must have Γ2 6= ∅. Thus,
for every i ∈ Γ2 we have that ui ∈ Ui is also an eigenvector of L with associated eigenvalue c . As

Ui = ker(L− ci idV )ni ,

we have, for each i ∈ Γ2,

0V = (L− ci idV )ni (ui ) =

(
ni∑

p=0

(
ni

p

)
(−ci )

pLn−p

)
(ui ) =

ni∑
p=0

(
ni

p

)
(−ci )

pcn−pui = (c − ci )
ni ui .

Hence, we see that c = ci , for each i ∈ Γ2. Since ci 6= cj , if i 6= j , then we must have that c = cj , for
some j , so that any eigenvalue of L is equal to some cj .

We have just shown that the set of eigenvalues of L is precisely {c1, ... , ck}. Moreover, the set of roots
of µL is also equal to this set and the result follows.

Corollary 2.5.8. Let L ∈ EndC(V ) and µL ∈ C[t] the minimal polynomial of L. Suppose that

V = U1 ⊕ · · · ⊕ Uk ,

is the direct sum decomposition from Corollary 2.5.3. Then, if c is an eigenvalue of L we must have
that the c-eigenspace of L satisfies

E L
c ⊂ Uj ,

for some j. Furthermore, if c , c ′ are eigenvalues of L and E L
c , E L

c′ ⊂ Uj , then c = c ′.

52This is an endomorphism of Ui since Ui is L-invariant.
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Proof: This follows from the latter part of the the previous proof of Corollary 2.5.7: if v ∈ E L
c is

nonzero, so that L(v) = cv , then we have

v = u1 + ... + uk , ui ∈ Ui ,

as above. Moreover, if we define Γ2 as before, then the latter part of the previous proof shows that
Γ2 = {j}, for some j . Thus,

v = uj ∈ Uj .

Hence, E L
c ⊂ Uj , for some j . The last statement follow from the proof of Corollary 2.5.7.

Corollary 2.5.9 (Cayley-Hamilton Theorem). Let L ∈ EndC(V ) and χL ∈ C[t] the characteristic poly-
nomial of L. Then,

χL(L) = ρL(χL) = 0EndC(V ) ∈ EndC(V ).

Proof: This is a consequence of Corollary 2.5.7. The roots of the minimal polynomial of L, µL, are
precisely the eigenvalues of L. The roots of χL are also the eigenvalues of L. Therefore, we see that

µL = (t − λ1)m1 · · · (t − λk )mk , and χL = (t − λ1)n1 · · · (t − λk )nk .

We are going to show that mi ≤ ni , for each i . First we need the following Lemma (which can be easily
proved by induction on k and expanding the determinant across the top row)

Lemma 2.5.10. Let A ∈ Matn(C) and suppose that

A =

[
A1 0
0 A2

]
,

with Ai ∈ Matk (C), A2 ∈ Matn−k (C). Then, χA(λ) = χA1 (λ)χA2 (λ)

If B = B1 ∪ ... ∪ Bk is a basis of V , with each Bi ⊂ Ui , then the matrix [L]B is block diagonal

[L]B =


A1

A2

. . .

Ak

 .

As a consequence of Lemma 2.5.10 we have that

χL = χA1χA2 · · ·χAk
.

Moreover, it follows from the proof of Corollary 2.5.7 and Corollary 2.5.8 that the only eigenvalue of Ai

is λi . Hence, using Lemma 2.5.10 we must have that

χAi = (t − λi )
ni .

It is a further consequence of Lemma 2.5.10 that dim Ui = ni .

Since the endomorphism Ni = L|Ui
− λi idUi ∈ EndC(Ui ) is nilpotent (Corollary 2.5.3) the structure

theorem for nilpotent endomorphisms (Theorem 2.3.4) shows that η(Ni ) ≤ ni , where η(Ni ) is the
exponent of Ni .

By construction, we have that
Ui = ker(L− λi idV )mi ,

which implies that η(Ni ) ≤ mi . In fact, η(Ni ) = mi , for every i : otherwise, we must have η(Ni ) < mi ,
for some i , so that for every u ∈ Ui ,

(L− λidV )η(Ni )(u) = 0V .

Consider the polynomial

g = (t − λ1)m1 · · · (t − λi−1)mi−1 (t − λi )
η(Ni )(t − λi+1)mi+1 · · · (t − λk )mk ∈ C[t].
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We have that deg g < degµL as η(Ni ) < mi . Then, for any v ∈ V , if we write v = u1 + ... + uk , then
we see that

ρL(g)(v) = ρL(g)(u1 + ... + uk )

= ρL(g)(u1) + ... + ρL(g)(uk )

= 0V + ... + 0V = 0V ,

because
(L− λj idV )mj (uj ) = 0V , for j 6= i , and (L− λi idV )η(Ni )(ui ) = 0V .

But then this contradicts the definition of µL being a nonzero element of ker ρL of minimal degree.
Hence, our initial assumption the η(Ni ) < mi , for some i , cannot hold so that η(Ni ) = mi , for every i .

Therefore, mi ≤ ni , for every i , so that µL divides χL: there exists f ∈ C[t] such that

χL = µLf ∈ C[t].

Hence, we obtain
ρL(χL) = ρL(µLf ) = ρL(µL)ρL(f ) = 0EndC(V ) ∈ EndC(V ),

where we use that µL ∈ ker ρL.

Remark 2.5.11. The Cayley-Hamilton theorem is important as it gives us an upper bound on the
degree of the minimal polynomial: we know that the minimal polynomial of L must have degree at
most n2 (because the set {idv , L, ... , Ln2} ⊂ EndC(V ) must be linearly dependent), so that degµL ≤ n2.
However, the Cayley-Hamilton theorem says that we actually have deg µL ≤ n thereby limiting the
possibilities for µL.

2.5.1 The Jordan canonical form

Let us denote
Ni = L|Ui

− λi idUi ∈ EndC(Ui ).

Since each Ui is L-invariant it is also Ni -invariant (Lemma 2.2.3). Moreover, Corollary 2.5.3 implies that
the restriction of Ni to Ui is a nilpotent endomorphism of Ui . Hence, by Theorem 2.3.4, we can find a
basis Bi ⊂ Ui of Ui such that the matrix of the restriction of Ni with respect to Bi has the canonical
form 

J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 · · · · · · Jpi

 ,

with each Ja a 0-Jordan block and such that the size of Ji is at least as large as the size of Ji+1. Let
B = B1 ∪ ... ∪ Bk be the subsequent ordered basis of V we obtain.

As we have
V = U1 ⊕ · · · ⊕ Uk ,

then for each v ∈ V , we have
v = u1 + ... + uk , ui ∈ Ui .

Thus, applying L to v gives

L(v) = L(u1) + ... + L(uk ) = λ1u1 + N1(u1) + ... + λk uk + Nk (uk ).

Hence, the matrix of L with respect to the basis B takes the form

[L]B =


A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
. . .

...
...

0 · · · · · · · · · Ak

 ,
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where, for each i = 1, ... , k , we have

Ai = λi Idim Ui +


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 · · · · · · Jpi



=



λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
. . .

. . .
...

0 · · · · · · λi 1
0 · · · · · · 0 λi

. . .

λi 1 · · · 0
0 λi · · · 0
...

...
...

...
0 · · · · · · 1
0 · · · 0 λi

. . .

λi



(2.5.1)

Theorem 2.5.12 (Jordan Canonical Form). Let L ∈ EndC(V ), V a finite dimensional C-vector space.
Then, there exists an ordered basis B ⊂ V such that [L]B is a matrix of the form 2.5.1 above. We call
B a Jordan basis of L.

Proof: Since the minimal polynomial µL of L is an annihilating polynomial of L we can use Primary
Decomposition (Corollary 2.5.3) to obtain a direct sum decomposition of V ,

V = U1 ⊕ ...⊕ Uk .

Now, the previous discussion implies the existence of B so that [L]B takes the desired form.

Corollary 2.5.13. Let A ∈ Matn(C). Then, A is similar to a matrix of the form 2.5.1 above.

Proof: Consider the endomorphism TA ∈ EndCn . Then, there is an ordered basis B of Cn such that
[TA]B takes the desired form, by Theorem 2.5.12. Since [TA]S(n) = A, we have that A and [TA]B are
similar (Corollary 1.7.7).

Remark 2.5.14. 1. The Jordan canonical form is a remarkable result. However, practically it is quite
difficult to determine the Jordan basis of L. The use of the Jordan canonical form is mostly in theoretical
applications where you are (perhaps) only concerned with knowing what the matrix of an endomorphism
looks like with respect to some basis of V . The fact that a Jordan basis exists allows us to consider only
‘almost diagonal’ matrices, for which it can be quite easy to show that certain properties hold true.

2. The Jordan canonical form allows us to classify similarity classes of matrices: a similarity class is the
set of all matrices which are similar to a particular matrix. Since similiarity is an equivalence relation
we can partition Matn(C) into disjoint similarity classes. Then, the Jordan canonical form tells us that
each similarity class is labelled by a set of eigenvalues (the entries on the diagonal of the Jordan form
lying in that similarity class) and the partitions of each block. Two matrices are similar if and only if
these pieces of data are equal.

3. In group-theoretic language, we see that the Jordan canonical form allows us to classify the orbits
of GLn(C) acting on the set Matn(C). Furthermore, this is actually the same thing as classifying the
Ad-orbits of the algebraic group GLn(C) acting on its Lie algebra gln(C) via the Adjoint representation.

Example 2.5.15. Consider the following matrix

A =

 2 1 1
2 3 3
−5 −1 −4

 .
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Then, you can check that
χA(t) = −(t − 2)2(t + 3).

Since
A2 + A− 6I3 6= 03,

it is not possible for A to be diagonalisable as this is the only possibility for the minimal polynomial µA

with distinct linear factors.

Therfore, it must be the case that there exists P ∈ GL3(C) such that

P−1AP =

2 1 0
0 2 0
0 0 −3

 ,

as this is the only possibility for the Jordan canonical form of A. Let’s determine a basis B ⊂ C3 such
that

PB←S(3) [TA]S(3) PS(3)←B = [TA]B =

2 1 0
0 2 0
0 0 −3

 .

As
µA = (t − 2)2(t + 3),

is an annihilating polynomial of A and f1 = (t − 2)2, f2 = (t + 3) are relatively prime, then we can find
A-invariant subspaces U1, U2 ⊂ C3 such that

C3 = U1 ⊕ U2,

and where
U1 = ker T(A−2I3)2 , U2 = ker TA+3I3 .

You can check that

U2 = E−3 = spanC


 −5/28
−13/28

1

 ,

so that A defines an endomorphism T2 : U2 → U2 ; x 7→ Ax of U2 and if B2 =

 −5/28
−13/28

1

 ⊂ U2

then
[T2]B2 = [−3].

We also know that A defines and endomorphism T1 : U1 → U1 ; x 7→ Ax . Now, since

(A− 2I3)2 =

 0 1 1
2 1 3
−5 −1 −6

 ,

we find that

U1 = ker T(A−2I3)2 = spanC


 1

0
−1

 ,

0
1
0

 .

So, if we let

C1 =

 1
0
−1

 ,

0
1
0

 (= (c1, c2)),

then

[T2]C1 =

[
1 1
−1 3

]
.
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If we set

N1 = [T2]C1 − 2I2 =

[
−1 1
−1 1

]
,

then we see that N2
1 = 02, so that N1 is nilpotent. Moreover, using our results on nilpotent matrices, if

we set P = [N1e2 e2] then we have

P−1N1P =

[
0 1
0 0

]
.

Hence, we have

[T1]B = N1 + 2I2 =

[
2 1
0 2

]
.

Therefore, if we let

B1 = (c1 + c2, c2) =

 1
1
−1

 ,

0
1
0

 ,

and B = B1 ∪ B2 then we have

[TA]B =

2 1 0
0 2 0
0 0 −3

 .

In particular, if we set

P =

 1 0 −5/28
−1 1 −13/28
−1 0 1

 ,

then

P−1AP =

2 1 0
0 2 0
0 0 −3

 .

