Worksheet 7/26. Math 110, Summer 2012

An asterisk * denotes a harder problem. Speak to your neighbours, these problems should be discussed.

Canonical form of real symmetric nondegenerate bilinear forms

Consider the following (nondegenerate, symmetric) bilinear forms

-
$$B_1: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$$
; $(u, v) \mapsto u_1 v_3 + 5u_2 v_2 - 6u_3 v_1$.

-
$$B_2: Mat_2(\mathbb{R}) \times Mat_2(\mathbb{R}) \to \mathbb{R} \; ; \; (X,Y) \mapsto \operatorname{tr}(XY).$$

1. Determine bases \mathcal{B}_1 , \mathcal{B}_2 such that

$$[\mathcal{B}_i]_{\mathcal{B}_i} = egin{bmatrix} d_1 & & & & \ & \ddots & & \ & & d_n \end{bmatrix}, \quad d_i \in \{1,-1\}.$$

2. Consider the (nondegenerate symmetric) bilinear forms

-
$$B_1: \mathbb{Q}^3 \times \mathbb{Q}^3 \to \mathbb{Q}$$
; $(u, v) \mapsto u_1v_3 + 5u_2v_2 - 6u_3v_1$.

-
$$B_2: Mat_2(\mathbb{Q}) \times Mat_2(\mathbb{Q}) \to \mathbb{Q}$$
; $(X, Y) \mapsto \operatorname{tr}(XY)$.

Is it possible to find base C_1 , C_2 such that $[B_i]_{C_i}$ is diagonal?