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Double Integrals

Learning Objectives:
- Learn what a double integral is.
- Learn how tocompute basic double integrals.

Keywords: double integrals

Integrating over rectangles
Let f(x, y) be a function defined on the rectangle

R = [a, b]× [c, d] = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}

Choose partitions of [a, b] and [c.d] into n subintervals

a = x0 < x1 < . . . < xn−1 < xn = b, c = y0 < y1 < . . . < yn−1 < yn = d

Denote Rij = [xi−1, xi]× [yj−1, yj], and write

∆xi = xi − xi−1, ∆yj = yj − yj−1, ∆ij = ∆xi∆yj.

For 1 ≤ i, j ≤ n, choose cij ∈ Rij. The quantity

n∑
i,j=1

f(cij)∆ij

is called a Riemann sum of f on R corresponding to the partition.

Diagram:

A Riemann sum of f on a rectangle R provides an approximation to the (signed)
volume of the region lying between the graph z = f(x, y) and the xy-plane.
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Double Integral:

The double integral of f on R, denoted
∫ ∫

R
fdA is the limit of the

Riemann sums S obtained by letting ∆xi,∆yj → 0∫ ∫
R

fdA = lim
∆xi,∆yj→0

n∑
i,j=1

f(cij)∆ij

should this limit exist. When the limit exists we say that f is integrable on R.

Remark:

1. If f is integrable on R then
∫ ∫

R
fdA computes the (signed) volume of the

region lying between the graph z = f(x, y) and the region R.

2. It is a fact that, if f is integrable on R then
∫ ∫

R
fdA can be computed using

any partition of R.

As in the single variable case, we can assure the existence of the limit by assuming
that f is reasonably nice.

Continuous =⇒ integrable:

Let f(x, y) be a continuous function defined on a (bounded) rectangle R.
Then, f is integrable on R.
More generally, if f(x, y) is a, not necessarily continuous, bounded function
(i.e. no infinite discontinuities) and the set of discontinuities of f has zero area,
then f is integrable on R.

Remark: The above result does not provide us with an approach to computing
double integrals: to determine

∫ ∫
R
fdA ,for continuous f , we would have to form

Riemann sums and take limits (which may not be so easy to do!).

Example: Consider the function f(x, y) = 2x+ y. Then, the graph z = 2x+ y is a
plane. Let R = [0, 1]× [0, 1] and consider the partition

0 <
1

n
<

2

n
< . . . <

n− 1

n
< 1

so that xi = , yj = . Let cij = ∈ Rij = [(i− 1)/n, i/n]× [(j −
1)/n, j/n]. Then, the corresponding Riemann sum is

S =
n∑

i,j=1

f(cij)∆ij =

Since
n∑

i,j=1

=
n∑
i=1

(
n∑
j=1

)
we find

S =
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Here we use the identities

n∑
i=1

i =
1

2
n(n+ 1),

n∑
i=1

k = kn, for any constant k

Fubini’s Theorem
The relationship between double integration and (partial) differentiation is not as
straightforward as the single variable case. In particular, trying to compute double
integrals without using Riemann sums can be tricky. However, in the case considered
above we have the following result

Fubini’s Theorem:

Let f(x, y) be a continuous function defined on a (bounded) rectangle
R = [a, b]× [c, d]. Then,∫ ∫

R

fdA =

∫ x=b

x=a

(∫ y=d

y=c

f(x, y)dy

)
dx =

∫ y=d

y=c

(∫ x=b

x=a

f(x, y)dx

)
dy

The integrals appearing the right hand side are called iterated integrals.

Remark: We will usually write∫ b

a

∫ d

c

f(x, y)dydx =

∫ x=b

x=a

(∫ y=d

y=c

f(x, y)dy

)
dx

and ∫ d

c

∫ b

a

f(x, y)dxdy =

∫ y=d

y=c

(∫ x=b

x=a

f(x, y)dx

)
dy

In particular, pay attention to the order of dxdy or dydx.

Example:

1. Let f(x, y) = 2x+ y, R = [0, 1]× [0, 1]. Then, using Fubini’s Theorem we can
compute ∫ ∫

R

fdA =

∫ x=1

x=0

∫ y=1

y=0

(2x+ y)dydx

=

∫ x=1

x=0

[
2xy +

y2

2

]1

0

dx

=

∫ x=1

x=0

(
2x+

1

2

)
dx

=
[
x2 + x/2

]1
0

= 3/2

You can check that we get the same answer if we compute the integral with
respect to x first.
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2. Let f(x, y) = cos(x) cos(y), R = [0, π]× [π/4, π/2]. Then, by Fubini’s Theorem∫ ∫
R

fdA =

∫ x=π

x=0

∫ y=π/2

y=π/4

cos(x) cos(y)dydx

=

∫ x=π

x=0

[cos(x) sin(y)]
π/2
π/4 dx

=

∫ x=π

x=0

(
cos(x)(1− 1/

√
2)
)
dx

=
[
sin(x)(1− 1/

√
2)
]π

0
= 0

Remark: See p.320 of the textbook for the basic properties of a double integral.

Integrating over general bounded regions
Suppose that D is a region of the form

D = {(x, y) | a ≤ x ≤ b, c(x) ≤ y ≤ d(x)}

We call such regions D elementary regions of Type 1. For example, the interior
of an ellipse

D = {(x, y) | x2 + 4y2 ≤ 1}
is such a region:

D = {(x, y) | − 1 ≤ x ≤ 1, −
√

1− x2/2 ≤ y ≤
√

1− x2/2}

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

If f(x, y) is continuous on an elementary region D of Type 1 then we define∫ ∫
D

fdA =

∫ x=b

x=a

∫ y=d(x)

y=c(x)

f(x, y)dydx

This double integral computes the (signed) volume of the region lying between the
graph z = f(x, y) and D.

Example: Let f(x, y) = x, D be the interior of the ellipse above. Then,∫ ∫
R

fdA =

∫ x=1

x=−1

∫ y=
√

1−x2/2

y=−
√

1−x2/2
xdydx

=

∫ x=1

x=−1

[xy]
√

1−x2/2
−
√

1−x2/2 dx

=

∫ x=1

x=−1

(
x
√

1− x2
)
dx

=

[
−1

3
(1− x2)3/2

]1

−1

= 0

Observe: since the region D is symmetric in the y-axis and f(x, y) = −f(−x, y), we
could use symmetry to deduce the answer.
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