Math 110, Summer 2012 Short Homework 9

Due Thursday 7/26, 10.10am, in Etcheverry 3109. Late homework will not be accepted.

0. Was this homework assignment too easy/too difficult/about right? Any other comments are welcome.

Calculations

- 1. Give an example of a nondegenerate antisymmetric bilinear form on \mathbb{Q}^4 .
- 2. Determine the matrix of B with respect to the given basis \mathcal{B} . State whether the bilinear form is symmetric/antisymmetric/neither and if it is nondegenerate:

i)
$$B: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$$
; $(\underline{x}, \underline{y}) \mapsto x_1y_1 + 3x_2y_2 + y_3x_2 - 10x_3y_2$, $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

ii)
$$B: Mat_3(\mathbb{Q}) \times Mat_3(\mathbb{Q}) \rightarrow \mathbb{Q}$$
; $(X, Y) \mapsto \operatorname{tr}(XY)$,

$$\mathcal{B} = (e_{11}, e_{12} - e_{21}, e_{32}, e_{13} - e_{31}, e_{13} + e_{31}, e_{22} + e_{33}, e_{33}, e_{23} - 2e_{32}, e_{12} + e_{11}).$$

- 3. Determine the adjoint of f with respect to B:
 - i) $B: \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$; $(\underline{x}, \underline{y}) \mapsto \underline{x} \cdot \underline{y}$, $f: \mathbb{R}^4 \to \mathbb{R}^4$; $\underline{x} \mapsto A\underline{x}$, where

$$A = \begin{bmatrix} \pi & -1 & 0 & 0 \\ e^2 & \sqrt{2} & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -\sqrt{5} & 0 & 10 & 1 \end{bmatrix}.$$

$$\text{ii)} \ \ B: \mathit{Mat}_2(\mathbb{Q}) \times \mathit{Mat}_2(\mathbb{Q}) \rightarrow \mathbb{Q} \ ; \ \ (X,Y) \mapsto \mathsf{tr}(XY), \quad \ \ f: \mathit{Mat}_2(\mathbb{Q}) \rightarrow \mathit{Mat}_2(\mathbb{Q}) \ ; \ X \mapsto X^t.$$

Proofs

- 4. Let $B \in \text{Bil}_{\mathbb{K}}(V)$ and $\mathcal{B} \subset V$ be an ordered basis. Prove that $[-]_{\mathcal{B}} : \text{Bil}_{\mathbb{K}}(V) \to Mat_n(\mathbb{K})$ ($n = \dim V$) is linear and bijective.
- 5. Prove that every bilinear form $B \in \text{Bil}_{\mathbb{K}}(\mathbb{K}^n)$ is of the form $B = B_A$, for some $A \in Mat_n(\mathbb{K})$.
- 6. Let $B \in Bil_{\mathbb{K}}(V)$. Prove that if $\sigma_B : V \to V^*$ is injective then B is nondegenerate.
- 7. Prove the polarisation identity: if $B \in \text{Bil}_{\mathbb{K}}(V)$ is symmetric then, for every $u, v \in V$,

$$B(u,v) = \frac{1}{2}(B(u+v,u+v) - B(u,u) - B(v,v)).$$

8. Let $B \in Bil_K(V)$ be antisymmetric. Prove that B(u, u) = 0, for every $u \in V$.