

MARCH 2 LECTURE

TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §3.3

VECTOR FIELDS AND FLOW LINES

LEARNING OBJECTIVES:

- Gain familiarity with plotting vector fields.
- Understand the concept of a flow line.
- Learn how to determine flow lines in simple cases.

KEYWORDS: vector fields, flow lines

In this lecture we consider more general vector-valued functions known as **vector** fields. Vector fields in \mathbb{R}^2 or \mathbb{R}^3 have natural interpretations in terms of fluid flow, and the mathematical notion of a **flow line** embodies this idea.

Vector fields

In the last lecture we introduced paths as continuous functions $\underline{x}: I \to \mathbb{R}^n$, where $I \subset \mathbb{R}$ is an interval of real numbers. The image of a path is realised as a curve:

When \underline{x} is differentiable (so that the component functions of $\underline{x}(t)$ are all differentiable), we can form the velocity vector $\underline{x}'(t_0)$ at $t = t_0$. In this way, we obtain a collection of vectors based at points along the curve described by the path \underline{x} .

Keep this example in mind as we go through today's lecture.

A vector field on \mathbb{R}^n is a (continuous¹) function

$$\underline{F}: X \subseteq \mathbb{R}^n \to \mathbb{R}^n
(x_1, \dots, x_n) \mapsto \begin{bmatrix} F_1(x_1, \dots, x_n) \\ \vdots \\ F_n(x_1, \dots, x_n) \end{bmatrix}$$

which assigns to each point in X a vector in \mathbb{R}^n .

When n = 2, 3, we will represent a vector field <u>*F*</u> visually as a collection of vectors based at points in \mathbb{R}^2 or \mathbb{R}^3 .

Example:

 $^{^{1}}$ We will discuss what continuity means for functions of several variables in a couple of weeks.

1. Consider the vector field $\underline{F}(x,y) = \begin{bmatrix} x \\ y \end{bmatrix}$, defined for every $(x,y) \in \mathbb{R}^2$. We can represent this vector field

General features:

2. Consider the vector field $\underline{F}(x,y) = \begin{bmatrix} 1 \\ (x-y) \end{bmatrix}$, defined for every $(x,y) \in \mathbb{R}^2$. We can represent this vector field

General features:

Observe that long the line y = x the vector field gives horizontal vectors pointing to the right: when x = y, the vector field outputs the vector

- -

$$\underline{F}(x,x) = \begin{bmatrix} 1\\0 \end{bmatrix}$$

so that, for any point (x, x) on the line, we draw the vector $\begin{bmatrix} 1\\0 \end{bmatrix}$.

3. Consider the vector field $\underline{F}(x,y) = \begin{bmatrix} -y \\ x \end{bmatrix}$, defined for every $(x,y) \in \mathbb{R}^2$. We can represent this vector field

General features:

Observe that
$$\underline{F}(x, y) \cdot \begin{bmatrix} x \\ y \end{bmatrix} = 0$$
, for every (x, y) .

Remark: given a vector field in \mathbb{R}^2 or \mathbb{R}^3 , it can be difficult to represent the vector field visually. However, it's important to think about the general features of the vector field: Do the vectors point in a general direction in certain regions of the plane/space? Can you identify where the vectors are zero? Can you identify where the vectors are horizontal/vertical?

CHECK YOUR UNDERSTANDING Sketch the given vector fields in \mathbb{R}^2 .

1.
$$F(x,y) = \begin{bmatrix} 2\\ x \end{bmatrix}$$

2.
$$F(x,y) = \begin{bmatrix} x \\ -x \end{bmatrix}$$

3.
$$F(x,y) = \begin{bmatrix} y^2 \\ y \end{bmatrix}$$

Vector fields in nature:

Vector fields arise in lots of places. You've already been looking at vector fields since you were a child:

Figure 1: Wind reports are represented as vector fields

Other examples:

Figure 2: Vector field describing relationship between buy/sell strategy for two stocks in a certain market

Figure 3: Vector field describing relationship between two stocks with flow lines

Definition: Let \underline{F} be vector field in \mathbb{R}^n . A flow line of \underline{F} is a differentiable path $\underline{x}: I \subseteq \mathbb{R} \to \mathbb{R}^n$ satisfying

$$\underline{x}'(t) = \underline{F}(\underline{x}(t)), \text{ for every } t \in I.$$

A flow line is a path \underline{x} whose velocity vector at time t is the value of the vector field at the point $\underline{x}(t)$ on the image curve of \underline{x} .

Example:

1. Consider the vector field $\underline{F}(x,y) = \begin{bmatrix} -y \\ x \end{bmatrix}$. The vector field is plotted above.

The curve $\underline{x}(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$ is a flow line for \underline{F} : indeed,

$$\underline{x}'(t) = \begin{bmatrix} -\sin(t)\\\cos(t) \end{bmatrix}$$

and

$$\underline{F}(\underline{x}(t)) = \underline{F}\left(\begin{bmatrix}\cos(t)\\\sin(t)\end{bmatrix}\right) = \begin{bmatrix}-\sin(t)\\\cos(t)\end{bmatrix} = \underline{x}'(t), \text{ for all } t$$

Think about the relationship between the path $\underline{x}(t)$ and the general 'shape' of \underline{F} .

2. Consider the vector field $\underline{F}(x,y) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$. The vector field is plotted below.

A flow line
$$\underline{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$
 must satisfy
$$\begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix} = \underline{x}'(t) = \underline{F}\left(\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

That is, we require

 $x'(t) = 2, \quad y'(t) = 3 \implies x(t) = 2t + a, \quad y(t) = 3t + b$

Hence, the flow line must take the form

$$\underline{x}(t) = \begin{bmatrix} 2t+a\\ 3t+b \end{bmatrix}$$

This is a line in the direction $\begin{bmatrix} 2\\ 3 \end{bmatrix}$ passing through the point (a, b).