
Math 110, Summer 2012: Exam 1 SOLUTIONS

1. Let V be a K-vector space, for some number field K. Let E ⊂ V be a nonempty subset of V .

i) (4 pts) Define what it means for E to be linearly independent (over K). Define what it means for E
to be linearly dependent (over K).

ii) (3 pts) Suppose that E is linearly independent and let F ⊂ E be a nonempty subset. Prove that F
is linearly independent.

iii) (5 pts) Suppose that E is linearly dependent. Prove that there exists v ∈ E such that v can be
written as a linear combination

v = c1v1 + ... + ckvk , with ci ∈ K, vi ∈ E .

iv) (7 pts) Suppose that E = {e1, ... , en} is linearly independent. Let w ∈ V be such that w /∈ spanKE .
Prove that E ∪ {w} is linearly independent.

v) (6 pts) Show that

E =

{[
1 0
0 1

]
,

[
1 −1
−1 1

]
,

[
1 −1
0 1

]}
⊂ Mat2(Q),

is linearly independent and extend E to a basis of Mat2(Q).

Solution:

i) E is linearly independent if, whenever we have a linear relation

λ1v1 + ... + λnvn = 0V , v1, ... , vn ∈ E ,

then λ1 = λ2 = ... = λn = 0 ∈ K. E is linearly dependent if there exists v1, ... , vm ∈ E and
λ1, ... ,λm ∈ K, with at least one λi 6= 0, such that

λ1v1 + ... + λmvm = 0V .

ii) Suppose that we have a linear relation

c1f1 + ... + cnfn = 0V , f1, ... , fn ∈ F .

Then, as fi ∈ E , this is a linear relation among vectors in E . Since E is linearly independent this
must be the trivial linear relation. Hence, c1 = c2 = ... = cn = 0, showing that F is linearly
independent.

iii) As E is linearly dependent there is a nontrivial linear relation

c1v1 + ... cnvn = 0V , v1, ... , vn ∈ E ,

where we can assume that c1 6= 0. Then, we have

v1 = − 1

c1
(c2v2 + ... + cnvn),

and this is a linear combination of the desired form.

1



iv) Suppose that we have a linear relation

c1v1 + ... + cnvn = 0V , v1, ... , vn ∈ E ∪ {w}.

If there exists i such that vi = w and ci 6= 0 then we would have

w = − 1

ci
(c1v1 + ... + ci−1vi−1 + ci+1vi+1 + ... + cnvn) ∈ spanKE ,

which is impossible by our assumption on w . Hence, we must have, for every i , w 6= vi or, if
vi = w , for some i , then ci = 0. Thus, we now have a linear dependence relation among vectors in
E which must be the trivial linear relation since E is linearly independent. Hence, the only linear
relation that can exist among vectors in E ∪ {w} is the trivial linear relation.

v) Consider the standard ordered basis S of Mat2(Q). Label E = {e1, e2, e3}, the order being the
one written above. Then, we see that

[e1]S =


1
0
0
1

 , [e2]S =


1
−1
−1
1

 , [e3]S =


1
−1
0
1

 .

It is easy to see that 
1 1 1
0 −1 −1
0 −1 0
1 1 1

 ∼


1 0 0
0 1 0
0 0 1
0 0 0

 ,

so that the set {[e1]S , [e2]S , [e3]S} ⊂ Q4 is linearly independent. Hence, since the S-coordinate
morphism is an isomorphism the original set E is also linearly independent.

Consider the matrix e11 ∈ Mat2(Q). Then,

[e11]S =


1
0
0
0

 , and


1 1 1 1
0 −1 −1 0
0 −1 0 0
1 1 1 0

 ∼ I4,

so that
spanQ{[e1]S , [e2]S , [e3]S , [e11]S} = Q4.

Hence, as the S-coordinate morphism is an isomorphism we must have

spanQ{e1, e2, e3, e11} = Mat2(Q),

and E ∪ {e11} is a basis of Mat2(Q).

