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Kepler’s Laws of Planetary Motion (non-examinable)

Today we will make use of the concepts we have seen to derive one of human civili-
sation’s great triumphs: Kepler’s laws of planetary motion.

Background
Observing the passage of the sun throughout the day, or the passage of the moon
and constellations through a clear night sky, it would seem reasonable to make the
assumption that the heavenly bodies are revolving around a stationary Earth. This
geocentric (or Ptolemaic1) view of the universe was the predominant description
of the heavens used by Aristotle through to medieval European and Islamic as-
tronomers. In the 16th Century, Copernicus2 posited the heretical heliocentric view
of the universe: the Sun, not the Earth, was the centre of the universe, around which
all other heavenly bodies revolved. A common feature of each of these paradigms was
the use of spheres and circles to describe the orbits of the Sun and planets relative
to each other.

Figure 1: Tyco Brahe Figure 2: Johannes Kepler

In the early 17th Century, Johannes Kepler, an assistant of the astronomer Tycho
Brahe, analysed Brahe’s vast collection of astronomical observations and, in what can
be considered one of the first major triumphs of big data, conjectured the following:

1Claudius Ptolemy, 100-170 CE, a Greco-Roman-Egyptian mathematician and natu-
ral philosopher, lived in Alexandria in ancient Egypt in the mid 2nd Century. See
http://en.wikipedia.org/wiki/Ptolemy

2Nicolaus Copernicus, 1473-1543, was a Prussian polymath. Copernicus was wary of publishing
his astronomical findings for fear ‘he would expose himself on account of the novelty and incompre-
hensibility of his theses.’ See http://en.wikipedia.org/wiki/Nicolaus Copernicus



Kepler’s Laws of Planetary Motion

L1) In the two-body system consisting of the Sun and a planet, the planet’s
orbit is an ellipse and the sun lies at one focus of the ellipse.

L2) During equal intervals of time, a planet sweeps through equal areas with
respect to the sun.

L3) If T is the length of time for one planetary orbit, and a is the length of
the semimajor axis of this orbit, then T 2 = Ka3, for some constant K.

Remark: it is important to realise that Kepler’s determined his laws by analysing
tables of astronomical data - his Laws were not a consequence of any physical con-
siderations (which is incredible!).

Today we will derive Kepler’s First Law as a consequence of Newton’s Theory of
Gravitation and what we have learned about parameterised curves and spatial ge-
ometry.

Remark: Newton’s description of gravity and his ‘Laws of Motion’

Some formulae
Let x(t), y(t), z(t) be differentiable paths in Rn.

(F1) d
dt

(
x(t) · y(t)

)
= x′(t) · y(t) + x(t) · y′(t)

(F2) If |x(t)| is a constant, for all t, then x(t) · x′(t) = 0

(F3)
(
x× y

)′
(t) = x′(t)× y(t) + x(t)× y′(t)

(F4) (x× y)× z = (x · z)y − (y · z)x

Sketch of proof:

Some physics
Assume the sun is at the origin O in R3. Let r(t) denote the the position at time
t of a planet moving under the influence of gravity exerted by the Sun. We write
v(t) = r′(t) for the velocity of r and a = r′′(t) for the acceleration of r.

Goal: use Newton’s Laws of Gravity and Motion to
determine r(t), and therefore describe the motion of

the planet.

•Newton’s Law of Gravitation states that the (attractive) gravitational force
F experienced by the planet is given by

F = −GMm
r

|r|3
(1)



Here m is the mass of the planet, M is the mass of the Sun, and G is Newton’s
gravitational constant (= 6.672× 10−11 Nm2/kg2).
• On the other hand, Newton’s Second Law of Motion states that

F = ma, (2)

Equating (1) and (2) we find

ma = −GMm
r

|r|3
=⇒ a = −GM r

|r|3
(3)

In particular, these physical considerations imply the following

(A) the acceleration vector a is parallel to the
position vector r of the planet.

Flex those mathematical muscles!

1. Using (F3) and (A) show that

(r × v)′ (t) = 0

(Hint: recall that r′ = v)

2. Explain why the path (r × v) (t) is a constant path c.

3. Deduce that the motion of the planet is planar i.e. the position vector of the
planet must lie in a fixed plane containing the Sun.



Kepler’s First Law
We will determine a polar equation for r(t) and, by changing to Cartesian coor-

dinates, show that this equation is the equation of an ellipse:

(x− p)2

a2
+

(y − q)2

b2
= 1

By the Exercise above we may assume that the motion of the planet is in a plane,
which we may assume is the xy-plane. Hence, we can write (r × v)(t) = c = ck,
where c 6= 0 is a constant.

Denote

u(t) =
r(t)

|r(t)|
and write r(t) = |r(t)|.

x

y

z

r

r × v

u
v•

•Sun

We can also compute u as follows: since r(t)u = r(t) we have

v(t) = r′(t) = (ru)′(t) = r(t)u′(t) + r′(t)u

Hence,

c = r × v = (r(t)u(t))× [r(t)u′(t) + r′(t)u(t)]

= r2(u× u′) + rr′(u× u)

= r2(u× u′) (4)

Flex those mathematical muscles
Use (F2) and (F4), and identities (3), (4), together with properties of the cross
product, to show that

a× c = (GMu)′ (t)

Recall that G and M are constant.

On the other hand, by (F3), we have

(v × c)′(t) = a× c



Equating these two expressions for a× c gives

(GMu)′ (t) = (v × c)′(t) =⇒ v × c = GMu+ d

where d is a constant of integration. Then, since v × c and u lie in the xy-plane the
same is true of d.

By a coordinate transformation we can assume that d = di, for some d ∈ R. Hence,

u · d = d cos θ

Also,

c2 = |c|2

= c · c
= (r × v) · c
= r · (v × c)
= (ru) · (GMu+ d)

= GMr + rd cos θ

Rearranging gives

r =
c2

GM + d cos θ
=

p

1 + e cos θ

where

p =
c2

GM
, e =

d

GM

This is the polar equation describing the curve along which the motion of the planet
lies.

Flex those mathematical muscles
By writing r = p− er cos θ, show that this equation is

(1− e2)x2 + 2pex+ y2 = p2

in Cartesian coordinates.


