March 9 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §2.1

Functions of several variables

Learning Objectives:

- Gain familiarity with functions of several variables.
- Understand the concept of the graph of a function of several variables.
- Gain familiarity with specific examples of surfaces realised as graphs of functions.
- Learn the equations defining the quadric surfaces.

KEYWORDS: functions of several variables, paraboloid, hyperbolic paraboloid, quadric surfaces

Functions of several variables

A function consists of three pieces of data: a set X (the domain of f), a set Y (the codomain of f) and a rule of assignment that associates to each element $x \in X$ a unique, denoted $f(x)$, in the codomain Y. We will use the notation $f: X \rightarrow Y$ for a function; when we want to be explicit about the rule, we will write

$$
\begin{aligned}
f: X & \rightarrow Y \\
x & \mapsto f(x)
\end{aligned}
$$

The range of $f: X \rightarrow Y$ is the set of all outputs of f i.e.

$$
\text { Range }(f)=\{y \in Y \mid f(x)=y, \text { for some } x \in X\}
$$

A function is surjective (or onto) if Range $(f)=Y$. A function is injective (or one-to-one) if no two distinct elements in X give rise to the same output under f i.e. if $x \neq x^{\prime}$ are in X then $f(x) \neq f\left(x^{\prime}\right)$ in Y.

We are going to study the behaviour of functions $f: X \rightarrow Y$ having domain $X \subseteq \mathbb{R}^{n}$ and codomain $Y \subseteq \mathbb{R}^{m}$ being subsets of arbitrary vector spaces.

Examples:

1. Consider the function

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto(y, 0)
\end{aligned}
$$

The range of f is the x-axis $\{(c, 0) \mid c \in \mathbb{R}\} ; f$ is not surjective as it is impossible to find (x, y) so that $f(x, y)=(1,0)$ i.e. $(1,0)$ does not lie in the range of f; f is not injective as $f(1,0)=(0,0)=f(3,0)$ i.e. the distinct inputs $(1,0)$ and $(3,0)$ have the same output.
2. Consider the function

$$
\begin{aligned}
f: \mathbb{R}^{3} & \rightarrow \mathbb{R}_{\geq 0}=\{x \in \mathbb{R} \mid x \geq 0\} \\
(x, y, z) & \mapsto \sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

The range of f is set of non-negative real numbers $\{x \in \mathbb{R} \mid x \geq 0\} ; f$ is surjective because Range (f) equals the codomain; f is not injective because $f(1,0,0)=1=f(0,1,0)$.

Note, for any (x, y, z) on the sphere centred at $(0,0,0)$ having radius $1, f(x, y, z)=$ 1.
3. Here is a more interesting example: consider the unit disc D in \mathbb{R}^{2}

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 0\right\}
$$

D is the set of all points lying inside the unit circle. Suppose that D describes a warm metal plate. Define

$$
\begin{aligned}
T: \mathbb{R}^{3} & \rightarrow \mathbb{R}_{\geq 0} \\
(x, y, t) & \mapsto \text { temperature (in Kelvin) at }(x, y) \in D \text { at time } t
\end{aligned}
$$

so that $T(x, y, t)$ is the function defining the temperature of points on the plate at a certain time t. Finding a formula for $T(x, y, t)$ is difficult and involves solving partial differential equations. You would be interested in understanding these functions/equations if you are a materials engineer, for example (or you don't want to burn your fingers!).
4. Consider the function

$$
\begin{aligned}
p: \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
(t, T, w) & \mapsto \text { relative growth of a plant at time } t, \text { temperature } T, \text { water content } w
\end{aligned}
$$

For example, if you over-water the plant (i.e. let w get very large) then you'd expect the plant to exhibit negative relative growth (the plant is dying) - so that $p(t, T, w)<0$ for w very large.
5. Let $\underline{0} \neq \underline{u} \in \mathbb{R}^{3}$. Consider the function

$$
\begin{aligned}
\delta_{\underline{u}}: \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
\underline{x} & \mapsto \underline{u} \cdot \underline{x}
\end{aligned}
$$

