

Multivariable Calculus Spring 2018

Contact: gmelvin@middlebury.edu

MAY 4 LECTURE

TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §4.3, 4.4

LAGRANGE MULTIPLIERS; LINEAR REGRESSION

KEYWORDS: the method of Lagrange multipliers, linear regression, polynomial regression

Let f(x,y), g(x,y) be differentiable functions. We are interested in the **contstrained** optimisation problem

maximise/minimise
$$f(x, y)$$

subject to $g(x, y) = 0$

Remark: An equation h(x,y) = c, c constant, is called a constraint. Note that any constraint h(x,y) = c can be rearranged to a constraint of the form g(x,y) = 0 by letting g(x,y) = h(x,y) - c.

In the last lecture we saw that the solutions to this problem - the constrained extrema - came in two flavours:

- (I) the points (x, y) satisfying $\nabla f(x, y) = 0$ and g(x, y) = 0;
- (II) the points (x,y) satisfying $\nabla f(x,y) = \lambda \nabla g(x,y)$ and g(x,y) = 0, for some nonzero λ , called a Lagrange multiplier.

Note that type (I) points can be considered to be type (II) points for the case $\lambda = 0$.

We generalise to the setting of several variables:

Method of Lagrange multipliers: single constraint

Let $f(\underline{x})$, $g(\underline{x})$ be differentiable functions of n variables. If \underline{x} is a solution to the constrained optimisation problem

maximise/minimise
$$f(\underline{x})$$

subject to $g(\underline{x}) = 0$

then there exists some λ such that (\underline{x}, λ) is a solution to the equation

$$\nabla f(\underline{x}) = \lambda \nabla g(\underline{x})$$

Remark: The method of Lagrange multipliers can be extended to the case of multiple constraints $g_1(\underline{x}) = \ldots = g_k(\underline{x}) = 0$. In this case there are two flavours of constrained extrema:

- (I) the points \underline{x} satisfying $\nabla f(\underline{x}) = 0$ and $g_1(\underline{x}) = \ldots = g_k(\underline{x}) = 0$;
- (II) the points \underline{x} satisfying $\nabla f(\underline{x}) = \sum_{i=1}^k \lambda_i \nabla g_i(\underline{x})$ and $g_1(\underline{x}) = \ldots = g_k(\underline{x}) = 0$, for some $\lambda_1, \ldots, \lambda_k$ (not all equal to zero).

The gradient condition states that $\nabla f(\underline{x})$ is orthogonal to the tangent space of the space defined by $g_1 = \ldots = g_k = 0$. For details see p.284 of the textbook.

Example: Model the surface of the Earth by the unit sphere $x^2 + y^2 + z^2 = 1$. A satellite is orbiting the earth at a fixed height - in our model the satellite's orbit is constrained to lie in the sphere $x^2 + y^2 + z^2 = 9$. Assume we are standing at (1,0,0) on the surface of the Earth. Let's use Lagrange multipliers to confirm the obvious(?) geometric fact: the satellite is closest to our position when the satellite is at (3,0,0).

We model this problem as a constrained optimisation problem:

minimise
$$d(x, y, z) = (x - 1)^2 + y^2 + z^2$$

subject to $g(x, y, z) = x^2 + y^2 + z^2 - 9 = 0$

Solution:

$$\nabla d = \begin{bmatrix} 2(x-i) & 2y & 27 \end{bmatrix}$$

$$\nabla y = \begin{bmatrix} 2x & 2y & 27 \end{bmatrix}$$

Cohre:

$$2(x-1) = 2\lambda \times \Omega$$

$$2y = 2\lambda y \quad \Omega$$

$$2x - 2 = 2\lambda \times \Omega$$

 $\Phi \Rightarrow x^2 = 9 \Rightarrow x = \pm 3.$

Applications of Extrema

Then (±3,0,0) are combrained

Linear regression A set S of k points in the plane

of k points in the plane
$$d(3,0,0) = 4 \in d(-3,0,0)$$

$$S = \{(x_1,y_1), \dots, (x_k,y_k)\}$$

$$\Rightarrow (3,0,0) : 3 \text{ minimum}$$

can be interreted as a data set relating two quantities x and y. For example, x could represent SAT scores and y could represent college grades.

We want to understand what the general linear correlation is between the quantities x and y i.e. we want to find the line of best fit y = mx + b. Mathematically, we want to solve the optimisation problem:

minimise
$$D(m, b) = (y_1 - (mx_1 + b))^2 + ... + (y_k - (mx_k + b))^2$$

Diagram:

We need to find the extrema of the function D. We compute ∇D

find the extrema of the function
$$D$$
. We compute ∇D :
$$\frac{\partial D}{\partial m} = \sum_{i=1}^{k} 2(y_i - (mx_i + b)) \cdot (-m_i) = -2\sum_{i=1}^{k} \kappa_i y_i + 2m(\sum_{i=1}^{k} \gamma_i) + 2b(\sum_{i=1}^{k} \gamma_i)$$

$$\frac{\partial D}{\partial b} = \frac{\sum 2(y_i - (mx_i + b))(-1) = -2}{2y_i} + 2m(\sum x_i)$$

Setting both partial derivatives equal to zero gives the equations

$$(\sum x_i^2)m + (\sum x_i)b = \sum x_iy_i$$

$$(\sum x_i)m + \mathbf{a}b = \sum y_i$$

This is a system of linear equations in the two variables m and b. We solve to obtain the single solution:

This approach can be used to solve more general polynomial regression. For example, we could try to determine a parabels of host
$$S(X_i) = S(X_i) = S(X_i)$$

example, we could try to determine a parabola of best fit $y = ax^2 + bx + c$. Then, we aim to minimise

$$D(a,b,c) = \frac{\sum_{i=1}^{N} (y_i - (\alpha x_i^2 + b x_i + c))^2}{(y_i - (\alpha x_i^2 + b x_i + c))^2}$$