83



3 Bilinear Forms & Euclidean/Hermitian Spaces

Bilinear forms are a natural generalisation of linear forms and appear in many areas of mathematics.
Just as linear algebra can be considered as the study of ‘degree one’ mathematics, bilinear forms arise
when we are considering ‘degree two’ (or quadratic) mathematics. For example, an inner product is
an example of a bilinear form and it is through inner products that we define the notion of length in
analytic geometry - recall that the length of a vector x ∈ Rn is defined to be

√
x2

1 + ... + x2
n and that

this formula holds as a consequence of Pythagoras’ Theorem. In addition, the ‘Hessian’ matrix that
is introduced in multivariable calculus can be considered as defining a bilinear form on tangent spaces
and allows us to give well-defined notions of length and angle in tangent spaces to geometric objects.
Through considering the properties of this bilinear form we are able to deduce geometric information -
for example, the local nature of critical points of a geometric surface.

In this final chapter we will give an introduction to arbitrary bilinear forms on K-vector spaces and then
specialise to the case K ∈ {R,C}. By restricting our attention to thse number fields we can deduce
some particularly nice classification theorems. We will also give an introduction to Euclidean spaces:
these are R-vector spaces that are equipped with an inner product and for which we can ‘do Euclidean
geometry’, that is, all of the geometric Theorems of Euclid will hold true in any arbitrary Euclidean
space. We will discuss the notions of orthogonality (=perpendicularity) and try to understand those
linear transformations of a Euclidean space that are length-preserving. We will then generalise to C-
vector spaces and consider Hermitian spaces and unitary morphisms - these are the complex analogues
of Euclidean spaces, where we make use of the ‘conjugation’ operation that exists on C.

3.1 Bilinear forms

([1], p.179-182) Throughout this section K can be ANY number field. V will always denote a
finite dimensional K-vector space.

In this section we will give the basic definitions of bilinear forms and discuss the basic properties of
symmetric and alternating bilinear forms. We will see that matrices are useful in understanding bilinear
forms and provide us with a tool with which we can determine properties of a given bilinear form

Definition 3.1.1. Let V be a finite dimensional K-vector space. A K-bilinear form on V is a function

B : V × V → K ; (u, v) 7→ B(u, v),

such that

(BF1) for every u, v , w ∈ V ,λ ∈ K we have

B(u + λv , w) = B(u, w) + λB(v , w),

(BF2) for every u, v , w ∈ V ,λ ∈ K we have

B(u, v + λw) = B(u, v) + λB(u, w).

We say that a K-bilinear form on V , B, is symmetric if

B(u, v) = B(v , u), for every u, v ∈ V .

We say that a K-bilinear form on V , B, is antisymmetric if

B(u, v) = −B(v , u), for every u, v ∈ V .

We denote the set of all K-bilinear forms on V by BilK(V ). This is a K-vector space (the K-vector
space structure will be discussed in a worksheet/homework).
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Remark 3.1.2. 1. The conditions BF1, BF2 that a bilinear form B must satisfy can be restated as
saying that

‘B is linear in each argument.’

2. We will refer to K-bilinear forms on V as simply ‘bilinear forms on V ’, when there is no confusion
on K, or even more simply as ‘bilinear forms’, when there is no confusion on V .

Example 3.1.3. 1. Let V be a finite dimensional K-vector space and let α1,α2 ∈ V ∗ = HomK(V ,K)
be two linear forms. Then,

Bα1,α2 : V × V → K ; (u, v) 7→ α1(u)α2(v),

is a bilinear form.53

In fact, every bilinear form is a sum of bilinear forms of this type. This requires introducing the
notion of tensor product which is beyond the scope of this course. You can learn about this in
Math 250A, the introductory graduate algebra course.

2. Consider the function

B : Q3 ×Q3 → Q, ;

x1

x2

x3

 ,

y1

y2

y3

 7→ x1y1 + 3x2y3 − x3y1 + 2x1y3.

Then, it can be checked that B is a Q-bilinear form on Q3. It is neither symmetric nor antisym-
metric.54

3. Consider the ‘dot product’ on Rn

· : Rn × Rn ; (x , y) 7→ x · y = x1y1 + ... + xnyn.

Then, this function is a (symmetric) bilinear form on Rn.

4. The function
D : K2 ×K2 ; (x , y) 7→ det([x y ]),

where [x y ] is the 2× 2 matrix with columns x , y , is an antisymmetric bilinear form on K2.

5. Let A ∈ Matn(K). Then, we have a bilinear form

BA : Kn ×Kn → K ; (x , y) 7→ x tAy ,

where x t = [x1 · · · xn] is the row vector determined by the column vector x . That BA is a bilinear
form follows from basic matrix arithmetic.

BA is symmetric if and only if A is symmetric.

BA is antisymmetric if and only if A is antisymmetric.

It will be shown in homework that,

every bilinear form B on Kn is of the form B = BA, for some A ∈ Matn(K).

As an example, consider the bilinear form B on Q3 from Example 2 above. Then, we have

B = BA, where A =

 1 0 2
0 0 3
−1 0 0

 .

53Check this.
54Why?
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Indeed, we have

[x1 x2 x3]

 1 0 2
0 0 3
−1 0 0

y1

y2

y3

 = [x1 x2 x3]

y1 + 2y3

3y3

−y1

 = x1y1 + 2x1y3 + 3x2y3 − x3y1.

Definition 3.1.4. Let V be a K-vector space, B = (b1, ... , bn) ⊂ V an ordered basis and B ∈ BilK(V ).
Then, we define the matrix of B relative to B to be the matrix

[B]B = [aij ] ∈ Matn(K), where aij = B(bi , bj ).

Moreover, if B ′ ∈ BilK(V ) is another bilinear form then55

[B]B = [B ′]B ⇔ B = B ′.

Hence, there is a well-defined function

[−]B : BilK(V )→ Matn(K) ; B 7→ [B]B.

Note that this function is dependent on the choice of B.

Proposition 3.1.5. Let B ∈ BilK(V ), B ⊂ V an ordered basis. Then,

a) [−]B : BilK(V )→ Matn(K) is a bijective K-linear morphism.

b) Let A ∈ Matn(K) and BA ∈ BilK(Kn) be the bilinear form on Kn defined by A. Then,

[BA]S(n) = A.

c) Let B ∈ BilK(Kn) and denote
A = [B]S(n) ∈ Matn(K).

Then, BA = B.

Proof: This is a homework exercise.

Lemma 3.1.6. Let V be a K-vector space, B = (b1, ... , bn) ⊂ V an ordered basis of V and B ∈ BilK(V ).
Then, for any u, v ∈ V we have

[u]t
B[B]B[v ]B = B(u, v) ∈ K.

Moreover, if A ∈ Matn(K) is such that

[u]t
BA[v ]B = B(u, v),

for every u, v ∈ V , then A = [B]B.

Proof: Let u, v ∈ V and suppose that

u =
n∑

i=1

λi bi , v =
n∑

j=1

µj bj ,

so that

[u]t
B = [λ1 ... λn], [v ]B =

µ1

...
µn

 .

55Why is this true?
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Then, we have

B(u, v) = B(
n∑

i=1

λi bi ,
n∑

j=1

µj bj )

=
n∑

i=1

λi B(bi ,
n∑

j=1

µj bj ), by BF1,

=
n∑

i=1

n∑
j=1

λiµj B(bi , bj ), by BF2.

Also, we see that

[u]t
B[B]B[v ]B = [λ1 ... λn][B]B

µ1

...
µn

 =
n∑

i=1

n∑
j=1

λiµj B(bi , bj ).56

The result follows.

The last statement can be checked by using the fact that

xij = et
i Xej = B(bi , bj ),

for any X = [xij ] ∈ Matn(K).

Remark 3.1.7. 1. Suppose that V is a K-vector space and B = (b1, ... , bn) ⊂ V is an ordered basis.
Let A = [B]B be the matrix of B relative to B. We can interpret Lemma 3.1.6 using the following
commutative diagram

V × V
B- K

Kn ×Kn

[−]B×[−]B
?

	

BA

-

Here we have
[−]B × [−]B : V × V → Kn ×Kn ; (u, v) 7→ ([u]B, [v ]B),

and BA is the bilinear form on Kn defined by A (Example 3.1.3).

The last statement in Lemma 3.1.6 tells us that if X ∈ Matn(K) is such that we have the commutative
diagram

V × V
B- K

Kn ×Kn

[−]B×[−]B
?

	

BX

-

then X = [B]B.

What happens if we choose a different ordered basis C ⊂ V , how can we compare [B]B and [B]C?

Proposition 3.1.8. Let V be a K-vector space, B, C ⊂ V ordered bases and B ∈ BilK(V ). Then, if
P = PC←B then

P t [B]CP = [B]B,

where P t is the transpose of P.

56Check this.

87



Proof: By Lemma 3.1.6 we know that if we can show that

B(u, v) = [u]t
BP t [B]CP[v ]B,

for every u, v ∈ V , then we must have that

[B]B = P t [B]CP.

Now, for any v ∈ V we have that P[v ]B = [v ]C , since P is the change of coordinate morphism from B
to C. Thus, for any u, v ∈ V , we have

[u]t
BP t [B]CP[v ]B = (P[u]B)t [B]CP[v ]B = [u]t

C[B]C[v ]C = B(u, v),

where we have used that (XY )t = Y tX t and the defining property of [B]C . The result follows.

3.1.1 Nondegenerate bilinear forms

We will now introduce the important notion of nondegeneracy of a bilinear form. Nondegenerate bilinear
forms arise throughout mathematics. For example, an inner product is an example of a nondegenerate
bilinear form, as is the Lorentzian metric from Einstein’s Theory of Special Relativity.

Definition 3.1.9. Let V be a finite dimensional K-vector space, B ∈ BilK(V ). Then, we say that B is
nondegenerate if the following property holds:

(ND) B(u, v) = 0, for every u ∈ V =⇒ v = 0V .

If B is not nondegenerate then we say that B is degenerate.

Lemma 3.1.10. Let B ∈ BilK(V ), B ⊂ V be an ordered basis. Then, B is nondegenerate if and only if
[B]B is an invertible matrix.

Proof: Suppose that B is nondegenerate. We will show that A = [B]B is invertible by showing that
ker TA = {0}. So, suppose that x ∈ Kn is such that

Ax = 0.

Then, for every y ∈ Kn we have

0 = y t0 = y tAx = BA(y , x).

As [−]B : V → Kn is an isomorphism we have x = [v ]B for some unique v ∈ V . Moreover, if y ∈ Kn

then there is some unique u ∈ V such that y = [v ]B. Hence, we have just shown that

0 = BA(y , x) = [u]t
B[B]B[v ]B = B(u, v),

by Lemma 3.1.6. Therefore, since B is nondegenerate

B(u, v) = 0, for every u ∈ V =⇒ v = 0V ,

Hence, x = [v ]B = 0 so that ker TA = {0} and A must be invertible.

Conversely, suppose that A = [B]B is invertible. We want to show that B is nondegenerate so that we
must show that if

B(u, v) = 0, for every u ∈ V ,

then v = 0V . Suppose that B(u, v) = 0, for every u ∈ V . Then, by Lemma 3.1.6, this is the same as

0 = B(u, v) = [u]t
BA[v ]B, for every u ∈ V .

In particular, if we consider ei = [bi ]B then we have

0 = et
i A[v ]B, for every i , =⇒ A[v ]B = 0.

As A is invertible this implies that [v ]B = 0 so that v = 0V , since [−]B is an isomorphism.
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Corollary 3.1.11. Let B ∈ BilK(V ) be a nondegenerate bilinear form. Then,

B(u, v) = 0, for every v ∈ V , =⇒ u = 0V .

BEWARE: this condition is (similar but) different to the one defining nondegeneracy in Definition
3.1.9. Of course, if B is symmetric then this follows from Definition 3.1.9.

Proof: This will be a homework exercise.

Example 3.1.12. 1. Consider the bilinear form

B : Q3 ×Q3 → Q ; (x , y) 7→ x1y2 + x3y2 + x2y1.

Then, B is degenerate: indeed, we have

A = [B]S(n) =

0 1 0
1 0 0
0 1 0

 ,

which is non-invertible.