2. i) (3 pts) Let B = (b1, ... , bn) ⊂ V be an ordered subset of the K-vector space V . Define what it
means for B to be an ordered basis of V (You can use ANY definition here.)

ii) (2 pts) Suppose that E ⊂ V is a linearly independent subset of a finite dimensional K-vector space
V . What is the allowed possible size of E ?

iii) (6 pts) Suppose that V is a K-vector space such that dimK V = n. Let E ⊂ V be a linearly
independent subset of size |E | = n. Prove that spanKE = V . (Hint: Use a ’proof by contradiction’
argument and try to contradict your answer for ii) above.)
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iv) (6 pts) Consider the ordered subset

B = (f1, f2, f3) ⊂ Q{1,2,3} = {f : {1, 2, 3} → Q},

where

f1(1) = 1, f1(2) = 0, f1(3) = −1, f2(1) = 1, f2(2) = 0, f2(3) = 1, f3(1) = 0, f3(2) = 1, f3(3) = 1.

Prove that B is linearly independent. Deduce that B is a basis of Q{1,2,3}.

v) (5 pts) Let S = (e1, e2, e3) ⊂ Q{1,2,3} be the standard ordered basis of Q{1,2,3}. Determine the
change of coordinate matrix PB←S .

vi) (3 pts) Suppose that f ∈ Q{1,2,3} is such that

[f ]B =

 1
−2
0

 .

Is f ∈ spanQ{f1, f3}? Justify your answer.

Solution:

i) B is a basis of V if B is linearly independent and spanKB = V . It is an ordered basis whenever it
is also an ordered set.

ii) Let n = dim V . Then, we must have |E | ≤ n.

iii) Suppose that spanKE 6= V . Then, there is some v ∈ V such that v /∈ spanKE . Hence, by a result
from class, the set

E ′ = E ∪ {v},

is linearly independent and has size |E ′| = n + 1. However, this contradicts ii). Therefore, our
initial assumption that spanKE 6= V must be false, so that spanKE = V .

iv) Consider the standard ordered basis S = (e1, e2, e3) ⊂ Q{1,2,3}. Then,

[f1]S =

 1
0
−1

 , [f2]S =

1
0
1

 , [f3]S =

0
1
1

 .

We see that  1 1 0
0 0 1
−1 1 1

 ∼ I3,

so that {[f1]S , [f2]S , [f3]S} is linearly independent. Hence, as the S-coordinate morphism is an
isomorphism, we obtain that B is linearly independent. Since Q{1,2,3} is 3 dimensional and B is a
linearly independent set with 3 elements, it must be a basis.

v) We have

PB←S = P−1S←B =

 1 1 0
0 0 1
−1 1 1

−1 =

1/2 1/2 −1/2
1/2 −1/2 1/2

0 1 0

 .

vi) No: we must have
f = f1 − 2f2.

If f ∈ spanQ{f1, f3} then there exists a, b ∈ Q such that

f1 − 2f2 = f = af1 + bf3 =⇒ (1− a)f1 − 2f2 − bf3 = 0Q{1,2,3} ,

which is impossible since B is linearly independent.
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3. i) (6 pts) Define the image imf of a linear morphism f : V → W and the rank of f , rankf . Define
the rank of an m × n matrix A ∈ Matm,n(K), rankA.

ii) (7 pts) Prove: if rankf = dim V then f is surjective.

iii) (5 pts) Prove: if A ∈ Matm,n(K), B ∈ Matn,p(K) and rankA = r , rankB = s, then rankAB ≤ r .

iv) (7 pts) Consider the matrix

A =

1 0 −1
2 −1 1
0 1 1

 .

Determine r = rankA and find P, Q ∈ GL3(Q) such that

Q−1AP =

[
Ir 0
0 0

]
.

Solution:

i) The image of f is the set

imf = {w ∈W | ∃v ∈ V such that f (v) = w} = {f (v) | v ∈ V },

and the rank of f is rankf = dim imf .

The rank of an m×n matrix is rankA = dim imTA, where TA : Kn → Km is the morphism defined
by A.

ii) Suppose that rankf = dim W . Thus, dim imf = dim W . Hence, since imf ⊂ W is a subspace
and has the same dimension as W we must have imf = W . Therefore, for every w ∈ W , there
is some v ∈ V such that f (v) = w . This implies that f is surjective.

iii) Consider the morphisms TA ∈ HomK(Kn,Km), TB ∈ HomK(Kp,Kn). Then, we have rankAB =
dim imTAB . Now, we have

imTAB = {ABx | x ∈ Kp},

and if y = TAB(x) ∈ imTAB then,

y = ABx = A(Bx) = Az ∈ imTA.

