Math 110, Summer 2012: Exam 1 SOLUTIONS

1. Let V be a K-vector space, for some number field K. Let E C V be a nonempty subset of V.

i) (4 pts) Define what it means for E to be linearly independent (over K). Define what it means for E
to be linearly dependent (over K).

ii) (3 pts) Suppose that E is linearly independent and let F C E be a nonempty subset. Prove that F
is linearly independent.

iii) (5 pts) Suppose that E is linearly dependent. Prove that there exists v € E such that v can be
written as a linear combination

v=cvi+..+cvw, withcgeK, v eE.

iv) (7 pts) Suppose that E = {ey, ..., e,} is linearly independent. Let w € V be such that w ¢ spangE.
Prove that E U {w} is linearly independent.

v) (6 pts) Show that
e={f L4 )b T emo

is linearly independent and extend E to a basis of Mat,(Q).
Solution:

i) E is linearly independent if, whenever we have a linear relation

Avi4 ...+ v, =0y, vi,...,v, € E,

then Ay = A = ... = A\, = 0 € K. E is linearly dependent if there exists vq,..., v, € E and
A1, ooy Am € K, with at least one A; # 0, such that

v+ .+ AV = 0y

ii) Suppose that we have a linear relation

caf+..+c,fp=0y, fi,....f, € F.

Then, as f; € E, this is a linear relation among vectors in E. Since E is linearly independent this
must be the trivial linear relation. Hence, ¢; = & = ... = ¢, = 0, showing that F is linearly
independent.

iii) As E is linearly dependent there is a nontrivial linear relation

avi+...cava =0y, vi,..., v, € E,
where we can assume that ¢; # 0. Then, we have

1
vi=——(qva+ ..+ cpvn),
a]

and this is a linear combination of the desired form.



iv) Suppose that we have a linear relation

avi+ ...+ cvpn =0y, v,...,v, € EU{w}.
If there exists i such that v; = w and ¢; # 0 then we would have

1
w = fz(clvl + ..+ co1Vie1 + Gip1Vig1r + ... + €oVvy) € spangE,
!

which is impossible by our assumption on w. Hence, we must have, for every i, w # v; or, if
vi = w, for some i, then ¢; = 0. Thus, we now have a linear dependence relation among vectors in
E which must be the trivial linear relation since E is linearly independent. Hence, the only linear
relation that can exist among vectors in E U {w} is the trivial linear relation.

v) Consider the standard ordered basis S of Mat,(Q). Label E = {ey, e, e3}, the order being the
one written above. Then, we see that

1 1 1
0 -1 -1
ledds = || leds= | 7| [e&ls =1,
1 1 1
It is easy to see that
1 1 1 1 00
0 -1 -1 010
0 -1 0 0 0 1|
1 1 1 0 0O

so that the set {[e1]s, [e2]s, [e3]s} C Q* is linearly independent. Hence, since the S-coordinate
morphism is an isomorphism the original set E is also linearly independent.

Consider the matrix e;; € Mat,(Q). Then,

1 1 1 1 1

0 0 -1 -1 0
[e1]s = ol and 0 -1 0 0 ~ g,

0 1 1 1 O

so that
spang{leils. [e]s, [es]s, [enn]s} = Q.

Hence, as the S-coordinate morphism is an isomorphism we must have
spangier, e, €3, €11} = Matz(Q),

and E U {eq1} is a basis of Mat,(Q).

2. 1) (3 pts) Let B = (by,..., by) C V be an ordered subset of the K-vector space V. Define what it
means for B to be an ordered basis of V' (You can use ANY definition here.)

ii) (2 pts) Suppose that E C V is a linearly independent subset of a finite dimensional K-vector space
V. What is the allowed possible size of E?

iii) (6 pts) Suppose that V is a K-vector space such that dimg V = n. Let E C V be a linearly
independent subset of size |E| = n. Prove that spangE = V. (Hint: Use a 'proof by contradiction’
argument and try to contradict your answer for ii) above.)



iv) (6 pts) Consider the ordered subset
B=(fff) c Q> ={f:{1,23} - Q},
where
A(1)=1,A(2) =0 A3) = -1 £(1)=1£(2)=0,~(3) =1 (1) =0£/(2) =1,£(3) =1
Prove that B is linearly independent. Deduce that B is a basis of Qf123}

v) (5 pts) Let S = (e1, &, e3) C Q{123 be the standard ordered basis of Q{1>3}. Determine the
change of coordinate matrix Pg.s.

vi) (3 pts) Suppose that f € Qf1:23} is such that

1
[fls = |2
0

Is f € spang{fi, 3}7 Justify your answer.
Solution:

i) B is a basis of V if B is linearly independent and spangB = V. It is an ordered basis whenever it
is also an ordered set.

i) Let n=dim V. Then, we must have |E| < n.

iii) Suppose that spangE # V. Then, there is some v € V such that v ¢ spang E. Hence, by a result
from class, the set