2. The dot product on Rn is nondegenerate. This will be shown in a proceeding section.

3. Consider the bilinear form

B : Mat2(Q)×Mat2(Q)→ Q ; (X , Y ) 7→ tr(XY ).

Then, B is nondegenerate. Suppose that X ∈ Mat2(Q) is such that

B(X , Y ) = 0, for every Y ∈ Mat2(Q).

Then, in particular, we have
B(X , eij ) = 0, i , j ∈ {1, 2}.

Hence,

x11 = B(X , e11) = 0, x12 = B(X , e21) = 0, x21 = B(X , e12) = 0, x22 = B(X , e22) = 0,

so that X = 02 ∈ Mat2(Q).

Proposition 3.1.13. Let V be a K-vector space, B ∈ BilK(V ) a nondegenerate bilinear form. Then, B
induces an isomorphism of K-vector spaces

σB : V → V ∗ ; v 7→ σB (v),

where
σB (v) : V → K ; u 7→ σB (v)(u) = B(u, v).

Proof: It is left as an exercise to check that σB is well-defined, ie, that σB is K-linear and σB (v) ∈ V ∗,
for every v ∈ V .

Since we know that dim V = dim V ∗ it suffices to show that σB is injective. So, suppose that v ∈ ker σB .
Then, σB (v) = 0 ∈ V ∗, so that σB (v) is the zero linear form. Hence, we have σB (v)(u) = 0, for every
u ∈ V . Thus, using nondegeneracy of B we have

0 = σB (v)(u) = B(u, v), for every u ∈ V , =⇒ v = 0V .

Hence, σB is injective and the result follows.
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Remark 3.1.14. 1. We could have also defined an isomorphism

σ̂B : V → V ∗,

where
σ̂B (v)(u) = B(v , u), for every u ∈ V .

If B is symmetric then we have
σB = σ̂B ,

but this is not the case in general.

2. In fact, Proposition 3.1.13 has a converse: suppose that σB induces an isomorphism

σB : V → V ∗.

Then, B is nondegenerate. This follows because σB is injective.57

3. Suppose that B = (b1, ... , bn) ⊂ V is an ordered basis of V and B∗ = (b∗1 , ... , b∗n ) ⊂ V ∗ is the dual
basis (Proposition 1.8.3). What is the matrix [σB ]B

∗

B of σB with respect to B and B∗?

By definition we have
[σB ]B

∗

B = [[σB (b1)]B∗ · · · [σB (bn)]B∗ ] .

Now, for each i , σB (bi ) ∈ V ∗ is a linear form on V so we need to know what it does to elements of V .
Suppose that

v = λ1b1 + ... + λnbn ∈ V .

Then,

σB (bi )(v) = B(
n∑

k=1

λk bk , bi ) =
n∑

k=1

λk B(bk , bi ),

and  n∑
j=1

B(bj , bi )b∗j

 (v) =

 n∑
j=1

B(bj , bi )b∗j

( n∑
k=1

λk bk

)
=

n∑
k=1

λk B(bk , bi ),

so that we must have

σB (bi ) =
n∑

j=1

B(bj , bi )b∗j .

Hence,

[σB ]B
∗

B = [B]B.

It is now clear that B is nondegenerate precisely when the morphism σB is an isomorphism.

Definition 3.1.15. Let B ∈ BilK(V ). Let E ⊂ V be a nonempty subset. Then, we define the (right)
B-complement of E in V to be the set

E⊥r = {v ∈ V | B(u, v) = 0 for every u ∈ E};

this is a subspace of V .58

Similarly, we define the (left) B-complement of E in V to be the set

E⊥l = {v ∈ V | B(v , u) = 0, for every u ∈ E};
57Some people actually use this property to define nondegeneracy: they say that B is nondegenerate if σB is injective.

If you think about it, you will see that these two definitions are saying the exact same thing.
58Check this.
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this is a subspace of V .59

If B is (anti-)symmetric then we have that

E⊥l = E⊥r .

In this case we write E⊥.

Remark 3.1.16. Let E ⊂ V be a nonempty subset and B ∈ BilK(V ) be (anti-)symmetric. Then, it is
not hard to see that

E⊥ = spanK(E )⊥.

Indeed, we obviously have
spanK(E )⊥ ⊂ E⊥,

since if B(u, v) = 0, for every u ∈ spanK(E ), then this must also hold for those u ∈ E . Hence,
v ∈ spanK(E )⊥ =⇒ v ∈ E⊥. Conversely, if v ∈ E⊥, so that B(e, v) = 0, for every e ∈ E , then if
w = c1e1 + ... + ck ek ∈ spanK(E ), then

B(w , v) = B(c1e1 + ... ck ek , w) = c1B(e1, v) + ... + ck B(ek , w) = 0 + ... + 0 = 0.

Proposition 3.1.17. Let B ∈ BilK(V ) be (anti-)symmetric and nondegenerate, U ⊂ V a subspace of
V . Then,

dim U + dim U⊥ = dim V .

Proof: As B is nondegenerate we can consider the isomorphism

σB : V → V ∗,

from Proposition 3.1.13. We are going to show that

σB (U⊥) = annV ∗(U) = {α ∈ V ∗ | α(u) = 0, for every u ∈ U}.

Indeed, suppose that w ∈ U⊥. Then, for every u ∈ U, we have

σB (w)(u) = B(u, w) = 0,

so that σB (w) ∈ annV ∗(U). Conversely, let α ∈ annV ∗(U). Then, α = σB (w), for some w ∈ V , since
σB is an isomorphism. Hence, for every u ∈ U, we must have

0 = α(u) = σB (w)(u) = B(u, w),

so that w ∈ U⊥ and α = σB (w) ∈ σB (U⊥).

Hence, using Proposition 1.8.10, we have

dim U⊥ = dimσB (U⊥) = dim annV ∗(U) = dim V − dim U.

The result follows.

3.1.2 Adjoints

Suppose that B ∈ BilK(V ) is a nondegenerate symmetric bilinear form on V . Then, we have the
isomorphism

σB : V → V ∗,

given above.

Consider a linear endomorphism f ∈ EndK(V ). Then, we have defined the dual of f (Definition 1.8.4)

f ∗ : V ∗ → V ∗ ; α 7→ f ∗(α) = α ◦ f .

59Check this.
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We are going to define a new morphism f + : V → V called the adjoint of f : in order to define a
morphism we have to define a function and then show that it is linear.

So, given the input v ∈ V what is the output f +(v) ∈ V ? We have σB (v) ∈ V ∗ is a linear form on V
and we define

αv = f ∗(σB (v)) ∈ V ∗.

As σB is an isomorphism, there must exist a unique w ∈ V such that σB (w) = αv . We define
f +(v) = w : that is, f +(v) ∈ V is the unique vector in V such that

σB (f +(v)) = f ∗(σB (v)).

Hence, for every u ∈ V we have that

σB (f +(v))(u) = f ∗(σB (v))(u) =⇒ σB (f +(v))(u) = σB (v)(f (u)) =⇒ B(u, f +(v)) = B(f (u), v).

Moreover, since we have
f + = σ−1

B ◦ f ∗ ◦ σB ,

then we see that f + is a linear morphism (it is the composition of linear morphisms, hence must be
linear).

Definition 3.1.18. Let B ∈ BilK(V ) be symmetric and nondegenerate. Suppose that f ∈ EndK(V ).
Then, we define the adjoint of f (with respect to B), denoted f +, to be the linear morphism

f + = σ−1
B ◦ f ∗ ◦ σB ∈ EndK(V ).

It is the unique endomorphism of V such that

B(u, f +(v)) = B(f (u), v), for every u, v ∈ V .

We will usually just refer to f + as the adjoint of f , the bilinear form B being implicitly assumed known.

Remark 3.1.19. The adjoint of a linear morphism can be quite difficult to understand at first. In
particular, given an ordered basis B ⊂ V , what is [f +]B?

We use the fact that
f + = σ−1

B ◦ f ∗ ◦ σB ,

so that

[f +]B = [σ−1
B ◦ f ∗ ◦ σB ]B = [σ−1

B ]BB∗ [f
∗]B∗ [σB ]B

∗

B = [B]−1
B [f ]t

B[B]B

Hence, if B = BA ∈ BilK(Kn), for some symmetric A ∈ GLn(K), and f = TC , where C ∈ Matn(K),
then we have

f + = TX , where X = A−1C tA.

Example 3.1.20. Consider the bilinear form B = BA ∈ BilQ(Q3), where

A =

1 0 0
0 0 1
0 1 0

 ∈ GL3(Q).

Let f ∈ EndQ(Q3) be the linear morphism

f : Q3 → Q3 ; x 7→ C x ,

where

C =

 1 0 1
−1 3 0
−3 2 5

 .
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Then, the adjoint of f is the morphism

f + : Q3 → Q3 ; x 7→

1 −3 −1
1 5 0
0 2 3

 x .

As a verification, you can check that

B

1
1
0

 ,

1 −3 −1
1 5 0
0 2 3

−1
0
−1

 = B

 1 0 1
−1 3 0
−3 2 5

1
1
0

 ,

−1
0
−1

 .

3.2 Real and complex symmetric bilinear forms

Throughout the remainder of these notes we will assume that K ∈ {R,C}.

Throughout this section we will assume that all bilinear forms are symmetric.

When we consider symmetric bilinear forms on real or complex vector spaces we obtain some particularly
nice results.60 For a C-vector space V and symmetric bilinear form B ∈ BilC(V ) we will see that there
is a basis B ⊂ V such that

[B]B = Idim V .

First we introduce the important polarisation identity.

Lemma 3.2.1 (Polarisation identity). Let B ∈ BilK(V ) be a symmetric bilinear form. Then, for any
u, v ∈ V , we have

B(u, v) =
1

2
(B(u + v , u + v)− B(u, u)− B(v , v)) .

Proof: Left as an exercise for the reader.

Corollary 3.2.2. Let B ∈ BilK(V ) be symmetric and nonzero. Then, there exists some nonzero v ∈ V
such that B(v , v) 6= 0.

Proof: Suppose that the result does not hold: that is, for every v ∈ V we have B(v , v) = 0. Then,
using the polarisation identity (Lemma 3.2.1) we have, for every u, v ∈ V ,

B(u, v) =
1

2
(B(u + v , u + v , )− B(u, u)− B(v , v)) =

1

4
(0− 0− 0) = 0.

Hence, we must have that B = 0 is the zero bilinear form, which contradicts our assumption on B.
Hence, ther must exist some v ∈ V such that B(v , v) 6= 0.

This seemingly simple result has some profound consequences for nondegenerate complex symmetric
bilinear forms.

Theorem 3.2.3 (Classification of nondegenerate symmetric bilinear forms over C). Let B ∈ BilC(V ) be
symmetric and nondegenerate. Then, there exists an ordered basis B ⊂ V such that

[B]B = Idim V .

Proof: By Corollary 3.2.2 we know that there exists some nonzero v1 ∈ V such that B(v1, v1) 6= 0
(we know that B is nonzero since it is nondegenerate). Let E1 = spanC{v1} and consider E⊥1 ⊂ V .

We have E1 ∩ E⊥1 = {0V }: indeed, let x ∈ E1 ∩ E⊥1 . Then, x = cv1, for some c ∈ C. As x ∈ E⊥1 we
must have

0 = B(x , v1) = B(cv1, v1) = cB(v1, v1),

so that c = 0 (as B(v1, v1) 6= 0). Thus, by Proposition 3.1.17, we must have

V = E1 ⊕ E⊥1 .

60Actually, all results that hold for C-vector space also hold for K-vector spaces, where K is an algebraically closed field.
To say that K is algebraically closed means that the Fundamental Theorem of Algebra holds for K[t]; equivalently, every
polynomial f ∈ K[t] can be written as a product of linear factors.
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Moreover, B restricts to a nondegenerate symmetric bilinear form on E⊥1 : indeed, the restriction is

B|E⊥1 : E⊥1 × E⊥1 → C ; (u, u′) 7→ B(u, u′),

and this is a symmetric bilinear form. We need to check that it is nondegenerate. Suppose that w ∈ E⊥1
is such that, for every z ∈ E⊥1 we have

B(z , w) = 0.