The range of $\delta_{\underline{u}}$ is the whole of \mathbb{R} : if c is a real number then

$$
\delta_{\underline{u}}\left(c \frac{\underline{u}}{|\underline{u}|^{2}}\right)=\underline{u} \cdot\left(c \frac{\underline{u}}{|\underline{u}|^{2}}\right)=c \frac{\underline{u} \cdot \underline{u}}{|\underline{u}|^{2}}=c
$$

Hence, $\delta_{\underline{u}}$ is surjective. However, $\delta_{\underline{u}}$ is not injective: let $\underline{x} \neq \underline{0}$ be a vector perpendicular to \underline{u}. Then,

$$
\delta_{\underline{u}}(\underline{x})=\underline{u} \cdot \underline{x}=0=\underline{u} \cdot(-\underline{x})=\delta_{\underline{u}}(-\underline{x})
$$

6. Define the function

$$
\begin{aligned}
h:: \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
P & \mapsto \text { distance between } P \text { and the line } y+x=2
\end{aligned}
$$

If $P=(x, y)$ then
distance between P and $y+x=2=\frac{\left|\left[\begin{array}{c}x \\ y-2 \\ 0\end{array}\right] \times\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\right|}{\sqrt{2}}=\frac{\sqrt{(x+y)^{2}-4(x+y)+4}}{\sqrt{2}}$
Hence, we can write

$$
h(x, y)=\sqrt{\frac{(x+y)^{2}-4(x+y)+4}{2}}
$$

Graphs of functions

We have already seen a functions of several variables: a vector field was a function

$$
\underline{F}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Given a point $P=\underline{x} \in \mathbb{R}^{n}$ we associated a vector output

$$
\underline{F}(\underline{x})=\left[\begin{array}{c}
F_{1}(\underline{x}) \\
\vdots \\
F_{n}(\underline{x})
\end{array}\right]
$$

where, for each $i=1,2, \ldots, n$,

$$
\underline{F}_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

For example, you considered the vector field

$$
\underline{F}(x, y)=\left[\begin{array}{c}
-x \\
y
\end{array}\right]
$$

for your homework. Here

$$
\underline{F}_{1}(x, y)=-x ., \quad \underline{F}_{2}(x, y)=y
$$

Remark: In general, if we have a function of several variables

$$
f: X \subseteq \mathbb{R}^{n} \rightarrow Y \subset \mathbb{R}^{m}
$$

then f assigns to a point $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in X$ the point (or vector)

$$
f(\underline{x})=\left(f_{1}(\underline{x}), f_{2}(\underline{x}), \ldots, f_{m}(\underline{x})\right)
$$

We call the scalar-valued functions $f_{1}, \ldots, f_{m}: X \rightarrow \mathbb{R}$ the component functions of f. If the codomain $Y \subseteq \mathbb{R}^{m}, m>1$, then we say that f is a vector-valued function.

We could visually represent a vector field by plotting the output vectors at each point in the domain X. What about for more general functions of several variables? First we focus on scalar-valued functions whose domain X is a subset of \mathbb{R}^{n}.

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$. The graph of f is the subset

$$
\left\{\left(\underline{x}, x_{n+1}\right) \in X \times \mathbb{R} \mid x_{n+1}=f(\underline{x})\right\}
$$

For example, consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x^{2}+y^{2}
$$

Then, the graph of f is the subset of \mathbb{R}^{3}

$$
\left\{\left(x, y, x^{2}+y^{2}\right) \mid x, y, \in \mathbb{R}\right\}
$$

In particular, we see that the graph is the subset of \mathbb{R}^{3} defined by the equation

$$
z=x^{2}+y^{2}
$$

We've already identified this surface as a the surface of revolution known as a paraboloid.

Next time we will investigate how we can understand the graphs of functions $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$.