Hence, imTAB ⊂ imTA is a subspace. Therefore, we must have

rankAB = dim imTAB ≤ dim imTA = rankA = r .

iv) Since

A =

1 0 −1
2 −1 1
0 1 1

 ∼ I3,

we must have that rankA = 3 (there is a pivot in every column so that TA is surjective. Hence,
dim imTA = 3). As TA is a surjective morphism between spaces of the same dimension it must
be an isomorphism. Hence, A is invertible so that we can take

Q = I3, P = A−1 =

 1/2 1/4 1/4
1/2 −1/4 3/4
−1/2 1/4 1/4

 .
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4. i) (4 pts) Let f ∈ EndC(V ), with V a finite dimensional C-vector space. Define what it means for
λ ∈ C to be an eigenvalue of f . Define the geometric and algebraic multiplicity of λ.

ii) (4 pts) Let f ∈ EndC(V ), with V a finite dimensional C-vector space. Define what it means for
f to be diagonalisable. Give a criterion for f to be diagonalisable using the notions of geometric and
algebraic multiplicity of eigenvalues.

iii) (7 pts) Let f ∈ EndC(V ), where dim V = 7. Suppose that f is non-surjective, diagonalisable and
such that dim imf = 1. Prove that f admits exactly one nonzero eigenvalue λ and that Eλ = imf ,
where Eλ is the λ-eigenspace.

Consider the endomorphism

f : Mat2(C)→ Mat2(C) ; A 7→ A + At ,

where At is the transpose of A.

iv) (4 pts) Determine the eigenvalues of f and their algebraic multiplicities.

v) (6 pts) Prove that f is diagonalisable and find a basis B ⊂ Mat2(C) such that [f ]B is diagonal.

For iv)-v) you may want to use the standard ordered basis

S = (e11, e12, e21, e22) =

([
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

])
⊂ Mat2(C).

Solution:

i) λ is an eigenvalue of f if there is some nonzero v ∈ V such that f (v) = λv .

The geometric multiplicity of λ is dim ker(f − λidV ). If χf (t) is the characteristic polynomial of
f then

χf (t) = (t − λ)nλg ,

where g ∈ C[t] is such that g(λ) 6= 0. Then, the algebraic multiplicity of λ is nλ.

ii) f is diagonalisable if there exists a basis B ⊂ V consisting of eigenvectors of f .

f is diagonalisable if and only if, for every eigenvalue of f , the algebraic and geometric multiplicities
are equal.

iii) As f is non-surjective then then it must also be non-injective so that ker f 6= {0V }. Hence,
we must have that 0 is an eigenvalue of f . Using dim imf = 1, the Rank Theorem implies that
dim ker f = 7−1 = 6, so that the geometric multiplicity of 0 is 6. Since f is assumed diagonalisable
we must also have the algebraic multiplicity of 0 is 6. Hence, the characteristic polynomial of f is
of the form

χf (t) = t6(t − a),

because degχf = 7, and where a 6= 0. Thus, a is a nonzero eigenvalue of f and is the only such.

Moreover, let v be an eigenvector with associated eigenvalue a. Then, f (v) = av , so that v ∈ imf .
Conversely, suppose that w = f (v). Then, as f is diagonalisable, we have

V = E0 ⊕ Ea = ker f ⊕ Ea.

Hence, v = z +u, where z ∈ ker f , u ∈ Ea. So, w = f (v) = f (z +u) = f (z)+f (u) = 0V +f (u) =
f (u) = au. Hence, as Ea is a subspace, we have w ∈ Ea so that imf = Ea.
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iv) Consider the standard ordered basis S of Mat2(C) given below. Then,

B
def
= [f ]S =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 .

Hence, we have
χf (t) det(B − tI4) = t(t − 2)3,

so that the eigenvalues of f are 0 and 2 with algebraic multiplicities 1 and 3 (respectively).

v) We have

B − 2I4 =


0 0 0 0
0 −1 1 0
0 −1 1 0
0 0 0 0

 ∼


0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

so that
EB
2 = spanC{e1, e4, e2 + e3} =⇒ E f

2 = {e11, e22, e12 + e21}.