Then, for any v ∈ V , we have v = cv1 + z , z ∈ E⊥1 , c ∈ C, so that

B(v , w) = B(cv1 + z , w) = cB(v1, w) + B(z , w) = 0 + 0 = 0,

where we have used the assumption on w and that w ∈ E⊥1 . Hence, using nongeneracy of B on V we
see that w = 0V . Hence, we have that B is also nondegenerate on E⊥1 .

As above, we can now find v2 ∈ E⊥1 such that B(v2, v2) 6= 0 and, if we denote E2 = spanC{v2}, then

E⊥1 = E2 ⊕ E⊥2 ,

where E⊥2 is the B-complement of E2 in E⊥1 . Hence, we have

V = E1 ⊕ E2 ⊕ E⊥2 .

Proceeding in the manner we obtain
V = E1 ⊕ · · · ⊕ En,

where n = dim V , and where Ei = spanC{vi}. Moreover, by construction we have that

B(vi , vj ) = 0, for i 6= j .

Define

bi =
1√

B(vi , vi )
vi ;

we know that the square root
√

B(vi , vi ) exists (and is nonzero) since we are considering C-scalars.61

Then, it is easy to see that

B(bi , bj ) =

{
1, i = j ,

0, i 6= j .

Finally, since
V = spanC{b1} ⊕ · · · ⊕ spanC{bn},

we have that B = (b1, ... , bn) is an ordered basis such that

[B]B = In.

Corollary 3.2.4. Let A ∈ GLn(C) be a symmetric matrix (so that A = At). Then, there exists P ∈
GLn(C) such that

P tAP = In.

Proof: This is just Theorem3.2.3 and Proposition 3.1.8 applied to the bilinear form BA ∈ BilC(Cn).
The assumptions on A ensure that BA is symmetric and nondegenerate.

Corollary 3.2.5. Suppose that X , Y ∈ GLn(C) are both symmetric. Then, there is a nondegenerate
bilinear form B ∈ BilC(Cn) and bases B, C ⊂ Cn such that

X = [B]B, Y = [B]C .

61This is a consequence of the Fundamental Theorem of Algebra: for any c ∈ C we have that

t2 − c = 0,

has a solution.

94



Proof: By the previous Corollary we can find P, Q ∈ GLn(C) such that

P tXP = In = QtYQ =⇒ (Q−1)tP tXPQ−1 = Y =⇒ (PQ−1)tXPQ−1 = Y .

Now, let B = BX ∈ BilC(Cn), B = S(n) and C = (c1, ... , cn), where ci is the i th column of PQ−1. Then,
the above identity states that

[B]C = P t
B←C[B]BPB←C = Y .

The result follows.

The situation is not as simple for an R-vector space V and nondegenerate symmetric bilinear form
B ∈ BilR(V ), however we can still obtain a nice classification result.

Theorem 3.2.6 (Sylvester’s law of inertia). Let V be an R-vector space, B ∈ BilR(V ) a nondegenerate
symmetric bilinear form. Then, there is an ordered basis B ⊂ V such that [B]B is a diagonal matrix

[B]B =


d1

d2

. . .

dn

 ,

where di ∈ {1,−1}.

Moreover, if p = the number of 1s appearing on the diagonal and q = the number of −1s appearing on
the diagonal, then p and q are invariants of B: this means that if C ⊂ V is any other basis of V such
that

[B]C =


e1

e2

. . .

en

 ,

where ej ∈ {1,−1}, and p′ (resp. q′) denotes the number of 1s (resp. −1s) on the diagonal. Then,

p = p′, q = q′.

Proof: The proof is similar to the proof of Theorem 3.2.3: we determine v1, ... , vn ∈ V such that

V = spanR{v1} ⊕ · · · ⊕ spanR{vn},

and with B(vi , vj ) = 0, whenever i 6= j . However, we now run into a problem: what if B(vi , vi ) < 0?
We can’t find a real square root of a negative number so we can’t proceed as in the complex case.
However, if we define

δi =
√
|B(vi , vi )|, for every i ,

then we can obtain a basis B = (b1, ... , bn), where we define

bi =
1

δi
vi .

Then, we see that

B(bi , bj ) =

{
0, i 6= j ,

±1, i = j ,

and [B]B is of the required form.

Let us reorder B so that, for i = 1, ... , p, we have B(bi , bi ) > 0. Then, if we denote

P = spanR{b1, ... , bp}, and Q = spanR{bp+1, ... , bn},

we have
dim P = p, dim Q = q (= n − p).
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We see that the restriction of B to P satisfies

B(u, u) > 0, for every u ∈ P,

and that if P ⊂ P ′, P 6= P ′, with P ′ ⊂ V a subspace, then there is some v ∈ P ′ such that B(v , v) ≤ 0:
indeed, as v /∈ P then we have

v = λ1b1 + ... + λpbp + µ1bp+1 + ... + µqbn,

and some µj 6= 0. Then, since P ⊂ P ′ we must have bp+j ∈ P ′ and

B(bp+j , bp+j ) < 0.

Hence, we can see that p is the dimension of the largest subspace U of V for which the restriction of
B to U satisfies B(u, u) > 0, for every u ∈ U.

Similarly, we can define q to be the dimension of the largest subspace U ′ ∈ V for which the restriction
of B to U ′ satisfies B(u′, u′) < 0, for every u′ ∈ U ′.

Therefore, we have defined p and q only in terms of B so that they are invariants of B.

Corollary 3.2.7. For every symmetric A ∈ GLn(R), there exists X ∈ GLn(R) such that

X tAX =


d1

d2

. . .

dn

 ,

with di ∈ {1,−1}.

Definition 3.2.8. Suppose that B ∈ BilR(V ) is nondegenerate and symmetric and that p, q are as in
Theorem 3.2.6. Then, we define the signature of B, denoted sig(B), to be the number

sig(B) = p − q.

It is an invariant of B: for any basis B ⊂ V such that

[B]B =


d1

d2

. . .

dn

 ,

with di ∈ {1,−1}, the quantity p − q is the same.

3.2.1 Computing the canonical form of a real nondegenerate symmetric bilinear form

([1], p.185-191)

Suppose that B ∈ BilR(V ) is symmetric and nondegenerate, with V a finite dimensional R-vector
space. Suppose that B ⊂ V is an ordered basis such that

[B]B =


d1

d2

. . .

dn

 ,

where di ∈ {1,−1}. Such a basis exists by Theorem 3.2.6. How do we determine B?

Suppose that C ⊂ V is any ordered basis. Then, we know that

P t
C←B[B]CPC←B = [B]B,
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by Proposition 3.1.8. Hence, the problem of determining B is equivalent to the problem of determining
PC←B (since we already know C and we can use PC←B to determine B62).

Therefore, suppose that A = [aij ] ∈ GLn(R) is symmetric. We want to determine P ∈ GLn(R) such that

P tAP =


d1

d2

. . .

dn

 ,

where di ∈ {1,−1}.

Consider the column vector of variables

x =

x1

...
xn

 .

Then, we have
x tAx = a11x2

1 + ... + annx2
n + 2

∑
i<j

aij xi xj .
63

By performing the ‘completing the square’ process for each variable xi we will find variables

y1 = q11x1 + q12x2 + ... + q1nxn,
y2 = q21x1 + q22x1 + ... + q2nxn

...
yn = qn1x1 + qn2x2 + ... + qnnxn

such that
x tAx = y 2

1 + ... + y 2
p − y 2

p+1 − ...− y 2
n .

Then, P = [qij ]
−1 is the matrix we are looking for.

Why? The above system of equations corresponds to the matrix equation

y = Qx , Q = [qij ] ∈ GLn(R),

which we can consider as a change of coordiante transformation PB←S(n) from the standard basis S(n) ⊂
Rn to a basis B (we consider x to be the S(n)-coordinate vector of the corresponding element of Rn).
Then, we see that

(Py)tA(Py) = x tAx = y 2
1 + ... + y 2

p − y 2
p+1 − ...− y 2

n ,

where P = Q−1. As

y tP tAPy = (Py)tA(Py) = y 2
1 + ... + y 2

p − y 2
p+1 − ...− y 2

n = y t



1
1

. . .

−1
. . .

−1


y ,

we see that P tAP is of the desired form. Moreover, B is the required basis.

It is better to indicate this method through an example.

62Why?
63The assignment x 7→ x t Ax is called a quadratic form. The study of quadratic forms and their properties is primarily

determined by the symmetric bilinear forms defined by A.
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Example 3.2.9. 1. Let

A =


1 0 −1 2
0 2 1 −2
−1 1 0 0
2 −2 0 −1

 ,

so that A is symmetric and invertible. Consider the column vector of variable x as above. Then, we
have

x tAx = x2
1 + 2x2

2 − x2
4 − 2x1x3 + 4x1x4 + 2x2x3 − 4x2x4.

Let’s complete the square with respect to x1: we have

x2
1 + 2x2

2 − x2
4 − 2x1x3 + 4x1x4 + 2x2x3 − 4x2x4

= x2
1 − 2x1(x3 − 2x4) + (x3 − 2x4)2 − (x3 − 2x4)2 + 2x2

2 − x2
4 + 2x2x3 − 4x2x4

= (x1 − (x3 − 2x4))2 + 2x2
2 − x2

3 − 5x2
4 + 2x2x3 − 4x2x4 + 4x3x4

Now we set
y1 = x1 − x3 + 2x4.

Then, complete the square with respect to the remaining x2 terms: we have

y 2
1 + 2x2

2 − x2
3 − 5x2

4 + 2x2x3 − 4x2x4 + 4x3x4

= y 2
1 + 2(x2

2 + x2(x3 − 2x4) +
1

4
(x3 − 2x4)2)− 1

2
(x3 − 2x4)2 − x2

3 − x2
4 − 4x3x4

= y 2
1 + 2(x2 +

1

2
(x3 − 2x4))2 − 3

2
x2

3 − 7x2
4 − 2x3x4

Now we set
y2 =

√
2
(
x2 + 1

2 x3 − x4

)
.

We obtain

x2
1 + 2x2

2 − x2
4 − 2x1x3 + 4x1x4 + 2x2x3 − 4x2x4 = y 2

1 + y 2
2 −

3

2
x2

3 − 7x2
4 − 2x3x4.

Completing the square with respect to x3 we obtain

y 2
1 + y 2

2 −
3

2
x2

3 − 7x2
4 − 2x3x4

= y 2
1 + y 2

2 −
3

2
(x2

3 +
14

3
x3x4 +

49

9
x2

4 ) +
49

6
x2

4

= y 2
1 + y 2

2 −
3

2
(x3 +

7

3
x4)2 +

49

6
x2

4 .

Then, set

y3 =
√

3
2 (x3 + 7

3 x4),

y4 = 7√
6

x4

.

So, if we let

Q =


1 0 −1 2

0
√

2 1√
2
−
√

2

0 0
√

3
2

7√
6

0 0 0 7√
6

 ,

then we have
y = Qx .
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Hence, if we define P = Q−1, then we have that

P tAP =


1

1
−1

1

 .

Hence, we have that p = 3, q = 1 and that if BA ∈ BilR(R4) then

sig(BA) = 3− 1 = 2.

2. Consider the matrix

A =

−1 0 0
0 0 1
0 1 0


which is symmetric and invertible. Consider the column vector of variables x as before. Then, we have

x tAx = −x2
1 + 2x2x3.

Proceeding as before, we ‘complete the square’ with respect to x2 (we don’t need to complete the square
for x1): we have

− x2
1 + 2x2x3

= − x2
1 +

1

2
(x2 + x3)2 − 1

2
(x2 − x3)2

Hence, if we let
y1 = x1

y2 = 1√
2

(x2 + x3)

y3 = 1√
2

(x2 − x3)

then we have
x tAx = −y 2

1 + y 2
2 − y 2

3 .

Furthermore, if we let

Q =

1 0 0
0 1√

2
1√
2

0 1√
2
− 1√

2

 ,

and defined P = Q−1, then

P tAP =

−1
1
−1

 .

Hence, p = 1, q = 2 and
sig(BA) = −1.

