

Multivariable Calculus Spring 2018

Contact: gmelvin@middlebury.edu

May 9 Lecture

TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §5.2, 5.3

Double Integrals II

LEARNING OBJECTIVES:

- Learn what an elementary region is.
- Learn how to compute double integrals defined on elementary regions.
- Learn how to change the order of integration.

KEYWORDS: elementary regions, changing the order of integration

Integrating over general bounded regions

Suppose that D is a region of the form

$$D = \{(x, y) \mid a \le x \le b, \ c(x) \le y \le d(x)\}\$$

We call such regions D elementary regions of Type 1. For example, the interior of an ellipse

$$D = \{(x, y) \mid x^2 + 4y^2 \le 1\}$$

is such a region:

$$D = \{(x,y) \mid -1 \le x \le 1, -\sqrt{1-x^2}/2 \le y \le \sqrt{1-x^2}/2\}$$

$$y = \sqrt{1-x^2}$$

$$y = -\sqrt{1-x^2}$$

The above description of D is obtained by considering D as a collection of vertical line segments:

For every $x \in [-1,1]$ the vertical line segment lying between $-\sqrt{1-x^2}/2$ and $\sqrt{1-x^2}/2$ lies within D. Moreover, D is the collection of all such line segments.

If f(x,y) is continuous on an elementary region D of Type 1 then we define

$$\int \int_D f dA = \int_{x=a}^{x=b} \int_{y=c(x)}^{y=d(x)} f(x,y) dy dx$$

This double integral computes the (signed) volume of the region lying between the graph z = f(x, y) and D.

Remark:

Example: Let f(x, y) = x, D be the interior of the ellipse above. Then,

$$\int \int_{R} f dA = \int_{x=-1}^{x=1} \left(\int_{y=-\sqrt{1-x^{2}/2}}^{y=\sqrt{1-x^{2}/2}} x dy \right) dx$$

$$= \int_{x=-1}^{x=1} \left([xy]_{-\sqrt{1-x^{2}/2}}^{\sqrt{1-x^{2}/2}} \right) dx$$

$$= \int_{x=-1}^{x=1} \left(x\sqrt{1-x^{2}} \right) dx$$

$$= \left[-\frac{1}{3} (1-x^{2})^{3/2} \right]_{-1}^{1} = 0$$

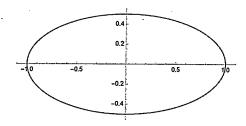
Remark: since the region D is symmetric in the y-axis and f(x, y) = -f(-x, y), we could use symmetry to deduce the answer.

Important Observation: The region D given above could also be described as

$$D = \{(x,y) \mid -1/2 \le y \le 1/2, \ -\sqrt{1-4y^2} \le x \le \sqrt{1-4y^2}\}$$

The above description of D is obtained by considering D as a collection of horizontal line segments:

For every $y \in [-1/2, 1/2]$ the horizontal line segment lying between $-\sqrt{1-4y^2}$ and $\sqrt{1-4y^2}$ lies within D. Moreover, D is the collection of all such line segments.



Remark:

1. If D is a region in the plane such that

$$D = \{(x, y) \mid c \le y \le d, \ a(y) \le x \le b(y)\}\$$

then we call D an elementary region of Type 2. If D is an elementary region of type 2 and f(x, y) is continuous on D then we define

$$\int \int_{D} f dA = \int_{y=c}^{y=d} \int_{x=a(y)}^{x=b(y)} f(x,y) dx dy$$

2. A region D that is both a Type 1 elementary region and a Type 2 elementary region is called an **elementary region of Type 3**.

Example:

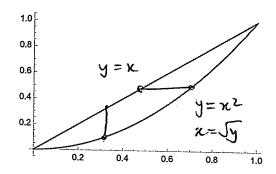
1. The ellipse defined above is an elementary region of Type 3. Therefore, we can also compute the double integral of f(x,y) = x over D as follows:

$$\int \int_{R} f dA = \int_{y=-1/2}^{y=1/2} \left(\int_{x=-\sqrt{1-4y^{2}}}^{x=\sqrt{1-4y^{2}}} x dx \right) dy$$

$$= \int_{y=-1/2}^{y=1/2} \left(\left[\frac{x^{2}}{2} \right]_{-\sqrt{1-4y^{2}}}^{\sqrt{1-4y^{2}}} \right) dy$$

$$= \int_{y=-1/2}^{y=1/2} 0 dy = 0$$

2. Let D be the region lying between the graph $y = x^2$ and the line y = x.



D is an elementary region of type 3:

Type 1: Type 2:
$$0 \le y \le 1$$
 $x^2 \le y \le x$
 $y \le x \le \sqrt{y}$

Changing the order of integration

Given an elementary region D of type 3 and a continuous function on D, we can compute the double integral $\int \int_D f dA$ using two different iterated integrals. Sometimes, it can be useful to change the order of integration to determine the double integral.

Example: We want to compute the iterated integral:

$$\int_0^2 \int_{y^2}^4 y \cos(x^2) dx dy$$

However, we immediately run into trouble: it's impossible to find an antiderivative of $\cos(x^2)$ that can be expressed using well-known functions. However, all is not lost.

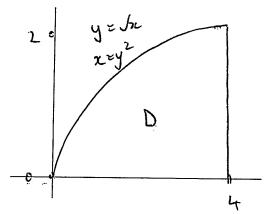
This iterated integral is equal to

$$\int \int_D y \cos(x^2) dA$$

for some region D. Observing the order of dxdy in the integral tells us that we integrate with respect to x first and then with respect to y. Thus, the integrations bounds are describing a Type 2 region:

$$D = \{(x, y) \mid 0 \le y \le 2, \ y^2 \le x \le 4\}$$

Diagram:



Therefore, D is also a type 1 region

$$D = \{(x,y) \mid b \in x \leq u, o \leq y \leq Jx$$

Hence