E'= Eu{v},

is linearly independent and has size |E’| = n+ 1. However, this contradicts ii). Therefore, our
initial assumption that spangE # V must be false, so that spangE = V.

iv) Consider the standard ordered basis S = (ey, e, €3) C Q{123} Then,

1 1 0
[Als= ] 0 |, [kls = |0], [Als = |1
—1] 11 1
We see that _ _
1 10
0 0 1| ~£K,
-1 1 1]

so that {[fi]s, [f2]s.[f]s} is linearly independent. Hence, as the S-coordinate morphism is an
isomorphism, we obtain that B is linearly independent. Since Q{%23} is 3 dimensional and B is a
linearly independent set with 3 elements, it must be a basis.

v) We have
1 1 01" [12 172 -1)2
Pses=Pslz=|0 0 1| =]1/2 -1/2 1/2
-1 1 1 0 1 0

vi) No: we must have
f=f—2h

If f € spang{fi, 3} then there exists a, b € Q such that
fi —2h =f =afi + by = (1—a)fi —2f — bfz = 0gp123,

which is impossible since B is linearly independent.



3. i) (6 pts) Define the image imf of a linear morphism f : V — W and the rank of f, rankf. Define
the rank of an m x n matrix A € Mat, ,(K), rankA.

ii) (7 pts) Prove: if rankf = dim V then f is surjective.
iii) (5 pts) Prove: if A € Maty, »(K), B € Mat, ,(K) and rankA = r,rankB = s, then rankAB < r.

iv) (7 pts) Consider the matrix

1 0 -1
A=12 -1 1
0 1 1
Determine r = rankA and find P, Q € GL3(Q) such that
1 |l 0
Q AP = [0 ol -

Solution:

i) The image of f is the set
imf ={w € W |3v € V such that f(v) = w} = {f(v) | ve V}
and the rank of f is rankf = dimimf.

The rank of an m x n matrix is rankA = dimim T4, where T, : K" — K™ is the morphism defined
by A.

ii) Suppose that rankf = dim W. Thus, dimimf = dim W. Hence, since imf C W is a subspace
and has the same dimension as W we must have imf = W. Therefore, for every w € W, there
is some v € V such that f(v) = w. This implies that f is surjective.

iii) Consider the morphisms T4 € Homg (K", K™), Tg € Homg(KP,K"). Then, we have rankAB =
dimimTag. Now, we have
imTag = {ABK ‘ X € KP},
and if y = Tag(x) € imTyp then,

y = ABx = A(Bx) = Az € imTy,.

Hence, imTag C im Ty, is a subspace. Therefore, we must have

rankAB = dimimTag < dimimT4 = rankA = r.

iv) Since
1 0 -1
A=12 -1 1| ~&k
0 1 1

we must have that rankA = 3 (there is a pivot in every column so that T, is surjective. Hence,
dimimTa = 3). As Ty, is a surjective morphism between spaces of the same dimension it must
be an isomorphism. Hence, A is invertible so that we can take

1/2  1/4 1/4
Q=hk P=A1=|1/2 —1/4 3/4
-1/2 1/4 1/4



4. i) (4 pts) Let f € Endc(V), with V a finite dimensional C-vector space. Define what it means for
A € C to be an eigenvalue of f. Define the geometric and algebraic multiplicity of A.

i) (4 pts) Let f € Endc(V), with V' a finite dimensional C-vector space. Define what it means for
f to be diagonalisable. Give a criterion for f to be diagonalisable using the notions of geometric and
algebraic multiplicity of eigenvalues.

iii) (7 pts) Let f € Endc(V), where dim V' = 7. Suppose that f is non-surjective, diagonalisable and
such that dimimf = 1. Prove that f admits exactly one nonzero eigenvalue A and that E\x = imf,
where E) is the A-eigenspace.

Consider the endomorphism

f: Matz((C) — Matz(C) DA A+At,

where A! is the transpose of A.

iv) (4 pts) Determine the eigenvalues of f and their algebraic multiplicities.

v) (6 pts) Prove that f is diagonalisable and find a basis B C Mat,(C) such that [f]g is diagonal.

For iv)-v) you may want to use the standard ordered basis

setonmmencr= (3 5 I 35 1) e

Solution:

)

ii)

A is an eigenvalue of f if there is some nonzero v € V such that f(v) = Av.

The geometric multiplicity of A is dimker(f — Aidy). If xr(t) is the characteristic polynomial of
f then

xe(t) = (t=A)™g,
where g € C[t] is such that g(\) # 0. Then, the algebraic multiplicity of A is ny.

f is diagonalisable if there exists a basis B C V consisting of eigenvectors of f.

f is diagonalisable if and only if, for every eigenvalue of f, the algebraic and geometric multiplicities
are equal.