3.3 Euclidean spaces

Throughout this section V will be a finite dimensional R-vector space and K = R.

Definition 3.3.1. Let B ∈ BilR(V ) be a symmetric bilinear form. We say that B is an inner product
on V if B satisfies the following property:

B(v , v) ≥ 0, for every v ∈ V , and B(v , v) = 0⇔ v = 0V .

If B ∈ BilK(V ) is an inner product on V then we will write

〈u, v〉 def
= B(u, v).
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Remark 3.3.2. Suppose that 〈, 〉 is an inner product on V . Then, we have the following properties:

i) 〈λu + v , w〉 = λ〈u, w〉+ 〈v , w〉, for every u, v , w ∈ V ,λ ∈ K,

ii) 〈u,λv + w〉 = λ〈u, v〉+ 〈u, w〉, for every u, v , w ∈ V ,λ ∈ K,

iii) 〈u, v〉 = 〈v , u〉, for every u, v ∈ V .

iv) 〈v , v〉 ≥ 0, for every v ∈ V , with equality precisely when v = 0V .

Property iv) is often referred to as the positive-definite property of an inner product.

Definition 3.3.3. A Euclidean space, or inner product space, is a pair (V , 〈, 〉), where V is a finite
dimensional R-vector space and 〈, 〉 is an inner product on V .

Given an inner product space (V , 〈, 〉) we define the norm function on V (with respect to 〈, 〉) to be the
function

||.|| : V → R≥0 ; v 7→ ||v || =
√
〈v , v〉.

For any v ∈ V we define the length of v (with respect to 〈, 〉) to be ||v || ∈ R≥0.

Let (V1, 〈, 〉1), (V2, 〈, 〉2) be inner product spaces. Then, we say that a linear morphism

f : V1 → V2,

is a Euclidean morphism if, for every u, v ∈ V1 we have

〈u, v〉1 = 〈f (u), f (v)〉2.

A Euclidean morphism whose underlying linear morphism is an isomorphism is called a Euclidean iso-
morphism.

If f : (V , 〈, 〉) → (V , 〈, 〉) is a Euclidean morphism such that the domain and codomain are the same
Euclidean space, then we say that f is an orthogonal morphism, or an orthogonal transformation. We
denote the set of all orthgonal transformations of (V , 〈, 〉) by O(V , 〈, 〉), or simply O(V ) when there is
no confusion.

Example 3.3.4. 1. We define n-dimensional Euclidean space, denoted En, to be the Euclidean space
(Rn, ·), where · is the usual ‘dot product’ from analytic geometry: that is, for x , y ∈ Rn we have

x · y def
= x ty = x1y1 + ... + xnyn.

It easy to check that · is bilinear and symmetric and, moreover, we have

x · x = x tx = x2
1 + ... + x2

n ≥ 0,

with equality precisely when x = 0.

Given x ∈ En, the length of x is

||x || =
√

x2
1 + ... + x2

n .

2. Consider the symmetric bilinear form BA ∈ BilR(R3) where

A =

1 0 0
0 0 −1
0 −1 0

 .

Then, you can check that

x =

0
1
1

 ∈ R3,

has the property that
BA(x , x) = −2 < 0,

so that BA is not an inner product on R3.
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3. Let BA ∈ BilR(R4) be the symmetric bilinear form defined by

A =


1 1 0 0
1 2 0 0
0 0 2 1
0 0 1 1

 .

Then, BA is an inner product: indeed, let x ∈ R3. Then, we have

BA(x , x) = x2
1 + 2x1x2 + 2x2

2 + 2x2
3 + 2x3x4 + x2

4 = (x1 + x2)2 + x2
2 + x2

3 + (x3 + x4)2 ≥ 0,

and we have BA(x , x) = 0 precisely when

x1 + x2 = 0, x2 = 0, x3 = 0, x3 + x4 = 0,

so that x1 = x2 = x3 = x4 = 0 and x = 0.

With respect to this inner product, the vector

x =


1
−1
0
1

 ∈ R4,

has length
||x || =

√
〈x , x〉 =

√
2.

Hence, (R4, BA) is a Euclidean space.

4. In fact, a symmetric bilinear form B on an n-dimensional R-vector space V is an inner product
precisely when sig(B) = n.64

5. Consider the linear morphism TA ∈ EndR(R2), where

A =
1√
2

[
1 −1
1 1

]
.

Then, TA is an orthogonal transformation of E2: indeed, for any x , y ∈ R2, we have

TA(x) · TA(y) = (Ax)t(Ay) = x tAtAy = x ty = x · y ,

since A−1 = At .

This example highlights a more general property of orthogonal transformations of En to be dis-
cussed later:

A ∈ O(En) if and only if A−1 = At .65

6. If (V , 〈, 〉) is a Euclidean space then idV is always an orthogonal transformation.

Remark 3.3.5. 1. A Euclidean space is simply a R-vector space V equipped with an inner product. This
means that it is possible for the same R-vector space V to have two distinct Euclidean space structures
(ie, we can equip the same R-vector space with two distinct inner products). However, as we will see
shortly, given a R-vector space V there is essentially only one Euclidean space structure on V : this
means that we can find a Euclidean isomorphism between the two distinct Euclidean space structures
on V .

64This is shown in a few paragraphs.
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2. It is important to remember that the norm function ||.|| is not linear. In fact, the norm function is
not additive: indeed, let v ∈ V be nonzero. Then,

0 = ||0v || = ||v + (−v)||,

so that if ||.|| were additive then we would have ||v ||+ ||− v || = 0, for every v ∈ V . As ||v ||, ||− v || ≥ 0
then we would have that

||v || = || − v || = 0, for every v ∈ V .

That is, every v ∈ V would have length 0. However, the only v ∈ V that can have length 0 is v = 0V .

Moreover, for any v ∈ V ,λ ∈ K, we have

||λv || = |λ|||v ||.

Theorem 3.3.6. Let (V , 〈, 〉) be a Euclidean space. Then,

a) for any u, v ∈ V we have

||u + v || ≤ ||u||+ ||v ||. (triangle inequality)

b) ||v || = 0 if and only if v = 0V .

c) if 〈u, v〉 = 0 then

||u||2 + ||v ||2 = ||u + v ||2. (Pythagoras’ theorem)

d) for any u, v ∈ V we have

|〈u, v〉| ≤ ||u||||v ||. (Cauchy-Schwarz inequality)

Proof: Left as an exercise for the reader.

We will now show that there is essentially only one Euclidean space structure that we can give an
arbitrary finite dimensional R-vector space. Moreover, this Euclidean space structure is well-known to
us all.

Lemma 3.3.7. Suppose that 〈, 〉 is an inner product on V . Then, 〈, 〉 ∈ BilR(V ) is nondegenerate.

Proof: We need to show the following property of 〈, 〉:

if v ∈ V is such that 〈u, v〉 = 0, for every u ∈ V , then v = 0V .

So, suppose that v ∈ V is such that 〈u, v〉 = 0, for every u ∈ V . In particular, we must have

〈v , v〉 = 0 =⇒ v = 0V ,

by the defining property of an inner product (Remark 3.3.2, iv)). Hence, 〈, 〉 is nondegenerate.

Hence, using Sylvester’s law of inertia (Theorem 3.2.6), we know that for a Euclidean space (V , 〈, 〉)
there is an ordered basis B ⊂ V such that

[〈, 〉]B =

d1

. . .

dn

 , where di ∈ {1,−1}, n = dim V .

Moreover, since 〈, 〉 is an inner product we must have that sig(〈, 〉) = n: indeed, we have

sig(〈, 〉) = p − q ∈ {−n,−(n − 1), ... , n − 1, n},

so that sig(〈, 〉) = n if and only if q = 0, so that there are no −1s appearing on the diagonal of [〈, 〉]B.
If some di = −1 then we would have

0 ≤ 〈bi , bi 〉 = −1,

which is impossible. Hence, we must have d1 = d2 = ... = dn = 1, so that

[〈, 〉]B = In.
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Theorem 3.3.8 (Classification of Euclidean spaces). Let (V , 〈, 〉) be a Euclidean space, n = dim V .
Then, there is a Euclidean isomorphism

f : (V , 〈, 〉)→ En.

Proof: Let B ⊂ V be an ordered basis such that

[〈, 〉]B = In.

Then, let
f = [−]B : V → Rn,

be the B-coordinate morphism. Then, this is an isomorphism of R-vector spaces so that we need only
show that

〈u, v〉 = [u]B · [v ]B,

for every u, v ∈ V . Now, let u, v ∈ V and suppose that

u =
n∑

i=1

λi bi , u =
n∑

j=1

µj bj .

Then,

〈u, v〉 = 〈
n∑

i=1

λi bi ,
n∑

j=1

µj bj〉 =
∑

i ,j

λiµj〈bi , bj〉 =
n∑

i=1

λiµi ,

where we have used bilinearity of 〈, 〉 and that

〈bi , bj〉 =

{
1, i = j ,

0, i 6= j .

Now, we also have

[u]B · [v ]B = [u]t
B[v ]B = [λ1 · · · λn]

µ1

...
µn

 =
n∑

i=1

λiµi = 〈u, v〉,

and the result follows.

Corollary 3.3.9. Let (V1, 〈, 〉1), (V2, 〈, 〉2) be Euclidean spaces. Then, if dim V1 = dim V2 then (V1, 〈, 〉1)
and (V2, 〈, 〉2) are Euclidean-isomorphic.

Proof: By Theorem 3.3.8 we have Euclidean isomorphisms

f1 : (V1, 〈, 〉1)→ En, f2 : (V2, 〈, 〉2)→ En.

Then, as the composition of two Euclidean isomorphisms is again a Euclidean isomorphism66 then we
obtain an isomorphism

f −1
2 ◦ f1 : (V1, 〈, 〉1)→ (V2, 〈, 〉2).

In fact, the condition defining a Euclidean morphism (not necessarily an isomorphism) is extremely
strong: if (V1, 〈, 〉1) and (V2, 〈, 〉2) are Euclidean spaces and f : V1 → V2 is a Euclidean morphism, then
it is easy to check that we must have

||v || = ||f (v)||, for every v ∈ V ,

so that f is length preserving. If you think about what this means geometrically then we obtain that

‘Euclidean morphisms are always injective’

since no nonzero vector can be mapped to 0V2 by f . As a consequence, we obtain

66Check this.
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Proposition 3.3.10. Let (V1, 〈, 〉1), (V2, 〈, 〉2) be Euclidean spaces of the same dimension. Then, if
there exists a Euclidean morphism

f : V1 → V2,

it must automatically be a Euclidean isomorphism.

Corollary 3.3.11. Let (V , 〈, 〉) be a Euclidean space. Then, every Euclidean endomorphism

f : V → V

is an orthogonal transformation (= Euclidean isomorphism). Hence, we have

O(V ) = {f ∈ EndR(V ) | f is Euclidean}.

Definition 3.3.12. The set of orthogonal transformations of En is called the orthogonal group of size
n and is denoted O(n).

Suppose that g ∈ O(n) is an orthogonal transformation of En and identify g with its standard matrix
[g ]S(n) . Then, we must have, for every x , y ∈ Rn, that

x · y = (gx) · (gy) = (gx)t(gy) = x tg tgy ,

so that
x ty = x tg tgy ,

for every x , y ∈ Rn. Hence, by Lemma 3.1.6, we must have that

g tg = In.

Hence, we see that we can identify

[−]S(n) : O(n)→ {X ∈ Matn(R) | X tX = In}.

Moreover, this identification satisfies the following properties:

- [idEn ]S(n) = In,

- for every f , g ∈ O(n), [f ◦ g ]S(n) = [f ]S(n) [g ]S(n) .

Hence, the correspondence

[−]S(n) : O(n)→ {X ∈ Matn(R) | X tX = In},

is an isomorphism of groups.

From now on, when we consider orthogonal transformations g ∈ O(n) we will identify g with
its standard matrix. Then, the previous discussion shows that g ∈ GLn(R) and g tg = In.

