Middlebury College

May 4 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §4.3, 4.4

Lagrange Multipliers; Linear Regression

KEYWORDS: the method of Lagrange multipliers, linear regression, polynomial regression

Let $f(x, y), g(x, y)$ be differentiable functions. We are interested in the contstrained optimisation problem

$$
\begin{array}{rc}
\text { maximise/minimise } & f(x, y) \\
\text { subject to } & g(x, y)=0
\end{array}
$$

Remark: An equation $h(x, y)=c, c$ constant, is called a constraint. Note that any constraint $h(x, y)=c$ can be rearranged to a constraint of the form $g(x, y)=0$ by letting $g(x, y)=h(x, y)-c$.

In the last lecture we saw that the solutions to this problem - the constrained extrema - came in two flavours:
(I) the points (x, y) satisfying $\nabla f(x, y)=0$ and $g(x, y)=0$;
(II) the points (x, y) satisfying $\nabla f(x, y)=\lambda \nabla g(x, y)$ and $g(x, y)=0$, for some nonzero λ, called a Lagrange multiplier.

Note that type (I) points can be considered to be type (II) points for the case $\lambda=0$.

We generalise to the setting of several variables:

Method of Lagrange multipliers: single constraint

Let $f(\underline{x}), g(\underline{x})$ be differentiable functions of n variables. If \underline{x} is a solution to the constrained optimisation problem

$$
\begin{array}{rc}
\text { maximise/minimise } & f(\underline{x}) \\
\text { subject to } & g(\underline{x})=0
\end{array}
$$

then there exists some λ such that (\underline{x}, λ) is a solution to the equation

$$
\nabla f(\underline{x})=\lambda \nabla g(\underline{x})
$$

Remark: The method of Lagrange multipliers can be extended to the case of multiple constraints $g_{1}(\underline{x})=\ldots=g_{k}(\underline{x})=0$. In this case there are two flavours of constrained extrema:
(I) the points \underline{x} satisfying $\nabla f(\underline{x})=0$ and $g_{1}(\underline{x})=\ldots=g_{k}(\underline{x})=0$;
(II) the points \underline{x} satisfying $\nabla f(\underline{x})=\sum_{i=1}^{k} \lambda_{i} \nabla g_{i}(\underline{x})$ and $g_{1}(\underline{x})=\ldots=g_{k}(\underline{x})=0$, for some $\lambda_{1}, \ldots, \lambda_{k}$ (not all equal to zero).

The gradient condition states that $\nabla f(\underline{x})$ is orthogonal to the tangent space of the space defined by $g_{1}=\ldots=g_{k}=0$. For details see p. 284 of the textbook.
Example: Model the surface of the Earth by the unit sphere $x^{2}+y^{2}+z^{2}=1$. A satellite is orbiting the earth at a fixed height - in our model the satellite's orbit is constrained to lie in the sphere $x^{2}+y^{2}+z^{2}=9$. Assume we are standing at $(1,0,0)$ on the surface of the Earth. Let's use Lagrange multipliers to confirm the obvious(?) geometric fact: the satellite is closest to our position when the satellite is at $(3,0,0)$. We model this problem as a constrained optimisation problem:

$$
\begin{array}{rc}
\text { minimise } & d(x, y, z)=(x-1)^{2}+y^{2}+z^{2} \\
\text { subject to } & g(x, y, z)=x^{2}+y^{2}+z^{2}-9=0
\end{array}
$$

Solution:

Applications of Extrema

Linear regression A set S of k points in the plane

$$
S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}
$$

can be intepreted as a data set relating two quantities x and y. For example, x could represent SAT scores and y could represent college grades.
We want to understand what the general linear correlation is between the quantities x and y i.e. we want to find the line of best fit $y=m x+b$. Mathematically, we want to solve the optimisation problem:

$$
\text { minimise } \quad D(m, b)=\left(y_{1}-\left(m x_{1}+b\right)\right)^{2}+\ldots+\left(y_{k}-\left(m x_{k}+b\right)\right)^{2}
$$

Diagram:

We need to find the extrema of the function D. We compute ∇D :

$$
\begin{aligned}
& \frac{\partial D}{\partial m}= \\
& \frac{\partial D}{\partial b}=
\end{aligned}
$$

Setting both partial derivatives equal to zero gives the equations

$$
\begin{gathered}
\left(\sum x_{i}^{2}\right) m+\left(\sum x_{i}\right) b=\sum x_{i} y_{i} \\
\left(\sum x_{i}\right) m+n b=\sum y_{i}
\end{gathered}
$$

This is a system of linear equations in the two variables m and b. We solve to obtain the single solution:

This approach can be used to solve more general polynomial regression. For example, we could try to determine a parabola of best fit $y=a x^{2}+b x+c$. Then, we aim to minimise

$$
D(a, b, c)=
$$

\qquad