As f is non-surjective then then it must also be non-injective so that kerf # {0y }. Hence,
we must have that 0 is an eigenvalue of f. Using dimimf = 1, the Rank Theorem implies that
dimker f = 7—1 = 6, so that the geometric multiplicity of 0 is 6. Since f is assumed diagonalisable
we must also have the algebraic multiplicity of 0 is 6. Hence, the characteristic polynomial of f is
of the form

xr(t) = to(t — a),
because deg xr = 7, and where a # 0. Thus, a is a nonzero eigenvalue of f and is the only such.

Moreover, let v be an eigenvector with associated eigenvalue a. Then, f(v) = av, so that v € imf.
Conversely, suppose that w = f(v). Then, as f is diagonalisable, we have

V=E®E =kerf®E,.

Hence, v = z+u, where z € ker f,u € E,. So, w = f(v) = f(z4u) = f(z)+f(u) =0y +f(u) =
f(u) = au. Hence, as E, is a subspace, we have w € E; so that imf = E,.



iv) Consider the standard ordered basis S of Mat,(C) given below. Then,

2 0 0O

def 01 1 0
B= Ifls = 0110
0 0 0 2

Hence, we have
xr(t)det(B — th) = t(t — 2)3,

so that the eigenvalues of f are 0 and 2 with algebraic multiplicities 1 and 3 (respectively).

v) We have

0 0 0O 01 -1 0
0 -1 1 0 00 0 O
B=2l=1y 1 1 0/~[0o 0 0o of
0 0 0O 00 0 O
so that
EzB = spanc{ei, e, & + &3} = E2f = {em1, en, 120+ en}.
Similarly,

Ef = spang{e — &3} = Eg = {enn —exn}.

Hence, since the geometric multiplicity of 2 is 3 and the geometric multiplicity of 0 is 1, we must
have that f is diagonalisable. Moreover, if we let

B = (e11, €2, €12 + €1, €12 — €21),

then

[fls = )

5. Consider the following endomorphism
La: Mat,(C) — Mat,(C); B— AB, where A € Mat,(C).
i) (4 pts) Define what it means for L4 to be nilpotent. Define what it means for A to be nilpotent.
ii) (2 pts) Define the exponent of La, 1(La). Define the exponent of A, n(A).
iii) (4 pts) Prove: A is nilpotent if and only if L4 is nilpotent.

Now suppose that n=2 and A = E :ﬂ

iv) (2 pts) Using iii) deduce that L, is nilpotent. What is n(La)?
v) (3 pts) Let S = (e11, €12, €21, €22) be the standard ordered basis of Mat,(C). Determine X = [La]s.

vi) (7 pts) Determine an ordered basis B = (b1, ba, b3, bs) C Maty(C) such that [La]g is a block diagonal
matrix, each block being a 0-Jordan block.

vii) (3 pts) Determine the partition associated to X, 7(X). Is X similar to the following matrix

0 10O
0 00O

= ?

Y 0 0 0 0|
0 0 0O

Justify your answer.

Solution:



i)

i)

iii) Suppose that A is nilpotent. Then, there is some r € N such that A" =0 € Mat,(C). Hence, for

vi)

La is nilpotent if there is some r € N such that L}, = 0 € Endc(Mat,(C)). A is nilpotent if there
is some r € N such that A" =0 € Mat,(C).

n(La) is the smallest r € N such that L), = 0 while L}, # 0. n(A) is the smallest r € N such that
A" =0 while A~ £ 0.

any B € Mat,(C) we have
Lh(B)=A"B=0.B =0 e Mat,(C),
so that L, = 0 € End¢(Mat,(C)) and L4 is nilpotent. Conversely, if L, = 0 then we must have
0=LY(l,)=A"l,=A",
so that A is nilpotent.

As A is nilpotent (A% = 0) we have that L, is nilpotent. Since L # 0 while L3 = 0 (consider the
proof of iii)) then n(La) = 2.

We have
LA(6‘11) = e + e, LA(612) = e + e, LA(e21) = —€11 — €21, LA(ezz) = —€12 — €22,
so that
1 0 -1 0
01 0 -1
X=llals=11 o 1 o
01 0 -1
We follow the algorithm from the notes for the matrix X, making sure to translate our answer

back to Mat,(C) at the end.
We have

H, = ker Tx2 = Maty(C), Hy = ker Tx = {g ECH |x—x3=0, x0— x4 = 0} = spang

O~ O

Then, we have
H, = H; @ G,

and we can take
Gy = spang{e, &2}

Set 51 = {Xey, Xex} = {e1 + e3, €2 + e4}. Then, we have
Hi=Hy & span(csl @ Gi.

However, since Hy = {0} and S; is linearly independent (so that dimspan:S; = 2) we have
Gy =0.

Therefore, the table we obtain looks like

€1 €2
Xer Xeo'
so if we set B = (Xey, e1, Xez, €) then
01 00
0 0 0O
Lals =19 0 0 1
0 0 0O

= O = O



vii) The partition associated to X is

m(X):22 < 2+2=4

Therefore, X is not similar to Y since

m(Y): 12 1+1+2=4,

so that w(X) # w(Y). A result from class states that two nilpotent matrices are similar if and
only if they have the same associated partitions.