Let’s think a little bit more about the condition

AtA = In,

for A ∈ Matn(R).

i) If A is such that AtA = In then we must have that det(A)2 = 1, since det(A) = det(At). In
particular, det(A) ∈ {1,−1}67 so that A ∈ GLn(R): the inverse of A is A−1 = At . Furthermore,
this implies that we must have

AAt = AA−1 = In,

so that
67It is NOT true that if A ∈ GLn(R) such that det A = 1 then A ∈ O(n). For example, consider

A =

[
1 1
1 2

]
.

Then, it is not the case that At A = I2 so that A /∈ O(2).
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AtA = In if and only if AAt = In.

ii) Let us write
A = [a1 · · · an],

so that the i th column of A is ai . Then, as A ∈ GLn(R) we have that {a1, ... , an} is linearly
independent and defines a basis of Rn. Moreover, as the i th row of At is at

i , then the condition
AtA = In implies that

ai · aj = at
i aj =

{
1, i = j ,

0, i 6= j .
.

In particular, we see that each column of A has length 168 (with respect to the inner product
·), and that the ·-complement of ai is precisely

spanR{aj | j 6= i}.

iii) A matrix A ∈ Matn(R) such that
AtA = In,

will be called an orthogonal matrix.

iv) A matrix A ∈ Matn(R) is an orthogonal matrix if and only if for every x , y ∈ Rn we have

(Ax) · (Ay) = x · y .

We can interpret this result using the slogan

‘orthogonal transformations are the ‘rigid’ transformations’

Example 3.3.13. 1. Let θ ∈ R and consider the matrix

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
∈ Mat2(R).

Then, you may know already that Rθ corresponds to the ‘rotate by θ counterclockwise’ morphism
of R2. If not, then this is easily seen: since Rθ defines a linear transformation of R2 we need only
determine what happens to the standard basis of R2. We have

Rθe1 =

[
cos θ
sin θ

]
, Rθe2 =

[
− sin θ
cos θ

]
,

and by considering triangles and the unit circle the result follows.

You can check easily that
R t
θRθ = I2,

so that Rθ ∈ O(2).

In fact, it can be shown that every orthogonal transformation of R2 that has determinant 1 is
of the form Rθ, for some θ. Moreover, every orthogonal transformation of R2 is of one of the
following forms:

Rθ, or

[
0 1
1 0

]
Rθ.

68Similarly, we obtain that each row must have legnth 1
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3.3.1 Orthogonal complements, bases and the Gram-Schmidt process

Definition 3.3.14. Let (V , 〈, 〉) be a Euclidean space, S ⊂ V a nonempty subset. We define the
orthogonal complement of S , denoted S⊥, to be the 〈, 〉-complement of S defined in Definition 3.1.15.
Hence,

S⊥ = {v ∈ V | 〈v , s〉 = 0, for every s ∈ S} = {v ∈ V | 〈s, v〉 = 0, for every s ∈ S}.

S⊥ is a subspace of V , for any subset S ⊂ V .69

Proposition 3.3.15. Let (V , 〈, 〉) be a Euclidean space and U ⊂ V a subspace. Then,

V = U ⊕ U⊥.

Proof: We know that dim V = dim U + dim U⊥ by Proposition 3.1.17. Hence, if we show that
U ∩ U⊥ = {0V } then we must have

V = U + U⊥ = U ⊕ U⊥.70

Assume that v ∈ U ∩ U⊥. Then, v ∈ U and v ∈ U⊥ so that

0 = 〈v , v〉 =⇒ v = 0V ,

since 〈, 〉 is an inner product. The result follows.

Remark 3.3.16. 1. Just as we have shown before, we have

S⊥ = (spanR S)⊥.

2. If we are thinking geometrically (as we should do whenever we are given any Euclidean space V ) then
we see that the orthogonal complement U⊥ of a subspace U is the subspace of V which is ‘perpendicular’
to U. For example, consider the Euclidean space E3, U is the ‘x-axis’, which we’ll denote L. Then, the
subspace that is perpendicular to the x-axis is the x = 0-plane Π. Indeed, we have

L =


x

0
0

 ∈ R3

 , and Π =


0

y
z

 ∈ R3

 .

It is easy to check that Π = L⊥.71

Definition 3.3.17. Let (V , 〈, 〉) be a Euclidean space, U ⊂ V a subspace and v ∈ V . Then, we define
the projection of v onto U to be the vector projU v defined as follows: using Proposition 3.3.15 we know
that V = U ⊕ U⊥ so that there exists (unique!) u ∈ U, z ∈ U⊥ such that v = u + z . Then, we define

projU v
def
= u ∈ U.

Remark 3.3.18. In fact, the assignment

projU : V → U ; v 7→ projU v ,

is precisely the ‘projection onto U’ morphism defined earlier. As a consequence we see that

projU (v + v ′) = projU v + projU v ′, and projU λv = λ projU v .

We can think of projU v in more geometric terms.

69Check this.
70This follows from the dimension formula.
71Do this!
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Proposition 3.3.19. Let (V , 〈, 〉) be a Euclidean space, U ⊂ V a subspace and v ∈ V . Then, projU v ∈
U is the unique vector in U such that

|| projU v − v || ≤ ||u − v ||, u ∈ U.

Hence, we can say that projU v is the closest vector to v in U.

Proof: Let u ∈ U. Then, we have

(projU v − v) + (u − projU v) = (u − v),

and, since projU v − v ∈ U⊥ (Definition 3.3.17) and u − projU v ∈ U, then

||u − v ||2 = || projU v − v ||2 + ||u − projU v ||2 ≥ || projU v − v ||2,

where we have used Pythagoras’ theorem (Theorem 3.3.6). Hence, we have

||u − v || ≥ || projU v − v ||, for any u ∈ U.

Suppose that w ∈ U is such that

||w − v || ≤ ||u − v ||, for any u ∈ U.

This implies that we must have
||w − v || = || projU v − v ||,

by what we have just shown.

Now, using Pythagoras’ theorem, and that v − projU v ∈ U⊥, projU v − w ∈ U, we obtain

||v−w ||2 = ||v−projU v +projU v−w ||2 = ||v−projU v ||2 + || projU v−w ||2 =⇒ || projU v−w ||2 = 0,

and projU v = w . Hence, projU v is the unique element of U satisfying the above inequality.

Example 3.3.20. Consider the Euclidean space E2 and let L ⊂ R2 be a line through the origin. Suppose
that v ∈ R2 is an arbitrary vector. What does projL v look like geometrically?

Using Proposition 3.3.19 we know that w = projL v ∈ L is the unique vector in L that is closest to v .

- if v ∈ L then projL v = v , as v ∈ L is the closest vector v (trivially).

- if v /∈ L then consider the line L′ perpendicular to L and for which the endpoint of the vector v lies
on L′ (so it might not be the case that L′ is a line through the origin). The point of intersection
L ∩ L′ defines the vector projL v .

In fact, it is precisely this geometric intuition that guides the definition of projL v : we have defined
projL v ∈ L as the unique vector such that

v = projL v + z , z ∈ L⊥.

Definition 3.3.21. Let (V , 〈, 〉) be a Euclidean space. We say that a subset S ⊂ V is an orthogonal
set if, for every s, t ∈ S , s 6= t, we have

〈s, t〉 = 0.

Lemma 3.3.22. Let S ⊂ V be an orthogonal set of nonzero vectors. Then, S is linearly independent.

Proof: Left as en exercise for the reader.

Lemma 3.3.23. Let S = {s1, ... , sk} ⊂ V be an orthogonal set and such that S contains only nonzero
vectors. Then, for any v ∈ V , we have

projspanR S v =
〈v , s1〉
〈s1, s1〉

s1 + ... +
〈v , sk〉
〈sk , sk〉

sk .
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Proof: Since S is linearly independent we have that S forms a basis of spanR S . Hence, for any
v ∈ V , we can write

projspanR S v = λ1s1 + ... + λk sk ,

for unique λ1, ... ,λk ∈ R. Hence, for each i = 1, ... , k, we have

〈projspanR S v , si 〉 = λi 〈si , si 〉,
using that S is orthogonal. Hence, we have that

λi =
〈projspanR S v , si 〉

〈si , si 〉
.

Now, since v − projspanR S v ∈ (spanR S)⊥ we see that, for each i ,

0 = 〈v − projspanR S v , si 〉 = 〈v , si 〉 − 〈projspanR S v , si 〉 =⇒ 〈v , si 〉 = 〈projspanR S , si 〉.
The result follows.

Definition 3.3.24. Let (V , 〈, 〉) be a Euclidean space. A basis B ⊂ V is called an orthogonal basis if
it is an orthogonal set.

An orthogonal basis B is called orthonormal if, for every b ∈ B, we have ||b|| = 1.

Remark 3.3.25. 1. Recall that we defined an orthogonal matrix A ∈ Matn(R) to be a matrix such that

AtA = In.

The remarks at the end of the previous section imply that the columns of an orthogonal matrix
define an orthonormal basis.

2. Not every basis in a Euclidean space is an orthogonal basis: for example, consider the Euclidean
space E2. Then,

B =

([
1
0

]
,

[
1
1

])
= (b1, b2),

is a basis of R2 but we have
b1 · b2 = 1 6= 0.

3. It is not true that any orthogonal set E ⊂ V defines an orthogonal basis of spanR E : for example, let
v ∈ V be nonzero and consider the subset E = {0V , v}. Then, E is orthogonal72 but E is not a basis,
as E is a linearly dependent set. However, if E contains nonzero vectors and is orthogonal then E is an
orthogonal basis of spanR E , by Lemma 3.3.22.

At first glance it would appear to be quite difficult to determine an orthogonal (or orthonormal) basis of
V . This is essentially the same problem as coming up with an orthogonal matrix. Moreover, it is hard
to determine whether orthogonal bases even exist!

It is a quite remarkable result that given ANY basis B of a Euclidean space (V , 〈, 〉) we can determine
an orthonormal basis B′ of V . This is the Gram-Schmidt process.

Theorem 3.3.26 (Gram-Schmidt process). Let (V , 〈, 〉) be a Euclidean space, B = (b1, ... , bn) ⊂ V an
arbitrary ordered basis of V . Then, there exists an orthonormal basis B′ = (b′1, ... , b′n) ⊂ V .

Proof: Consider the following algorithm: define

c1 = b1.

We inductively define ci : for 2 ≤ i ≤ n define

ci = bi − projEi−1
bi ,

where Ei−1
def
= spanR{c1, ... , ci−1}.

If i < j then
〈ci , cj〉 = 0,

since cj ∈ E⊥j−1 by construction73, and ci ∈ Ej−1.

72Check this.
73Think about why this is true. What is the definition of cj ?
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Hence, C = (c1, ... , cn) is an orthogonal basis. To obtain an orthonormal basis B′ = (b′1, ... , b′n) given
an orthogonal basis C, we simply set

b′i =
ci

||ci ||
.

Then, we have
||b′i || = 1,

and B′ is an orthonormal basis.

Corollary 3.3.27. Let (V , 〈, 〉) be a Euclidean space, E ⊂ V an orthogonal set consisting of nonzero
vectors. Then, E can be extended to an orthogonal basis of V .

Proof: Left as an exercise for the reader.

Remark 3.3.28. 1. Let’s illuminate exactly what we have done in the proof of Theorem 3.3.26, making
use of Lemma 3.3.23.

Let B = (b1, ... , bn) be any basis. We can organise the algorithm from Theorem 3.3.26 into a table

c1 = b1

c2 = b2 − 〈b2,c1〉
〈c1,c1〉 c1

c3 = b3 − 〈b3,c1〉
〈c1,c1〉 c1 − 〈b3,c2〉

〈c2,c2〉 c2

...

cn = bn − 〈bn,c1〉
〈c1,c1〉 c1 − ...− 〈bn,cn−1〉

〈cn−1,cn−1〉cn−1

Then C = (c1, ... , cn) is an orthogonal basis of V . To obtain an orthonormal basis of V we set

b′i =
ci

||ci ||
, for each i .

Then, B′ = (b′1, ... , b′n) is orthonormal.

In practice in can be quite painful to actually perform the Gram-Schmidt process (if dim V is large).
However, it is important to know that the Gram-Schmidt process allows us to show that orthonormal
bases exist.

