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Let f(x, y), g(x, y) be differentiable functions. We are interested in the contstrained
optimisation problem

maximise/minimise f(x, y)
subject to g(x, y) = 0

Remark: An equation h(x, y) = c, c constant, is called a constraint. Note that
any constraint h(x, y) = c can be rearranged to a constraint of the form g(x, y) = 0
by letting g(x, y) = h(x, y)− c.
In the last lecture we saw that the solutions to this problem - the constrained
extrema - came in two flavours:

(I) the points (x, y) satisfying ∇f(x, y) = 0 and g(x, y) = 0;

(II) the points (x, y) satisfying ∇f(x, y) = λ∇g(x, y) and g(x, y) = 0, for some
nonzero λ, called a Lagrange multiplier.

Note that type (I) points can be considered to be type
(II) points for the case λ = 0.

We generalise to the setting of several variables:

Method of Lagrange multipliers: single constraint

Let f(x), g(x) be differentiable functions of n variables. If x is a solution to
the constrained optimisation problem

maximise/minimise f(x)

subject to g(x) = 0

then there exists some λ such that (x, λ) is a solution to the equation

∇f(x) = λ∇g(x)
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Remark: The method of Lagrange multipliers can be extended to the case of mul-
tiple constraints g1(x) = . . . = gk(x) = 0. In this case there are two flavours of
constrained extrema:

(I) the points x satisfying ∇f(x) = 0 and g1(x) = . . . = gk(x) = 0;

(II) the points x satisfying ∇f(x) =
∑k

i=1 λi∇gi(x) and g1(x) = . . . = gk(x) = 0,
for some λ1, . . . , λk (not all equal to zero).

The gradient condition states that ∇f(x) is orthogonal to the tangent space of the
space defined by g1 = . . . = gk = 0. For details see p.284 of the textbook.

Example: Model the surface of the Earth by the unit sphere x2 + y2 + z2 = 1. A
satellite is orbiting the earth at a fixed height - in our model the satellite’s orbit is
constrained to lie in the sphere x2 + y2 + z2 = 9. Assume we are standing at (1, 0, 0)
on the surface of the Earth. Let’s use Lagrange multipliers to confirm the obvious(?)
geometric fact: the satellite is closest to our position when the satellite is at (3, 0, 0).

We model this problem as a constrained optimisation problem:

minimise d(x, y, z) = (x− 1)2 + y2 + z2

subject to g(x, y, z) = x2 + y2 + z2 − 9 = 0

Solution:

Applications of Extrema

Linear regression A set S of k points in the plane

S = {(x1, y1), . . . , (xk, yk)}

can be intepreted as a data set relating two quantities x and y. For example, x could
represent SAT scores and y could represent college grades.

We want to understand what the general linear correlation is between the quantities
x and y i.e. we want to find the line of best fit y = mx + b. Mathematically, we
want to solve the optimisation problem:

minimise D(m, b) = (y1 − (mx1 + b))2 + . . .+ (yk − (mxk + b))2
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Diagram:

We need to find the extrema of the function D. We compute ∇D:

∂D

∂m
=

∂D

∂b
=

Setting both partial derivatives equal to zero gives the equations

(
∑

x2i )m+ (
∑

xi)b =
∑

xiyi

(
∑

xi)m+ nb =
∑

yi

This is a system of linear equations in the two variables m and b. We solve to obtain
the single solution:

This approach can be used to solve more general polynomial regression. For
example, we could try to determine a parabola of best fit y = ax2 + bx+ c. Then,
we aim to minimise

D(a, b, c) =
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