May 9 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §5.2, 5.3

Double Integrals II

Learning Objectives:

- Learn what an elementary region is.
- Learn how to compute double integrals defined on elementary regions.
- Learn how to change the order of integration.

KEYWORDS: elementary regions, changing the order of integration

Integrating over general bounded regions

Suppose that D is a region of the form

$$
D=\{(x, y) \mid a \leq x \leq b, c(x) \leq y \leq d(x)\}
$$

We call such regions D elementary regions of Type 1. For example, the interior of an ellipse

$$
D=\left\{(x, y) \mid x^{2}+4 y^{2} \leq 1\right\}
$$

is such a region:

$$
D=\left\{(x, y) \mid-1 \leq x \leq 1,-\sqrt{1-x^{2}} / 2 \leq y \leq \sqrt{1-x^{2}} / 2\right\}
$$

The above description of D is obtained by considering D as a collection of vertical line segments:

For every $x \in[-1,1]$ the vertical line segment lying between $-\sqrt{1-x^{2}} / 2$ and $\sqrt{1-x^{2}} / 2$ lies within D. Moreover, D is the collection of all such line segments.

If $f(x, y)$ is continuous on an elementary region D of Type 1 then we define

$$
\iint_{D} f d A=\int_{x=a}^{x=b} \int_{y=c(x)}^{y=d(x)} f(x, y) d y d x
$$

This double integral computes the (signed) volume of the region lying between the graph $z=f(x, y)$ and D.

Remark:

Example: Let $f(x, y)=x, D$ be the interior of the ellipse above. Then,

$$
\begin{aligned}
\iint_{R} f d A & =\int_{x=-1}^{x=1}\left(\int_{y=-\sqrt{1-x^{2}} / 2}^{y=\sqrt{1-x^{2}} / 2} x d y\right) d x \\
& =\int_{x=-1}^{x=1}\left([x y]_{-\sqrt{1-x^{2}} / 2}^{\sqrt{1-x^{2}}}\right) d x \\
& =\int_{x=-1}^{x=1}\left(x \sqrt{1-x^{2}}\right) d x \\
& =\left[-\frac{1}{3}\left(1-x^{2}\right)^{3 / 2}\right]_{-1}^{1}=0
\end{aligned}
$$

Remark: since the region D is symmetric in the y-axis and $f(x, y)=-f(-x, y)$, we could use symmetry to deduce the answer.
Important Observation: The region D given above could also be described as

$$
D=\left\{(x, y) \mid-1 / 2 \leq y \leq 1 / 2,-\sqrt{1-4 y^{2}} \leq x \leq \sqrt{1-4 y^{2}}\right\}
$$

The above description of D is obtained by considering D as a collection of horizontal line segments:
For every $y \in[-1 / 2,1 / 2]$ the horizontal line segment lying between $-\sqrt{1-4 y^{2}}$ and $\sqrt{1-4 y^{2}}$ lies within D. Moreover, D is the collection of all such line segments.

Remark:

1. If D is a region in the plane such that

$$
D=\{(x, y) \mid c \leq y \leq d, a(y) \leq x \leq b(y)\}
$$

then we call D an elementary region of Type 2. If D is an elementary region of type 2 and $f(x, y)$ is continuous on D then we define

$$
\iint_{D} f d A=\int_{y=c}^{y=d} \int_{x=a(y)}^{x=b(y)} f(x, y) d x d y
$$

2. A region D that is both a Type 1 elementary region and a Type 2 elementary region is called an elementary region of Type 3.

Example:

1. The ellipse defined above is an elementary region of Type 3. Therefore, we can also compute the double integral of $f(x, y)=x$ over D as follows:

$$
\begin{aligned}
\iint_{R} f d A & =\int_{y=-1 / 2}^{y=1 / 2}\left(\int_{x=-\sqrt{1-4 y^{2}}}^{x=\sqrt{1-4 y^{2}}} x d x\right) d y \\
& =\int_{y=-1 / 2}^{y=1 / 2}\left(\left[\frac{x^{2}}{2}\right]_{-\sqrt{1-4 y^{2}}}^{\sqrt{1-4 y^{2}}}\right) d y \\
& =\int_{y=-1 / 2}^{y=1 / 2} 0 d y=0
\end{aligned}
$$

2. Let D be the region lying between the graph $y=x^{2}$ and the line $y=x$.

D is an elementary region of type 3 :

Changing the order of integration

Given an elementary region D of type 3 and a continuous function on D, we can compute the double integral $\iint_{D} f d A$ using two different iterated integrals. Sometimes, it can be useful to change the order of integration to determine the double integral.
Example: We want to compute the iterated integral:

$$
\int_{0}^{2} \int_{y^{2}}^{4} y \cos \left(x^{2}\right) d x d y
$$

However, we immediately run into trouble: it's impossible to find an antiderivative of $\cos \left(x^{2}\right)$ that can be expressed using well-known functions. However, all is not lost.

This iterated integral is equal to

$$
\iint_{D} y \cos \left(x^{2}\right) d A
$$

for some region D. Observing the order of $d x d y$ in the integral tells us that we integrate with respect to x first and then with respect to y. Thus, the integrations bounds are describing a Type 2 region:

$$
D=\left\{(x, y) \mid 0 \leq y \leq 2, y^{2} \leq x \leq 4\right\}
$$

Diagram:

Therefore, D is also a type 1 region

$$
D=
$$

\qquad
Hence

$$
\int_{0}^{2} \int_{y^{2}}^{4} y \cos \left(x^{2}\right) d x d y=\iint_{D} y \cos \left(x^{2}\right) d A
$$

$$
=
$$

\qquad
\qquad
$=$ \qquad