2. If B is orthogonal to start with then the basis C we obtain after performing the Gram-Schmidt process
is just C = B.

3. It is important to remember that the Gram-Schmidt process depends on the inner product 〈, 〉
used to define the Euclidean space (V , 〈, 〉).

Example 3.3.29. Let V = E2 and consider the basis

B =

([
1
−1

]
,

[
2
5

])
.

Let’s perform the Gram-Schmidt process to obtain an orthogonal basis C = (c1, c2) of E2. We have

c1 =

[
1
−1

]

c2 =

[
2
5

]
−

2
5

·
 1
−1


 1
−1

·
 1
−1


[

1
−1

]
=

[
2
5

]
− 2.1+5.(−1)

12+(−1)2

[
1
−1

]
=

[
2
5

]
+ 3

2

[
1
−1

]
=

[
7/2
7/2

]

Then, you can check that [
1
−1

]
·
[

7/2
7/2

]
= 7/2− 7/2 = 0.

If we define

b′1 =
1√
2

[
1
−1

]
, b′2 =

2

7
√

2

[
7/2
7/2

]
,

we have that B′ = (b′1, b′2) is orthonormal.
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Corollary 3.3.30 (QR factorisation). Let A ∈ GLn(R). Then, there exists an orthogonal matrix Q ∈
O(n) and a upper-triangular matrix R such that

A = QR.

Proof: This is a simple restatement of the Gram-Schmidt process. Suppose that

A = [a1 · · · an].

Then B = (a1, ... , an) is an ordered basis of Rn. Apply the Gram-Schmidt process (with respect to the
dot product) to obtain an orthonormal basis B′ = (b1, ... , bn) as above. Then, we have

b1 = 1
r1

a1

b2 = 1
r2

(a2 − (a2 · b1)b1)
...

bn = 1
rn

(an − (an · b1)b1 − ...− (an · bn−1)bn−1)

where ri ∈ R>0 is the length of the ci vectors from the Gram-Schmidt process. We have also slightly
modified the Gram-Schmidt process (in what way?) but you can check that (b1, ... , bn) is an orthonormal
basis.74

By moving all bi terms to the left hand side of the above equations we obtain the table

r1b1 = a1

(a2 · b1)b1 + r2b2 = a2

...
(an · b1)b1 + ... + (an · bn−1)bn−1 + rnbn = an

and we can rewrite these equations using matrices: if

Q = [b1 · · · bn] ∈ O(n), R =


r1 a2 · b1 a3 · b1 · · · an · b1

0 r2 a3 · b2 · · · an · b2

0 0 r3 · · · an · b3

...
. . .

...
0 · · · rn

 ,

then we see that the above equations correspond to

QR = A.

3.4 Hermitian spaces

In this section we will give a (very) brief introduction to the definition and fundamental properties of
Hermitian forms and Hermitian spaces. A Hermitian form can be considered as a ‘quasi-bilinear form’
on complex vector spaces.

Definition 3.4.1. Let V be a C-vector space. A function

H : V × V → C ; (u, v) 7→ H(u, v),

is called a Hermitian form on V if

(HF1) for any u, v , w ∈ V , λ ∈ C,

H(u + λv , w) = H(u, w) + λH(v , w),

74Do this!
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(HF2) for any u, v ∈ V ,
H(u, v) = H(v , u), (Hermitian symmetric)

where, if z = a +
√
−1b ∈ C, we define the complex conjugate of z to be the complex number

z = a−
√
−1b ∈ C.

We denote the set of all Hermitian forms on V by Herm(V ).

Remark 3.4.2. It is a direct consequence of the above definition that if H is a Hermitian form on V
we have

H(u, v + λw) = H(u, v) + λH(v , w),

for any u, v , w ∈ V ,λ ∈ C.

We say that a Hermitian form is

‘linear in the first argument, antilinear75 in the second argument’

Definition 3.4.3. Let V be a C-vector space, B = (b1, ... , bn) ⊂ V an ordered basis and H a Hermitian
form on V . Define the matrix of H with respect to B, to be the matrix

[H]B = [aij ], aij = H(bi , bj ).

The Hermitian symmetric property of a Hermitian form implies that

[H]B = [H]
t

B,

where, for any matrix A = [aij ] ∈ Matm,n(C), we define

A = [bij ], bij = aij .

A matrix A ∈ Matn(C) is called a Hermitian matrix if

A = A
t
.

For any A ∈ Matn(C), we will write

Ah def
= A

t
;

hence, a matrix A ∈ Matn(C) is Hermitian if Ah = A.

Lemma 3.4.4. For any A, B ∈ Matn(C), η ∈ C we have

- (A + B)h = Ah + Bh,

- (AB)h = BhAh,

- (ηA)h = ηAh.

Lemma 3.4.5. Let V be a C-vector space, B ⊂ V an ordered basis of V and H a Hermitian form on
V . Then, for any u, v ∈ V , we have

H(u, v) = [u]t
B[H]B[v ]B.

Moreover, if A ∈ Matn(C) is any matrix such that

H(u, v) = [u]t
BA[v ]B,

for every u, v ∈ V , then A = [H]B.
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Example 3.4.6. 1. Consider the function

H : C2 × C2 → C ; (z , w) 7→ z1w 1 +
√
−1z2w 1 −

√
−1z1w 2.

H is a Hermitian form on C2.

2. The function
H : C2 × C2 → C ; (z , w) 7→ z1w1 + z2w2,

is NOT a Hermitian form on C2: it is easy to see that

H

([
1√
−1

]
,

[
1
1

])
= 1 +

√
−1 6= 1−

√
−1 = H

([
1
1

]
,

[
1√
−1

])
.

3. The function
H : C× C→ C ; (z , w) 7→ zw ,

is a Hermitian form on C.

4. Let A = aij ∈ Matn(C) be a Hermitian matrix. Then, we define

HA : Cn × Cn → C ; (z , w) 7→ z tAw =
n∑

i=1

n∑
j=1

aij zi w j .

HA is a Hermitian form on Cn. Moreover, any Hermitian form H on Cn is of the form H = HA,
for some Hermitian matrix A ∈ Matn(C).

Lemma 3.4.7. Let H ∈ Herm(V ), B, C ⊂ V ordered bases on V . Then, if P = PC←B is the change of
coordinate matrix from B to C, then

Ph[H]CP = [H]B.

Definition 3.4.8. Let H ∈ Herm(V ). We say that H is nondegenerate if [H]B is invertible, for any
basis B ⊂ V . The previous lemma ensures that this notion of nondegeneracy is well-defined (ie, does
not depend on the choice of basis B).76

Theorem 3.4.9 (Classification of Hermitian forms). Let V be a C-vector space, n = dim V and H ∈
Herm(V ) be nondegenerate. Then, there is an ordered basis B ⊂ V such that

[H]B =

d1

. . .

dn

 , di ∈ {1,−1}.

Hence, if u, v ∈ V with

[u]B =

ξ1

...
ξn

 , [v ]B =

η1

...
ηn

 ,

then we have

H(u, v) =
n∑

i=1

diξiηi .

Proof: The proof is similar to the proof of Theorem 3.2.6 and uses the following facts: for any
Hermitian form H ∈ Herm(V ), there exists v ∈ V such that H(v , v) 6= 0; if H ∈ Herm(V ) is nonde-
generate then for any subspace U ⊂ V we have V = U ⊕U⊥. The first fact follows from an analagous
‘polarisation identity’ for Hermitian forms.

76Note that the determinant of Ah is equal to det A: indeed, we have

det(Ah) = det(A
t
) = det A = det A.
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Definition 3.4.10. A Hermitian (or unitary) space is a pair (V , H), where V is a C-vector space and
H is a Hermitian form on V such that [H]B = In, for some basis B. This condition implies that H is
nondegenerate.

If (V , H) is a Hermitian space and E ⊂ V is a nonempty subset then we define the orthogonal comple-
ment of E (with respect to H) to be the subspace

E⊥ = {v ∈ V | H(v , u) = 0, for every u ∈ E}.

We say that z , w ∈ V are orthogonal (with respect to H) if H(z , w) = 0. We say that E ⊂ V is
orthogonal if H(s, t) = 0, for every s 6= t ∈ E .

A basis B ⊂ V is an orthogonal basis if B is an orthogonal set. A basis B ⊂ V is an orthonormal basis
if it is an orthogonal basis and H(b, b) = 1, for every b ∈ B.

We define Hn = (Cn, HIn ), where

HIn (z , w) = z1w 1 + ... + znw n.

As in the Euclidean case we obtain the notion of a ‘Hermitian morphism’: a Hermitian morphism
f : (V , HV )→ (W , HW ) is a linear morphism such that

HW (f (u), f (v)) = HV (u, v), for any u, v ∈ V .

In particular, if (V , H) is a Hermitian space then we denote the set of all Hermitian isomorphisms of
(V , H) by U(V , H), or simply U(V ) when there is no confusion. A Hermitian isomorphism is also called
a unitary transformation of V . Thus,

U(V ) = {f : V → V | H(u, v) = H(f (u), f (v)), for any u, v ∈ V }.

We denote U(n) = U(Hn) and it is straightforward to verify77 that

U(n) = {TA ∈ EndC(Cn) | A ∈ Matn(C) and AhA = In}.

We say that A ∈ Matn(C) is a unitary matrix if

AhA = In.

Thus, we can identify the set of unitary transformations of Hn with the set of unitary matrices. Moreover,
this association is an isomorphism of groups.

As a consequence of Theorem 3.4.9 we can show that there is essentially only one Hermitian space of
any given dimension.

Theorem 3.4.11. Let (V , H) be a Hermitian space, n = dim V . Then, there is a Hermitian isomorphism

f : (V , H)→ Hn.

Remark 3.4.12. There are generalisations to Hermitian spaces of most of the results that apply to
Euclidean spaces (section 3.3). In particular, we obtain notions of length and Cauchy-Schwarz/triangle
inequalities. For details see [1], section 9.2.

77Every linear endomorphism f of Cn is of the form f = TA, for some A ∈ Matn(C). Then, for f to be a Hermitian
morphism we must have

z t w = (Az)t Aw = z t At Aw , for every z, w ∈ Cn.

This implies that At A = In, which is equivalent to the condition AhA = In.
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3.5 The spectral theorem

In this section we will discuss the diagonalisabliity properties of morphisms in Euclidean/Hermitian
spaces. The culmination of this discussion is the spectral theorem: this states that self-adjoint mor-
phisms are orthogonally/unitarily diagonalisable and have real eigenvalues. This means that such mor-
phisms are diagonalisable and, moreover, there exists an orthonormal basis of eigenvectors.

Throughout section 3.5 we will only be considering Euclidean (resp. Hermitian) spaces (V , 〈, 〉) (resp.
(V , H)) and, as such, will denote such a space by V , the inner product (resp. Hermitian form) being
implicitly assumed given.

First we will consider f -invariant subspaces U ⊂ V and their orthogonal complements, for an orthogo-
nal/unitary transformation f : V → V .

Proposition 3.5.1. Let f : V → V be an orthogonal (resp. unitary) transformation of the Euclidean
(resp. Hermitian) space V and U ⊂ V be an f -invariant subspace. Then, U⊥ is f +-invariant, where
f + : V → V is the adjoint of f (with respect to the corresponding inner product/Hermitian form).78

Proof: To say that U is f−-invariant means that, for every u ∈ U, f (u) ∈ U. Consider the orthogonal
complement of U in V , U⊥ and let w ∈ U⊥. Then, we want to show that f +(w) ∈ U⊥. Now, for each
u ∈ U, we have

H(u, f +(w)) = H(f (u), w) = 0,

as f (u) ∈ U. Hence, f +(w) ∈ U⊥ and U⊥ is f +-invariant.

Lemma 3.5.2. Let (V , H) be a Hermitian space and U ⊂ V be a subspace. Then, the restriction of H
to U is nondegenerate.

Proof: Suppose that v ∈ U is such that H(u, v) = 0, for every u ∈ U. Then, V = U ⊕U⊥ (as H is
nondegenerate). Hence, if w ∈ V then w = u + z , with u ∈ U, z ∈ U⊥ and

H(w , v) = H(u + z , v) = H(u, v) + H(z , v) = 0 + 0 = 0.

