Math 110, Summer 2012 : Bilinear forms review problems

Basics

1. Determine which of the following bilinear forms are symmetric/antisymmetric/neither, nondegenerate:

- $B_{A} \in \operatorname{Bil}_{\mathbb{Q}}\left(\mathbb{Q}^{3}\right)$, where $A=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 0 & 0 & -1 \\ -1 & 1 & 2\end{array}\right]$,
- $B_{A} \in \operatorname{Bi}_{\mathbb{R}}\left(\mathbb{R}^{4}\right)$, where $A=\left[\begin{array}{cccc}1 & 1 & 0 & 1 \\ 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 1 & 5\end{array}\right]$,
- $B: \operatorname{Mat}_{2}(\mathbb{R}) \times \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \mathbb{R} ;(A, B) \mapsto \operatorname{tr}\left(A^{t} X B\right)$, where $X=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
- $B: \mathbb{R}^{4} \times \mathbb{R}^{4} \rightarrow \mathbb{R} ;(\underline{u}, \underline{v}) \mapsto u_{1} v_{2}+u_{2} v_{1}+u_{1} v_{4}+u_{4} v_{1}+u_{2} v_{2}+u_{2} v_{4}+u_{4} v_{2}+u_{4} v_{4}+2 u_{3} v_{3}$.
- $B: \operatorname{Mat}_{2}(\mathbb{R}) \times \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \mathbb{R} ;(A, B) \mapsto \operatorname{tr}\left(A^{t} X B\right)$, where $X=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$.

Canonical forms of symmetric nondegenerate real bilinear forms

Determine the canonical form of the following real symmetric nondegenerate bilinear forms.

- $B_{A} \in \operatorname{Bil}_{\mathbb{R}}\left(\mathbb{R}^{3}\right)$, where $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 3 & 2 \\ 0 & 2 & -1\end{array}\right]$,
- $B_{A} \in \operatorname{BiI}_{\mathbb{R}}\left(\mathbb{R}^{3}\right)$, where $A=\left[\begin{array}{ccc}-3 & 2 & -2 \\ 2 & 1 & 0 \\ -2 & 0 & 5\end{array}\right]$,
- $B_{A} \in \operatorname{Bi}_{\mathbb{R}}\left(\mathbb{R}^{4}\right)$, where $A=\left[\begin{array}{cccc}0 & 1 & 2 & -1 \\ 1 & 0 & -3 & 1 \\ 2 & -3 & 1 & 0 \\ -1 & 1 & 0 & 5\end{array}\right]$.

Which of the bilinear forms are inner products? For those that are not inner products determine \underline{x} such that $B_{A}(\underline{x}, \underline{x})<0$.

Projections, Gram-Schmidt

Determine $\operatorname{proj}_{U} v$, for the given subspace $U \subset V$ and $v \in V$. You will need to determine an orthogonal basis of U using Gram-Schmidt (with respect to the 'dot product').

- $U=\operatorname{ker} T_{A}$, where $A=\left[\begin{array}{lll}1 & -3 & 1 \\ 3 & -1 & 0\end{array}\right], v=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$.
- $U=\operatorname{im} T_{A}$, where $A=\left[\begin{array}{cccc}-1 & 0 & 2 & -1 \\ 2 & 0 & 2 & 1 \\ 0 & 0 & -1 & 2\end{array}\right], v=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$,

$$
-U=\left\{\left[\begin{array}{c}
1 \\
-1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right]\right\}, v=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] .
$$

Determine U^{\perp} for the above subspaces U.