Similarly,
EB
0 = spanC{e2 − e3} =⇒ E f

0 = {e12 − e21}.

Hence, since the geometric multiplicity of 2 is 3 and the geometric multiplicity of 0 is 1, we must
have that f is diagonalisable. Moreover, if we let

B = (e11, e22, e12 + e21, e12 − e21),

then

[f ]B =


2

2
2

0

 .

5. Consider the following endomorphism

LA : Matn(C)→ Matn(C) ; B 7→ AB, where A ∈ Matn(C).

i) (4 pts) Define what it means for LA to be nilpotent. Define what it means for A to be nilpotent.

ii) (2 pts) Define the exponent of LA, η(LA). Define the exponent of A, η(A).

iii) (4 pts) Prove: A is nilpotent if and only if LA is nilpotent.

Now suppose that n = 2 and A =

[
1 −1
1 −1

]
.

iv) (2 pts) Using iii) deduce that LA is nilpotent. What is η(LA)?

v) (3 pts) Let S = (e11, e12, e21, e22) be the standard ordered basis of Mat2(C). Determine X = [LA]S .

vi) (7 pts) Determine an ordered basis B = (b1, b2, b3, b4) ⊂ Mat2(C) such that [LA]B is a block diagonal
matrix, each block being a 0-Jordan block.

vii) (3 pts) Determine the partition associated to X , π(X ). Is X similar to the following matrix

Y =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

?

Justify your answer.

Solution:
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i) LA is nilpotent if there is some r ∈ N such that Lr
A = 0 ∈ EndC(Matn(C)). A is nilpotent if there

is some r ∈ N such that Ar = 0 ∈ Matn(C).

ii) η(LA) is the smallest r ∈ N such that Lr
A = 0 while Lr

A 6= 0. η(A) is the smallest r ∈ N such that
Ar = 0 while Ar−1 6= 0.

iii) Suppose that A is nilpotent. Then, there is some r ∈ N such that Ar = 0 ∈ Matn(C). Hence, for
any B ∈ Matn(C) we have

Lr
A(B) = ArB = 0.B = 0 ∈ Matn(C),

so that Lr
A = 0 ∈ EndC(Matn(C)) and LA is nilpotent. Conversely, if Lr

A = 0 then we must have

0 = Lr
A(In) = Ar In = Ar ,

so that A is nilpotent.

iv) As A is nilpotent (A2 = 0) we have that LA is nilpotent. Since LA 6= 0 while L2
A = 0 (consider the

proof of iii)) then η(LA) = 2.

v) We have

LA(e11) = e11 + e21, LA(e12) = e12 + e22, LA(e21) = −e11 − e21, LA(e22) = −e12 − e22,

so that

X = [LA]S =


1 0 −1 0
0 1 0 −1
1 0 −1 0
0 1 0 −1

 .

vi) We follow the algorithm from the notes for the matrix X , making sure to translate our answer
back to Mat2(C) at the end.

We have

H2 = ker TX 2 = Mat2(C), H1 = ker TX =
{

x ∈ C4 | x1 − x3 = 0, x2 − x4 = 0
}

= spanC




1
0
1
0

 ,


0
1
0
1

 .

 .

Then, we have
H2 = H1 ⊕ G2,

and we can take
G2 = spanC{e1, e2}.

Set S1 = {Xe1, Xe2} = {e1 + e3, e2 + e4}. Then, we have

H1 = H0 ⊕ spanCS1 ⊕ G1.

However, since H0 = {0} and S1 is linearly independent (so that dim spanCS1 = 2) we have
G1 = 0.

Therefore, the table we obtain looks like

e1 e2
Xe1 Xe2

,

so if we set B = (Xe1, e1, Xe2, e2) then

[LA]B =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
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vii) The partition associated to X is

π(X ) : 22 ↔ 2 + 2 = 4.

Therefore, X is not similar to Y since

π(Y ) : 122↔ 1 + 1 + 2 = 4,

so that π(X ) 6= π(Y ). A result from class states that two nilpotent matrices are similar if and
only if they have the same associated partitions.
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