Hence, using nondegeneracy of H on V we have v = 0V and the restriction of H to U is nondegenerate.

3.5.1 Normal morphisms

Throughout this section we will assume that V is a Hermitian space, equipped with the Hermitian form
H. The results all hold for Euclidean spaces with appropriate modifications to statements of results and
to proofs.79

Definition 3.5.3 (Normal morphism). Let V be a Hermitian space. We say that f : V → V is a normal
morphism if we have

f ◦ f + = f + ◦ f .

78Given a linear morphism f : V → V , where (V , H) is a Hermitian space, we define the adjoint of f to be the morphism

f + = σ−1
H ◦ f ∗ ◦ σH : V → V ,

where
σH : V → V ∗ ; v 7→ σH (v), so that (σH (v))(u) = H(u, v).

It is important to note that σH is NOT C-linear: we have σH (λv) = λσH (v), for any λ ∈ C. However, the composition

σ−1
H ◦ f ∗ ◦ σH IS linear (check this). The definition of f + implies that, for every u, v ∈ V , we have

H(f (u), v) = H(u, f +(v));

moreover, f + is the unique morphism such that this property holds.

As a result of the nonlinearity of σH we DO NOT have a nice formula for the matrix of f + in general. However, if V = Hn

and f = TA ∈ EndC(V ), where A ∈ Matn(C), then f + = TAh : indeed, for any z, w ∈ Cn we have

H(Az, w) = (Az)t w = z t At w = z t Ahw = H(z, Ahw).

79We could consider a Euclidean space as being a real Hermitian space, since x = x , for every x ∈ R.
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Example 3.5.4. Let V be a Hermitian (resp. Euclidean) space. Then, unitary (resp. orthogonal)
transformations of V are normal.

However, not all normal morphisms are unitary/orthogonal transformations: for example, the morphism
TA ∈ EndC(C3) defined by the matrix

A =

1 1 0
0 1 1
1 0 1

 ,

is normal but does not define a unitary transformation of H3 (as AhA 6= I3).

Normal morphisms possess useful orthogonality properties of their eigenvectors.

Lemma 3.5.5. Let f : V → V be a normal morphism of the Hermitian space (V , H), f + : V → V the
adjoint of f (with respect to H). If v ∈ V is an eigenvector of f with associated eigenvalue λ ∈ C then
v is an eigenvector of f + with associated eigenvalue λ ∈ C.

Proof: First, we claim that Eλ (the λ-eigenspace of f ) is f +-invariant: indeed, for any u ∈ Eλ we
want to show that f +(u) ∈ Eλ. Then,

f (f +(u)) = f +(f (u)) = f +(λu) = λf +(u),

so that f +(u) ∈ Eλ. Hence, f + defines an endomorphism of Eλ. Now, let v ∈ Eλ be nonzero (so that
v ∈ V is an eigenvector of f with associated eigenvalue λ). Then, for any u ∈ Eλ we have

H(u, f +(v)) = H(f (u), v) = H(λu, v) = H(u,λv) =⇒ H(u, f +(v)− λv) = 0, for every u ∈ Eλ.

Then, by Lemma 3.5.2 we see that

f +(v)− λv = 0V =⇒ f +(v) = λv ,

and the result follows.

Lemma 3.5.6. Let f : V → V be a normal morphism of the Hermitian space V . Then, if v1, ... , vk ∈ V
are eigenvectors of f corresponding to distinct eigenvectors ξ1, ... , ξk (so that ξi 6= ξj , i 6= j), then
{v1, ... , vk} is orthogonal.

Proof: Consider vi , vj with i 6= j . Then, we have f (vi ) = ξi vi and f (vj ) = ξj vj as vi , vj are
eigenvectors. Then,

ξi H(vi , vj ) = H(ξi vi , vj ) = H(f (vi ), vj ) = H(vi , f +(vj )) = H(vi , ξj vj ) = ξj H(vi , vj ),

so that
(ξi − ξj )H(vi , vj ) = 0 =⇒ H(vi , vj ) = 0, since ξi 6= ξj .

Theorem 3.5.7 (Normal morphisms are orthogonally diagonalisable). Let (V , H) be a Hermitian space,
f : V → V a normal morphism. Then, there exists an orthonormal basis of V consisting of eigenvectors
of f .

Proof: Since V is a C-vector space we can find an eigenvector v ∈ V of f with associated eigenvalue
λ ∈ C (as there is always a root of the characteristic polynomial χf ). Let Eλ ⊂ V be the corresponding
λ-eigenspace (so that Eλ 6= {0V }). Consider the orthogonal complement E⊥λ of Eλ (with respect to H).
Then, since H is nondegenerate we have

V = Eλ ⊕ E⊥λ .80

We are going to show that E⊥λ is f -invariant: let w ∈ E⊥λ , so that for every v ∈ Eλ we have

H(u, v) = 0.

80You can check that Eλ ∩ E⊥λ = {0V }.
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We want to show that f (w) ∈ E⊥λ . Let u ∈ Eλ. Then, using Lemma 3.5.5, we obtain

H(f (w), u) = H(w , f +(u)) = H(w ,λu) = λH(w , u) = 0.

Hence, f (w) ∈ E⊥λ and E⊥λ is f -invariant.

So, we have that E⊥λ is both f -invariant and f +-invariant (Proposition 3.5.1) and so f and f + define
endomorphisms of E⊥λ . Moreover, we see that the restriction of f to E⊥λ is normal. Hence, we can use
an induction argument on dim V and assume that there exists an orthonormal basis of E⊥λ consisting
of eigenvectors of f , B1 say. Using the Gram-Schmidt process we can obtain an orthonormal basis of
Eλ, B2 say. Then, B = B1 ∪ B2 is an orthonormal basis (Lemma 3.5.6) and consists of eigenvectors of
f .

Corollary 3.5.8. 1. Let A ∈ Matn(C) be such that

AAh = AhA.

Then, there exists a unitary matrix P ∈ U(n) (ie, P−1 = Ph) such that

PhAP = D,

where D is a diagonal matrix.

Remark 3.5.9. Suppose that A ∈ Matn(R). Then, we have

Ah = At ,

so that the condition
AhA = AAh =⇒ AtA = AAt .

Thus, if AtA = AAt then Corollary 3.5.8 implies that A is diagonalisable. However, it is not necessarily
true that there exists P ∈ GLn(R) such that

P−1AP = D,

with D ∈ Matn(R). For example, consider the matrix

A =

[
0 −1
1 0

]
∈ Mat2(R).

Then,
AtA = I2 = AAt ,

so that A is normal. Then, Corollary 3.5.8 implies that we can diagonalise A. However, the eigenvalues
of A are ±

√
−1 so that we must have

P−1AP = ±
[√
−1 0
0 −

√
−1

]
,

so that it is not possible that P ∈ GL2(R).81

3.5.2 Self-adjoint operators and the spectral theorem

Definition 3.5.10. Let V be a Hermitian space. We say that a morphism f ∈ EndC(V ) is self-adjoint
if f = f +. Self-adjoint morphisms are normal morphisms.

Example 3.5.11. Let V be a Hermitian (resp. Euclidean) space. Then, TA ∈ End(V ) is self-adjoint if
and only if A is Hermitian (resp. symmetric).

81Why?
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Lemma 3.5.12. Let V be a Hermitian space, f ∈ EndC(V ) a self-adjoint morphism. Then, all eigen-
values of f are real numbers.

Proof: As f is self-adjoint then f is normal. Using Lemma 3.5.5 we know that if v ∈ V is an
eigenvector of f with associated eigenvalue λ ∈ C, then v ∈ V is an eigenvector of f + with associated
eigenvalue λ ∈ C. As f = f + we must have that λ = λ, which implies that λ ∈ R.

Since a self-adjoint morphism f is normal (indeed, we have f ◦ f + = f ◦ f = f + ◦ f ), then Theorem 3.5.7
implies that V admits an orthonormal basis consisting of eigenvectors of f . This result is commonly
referred to as The Spectral Theorem.

Theorem 3.5.13 (Spectral theorem). Let V be a Hermitian space, f ∈ EndC(V ) a self-adjoint mor-
phism. Then, there exists an orthonormal basis B of V consisting of eigenvectors of f and such that

[f ]B =

d1

. . .

dn

 ∈ Matn(R).

Corollary 3.5.14. 1. Let A ∈ Matn(C) be Hermitian (Ah = A). Then, there exists a unitary matrix
P ∈ U(n) such that

PhAP =

d1

. . .

dn

 , where d1, ... , dn ∈ R.

2. Let A ∈ Matn(R) be symmetric (At = A). Then, there exists an orthogonal matrix P ∈ O(n)
such that

P tAP = D,

where D is diagonal.

Example 3.5.15. 1. Consider the matrix

A =

 1 −1 0
−1 −1 1
0 1 1

 .

Then, At = A so that there exists P ∈ O(3) such that P tAP is diagonal (Theorem 3.5.13).

How do we determine P? We know that A is diagonalisable so we proceed as usual: we find that

χA(λ) = (1− λ)(λ−
√

3)(λ+
√

3).

Then, if we choose eigenvectors v1 ∈ E1, v2 ∈ E−
√

3, v3 ∈ E√3 such that ||vi || = 1, then we have

P = [v1 v2 v3] ∈ O(3).

For example, we can take

P =


1√
2

1√
6−2
√

3

1√
6+2
√

3

0 1−
√

3√
6−2
√

3

1+
√

3√
6+2
√

3
1√
2

−1√
6−2
√

3

−1√
6+2
√

3

 ∈ O(3)

2. Consider the matrix

A =

−1 0 0
0 1 −1−

√
−1

0 −1 +
√
−1 1

 .
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Then, A = Ah so that A is Hermitian. Hence, there exists P ∈ U(3) such that

PhAP =

d1

d2

d3

 , d1, d2, d3 ∈ R.

We first determine
χA(λ) = −(1 + λ)2(λ− 2),

so that the eigenvalues are λ1 = −1,λ2 = 2. Then,

E−1 = spanC


1

0
0

 ,

 0
−1−

√
−1

−2

 .

Since

HI3

1
0
0

 ,

 0
−1−

√
−1

−2

 = 1.0 + 0.(−1 +
√
−1) + 0.(−2) = 0,

we have that 1
0
0

 ,

 0
−1−

√
−1

−2

 = (v1, v2)

is an orthogonal basis of E−1. In order to obtain an orthonormal basis we must scale v1, v2 by
HI3 (vi , vi ). Hence, as

HI3 (v1, v1) = 1, HI3 (v2, v2) = 0.0 + (−1−
√
−1)(−1 +

√
−1) + (−2).(−2) = 2 + 4 = 6,

we have that 1
0
0

 ,
1√
6

 0
−1−

√
−1

−2


is an orthonormal basis of E−1.

Now, we need only determine a vector v3 ∈ E2 for which HI3 (v3, v3) = 1: such an example is

v3 =
1√
3

 0
−1−

√
−1

−1

 .

Hence, if we set

P =

1 0 0

0 −1√
6
−
√
−1
6

−1√
3
−
√
−1
3

0 −2√
6

−1√
3

 ,

then

PhAP =

−1
−1

2

 .

3. Consider the matrix

A =

2 1 1
1 2 1
1 1 2

 .
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As A = At we can find P ∈ O(3) such that

P tAP = D,

where D is diagonal. We have that

χA(λ) = −(1− λ)2(λ− 4),

so that the eigenvalues of A are λ1 = 1,λ2 = 4.

We have that

E1 = spanR


 1

0
−1

 ,

 1
−1
0

 ,

where  1
0
−1

 ,

 1
−1
0

 ,

is a basis of E1. Using the Gram-Schmidt process we can obtain an orthonormal basis 1√
2

 1
0
−1

 ,
1√
6

 1
−2
1

 ⊂ E1.

Now, we need to find v3 ∈ E4 such that ||v3|| = 1: we can take

v3 =
1√
3

1
1
1

 .

Then, if we let

P =


1√
2

1√
6

1√
3

0 −2√
6

1√
3

−1√
2

1√
6

1√
3

 ,

then P ∈ O(3) and

P tAP =

1
1

4

 .
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