March 2 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §3.3

Vector fields and Flow lines

Learning Objectives:

- Gain familiarity with plotting vector fields.
- Understand the concept of a flow line.
- Learn how to determine flow lines in simple cases.

Keywords: vector fields, flow lines

In this lecture we consider more general vector-valued functions known as vector fields. Vector fields in \mathbb{R}^{2} or \mathbb{R}^{3} have natural interpretations in terms of fluid flow, and the mathematical notion of a flow line embodies this idea.

Vector fields

In the last lecture we introduced paths as continuous functions $\underline{x}: I \rightarrow \mathbb{R}^{n}$, where $I \subset \mathbb{R}$ is an interval of real numbers. The image of a path is realised as a curve:

When \underline{x} is differentiable (so that the component functions of $\underline{x}(t)$ are all differentiable), we can form the velocity vector $\underline{x}^{\prime}\left(t_{0}\right)$ at $t=t_{0}$. In this way, we obtain a collection of vectors based at points along the curve described by the path \underline{x}.

Keep this example in mind as we go through today's lecture.
A vector field on \mathbb{R}^{n} is a (continuous ${ }^{1}$) function

$$
\begin{aligned}
\underline{F}: X \subseteq \mathbb{R}^{n} & \rightarrow \mathbb{R}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left[\begin{array}{c}
F_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
F_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right]
\end{aligned}
$$

which assigns to each point in X a vector in \mathbb{R}^{n}.
When $n=2,3$, we will represent a vector field \underline{F} visually as a collection of vectors based at points in \mathbb{R}^{2} or \mathbb{R}^{3}.

Example:

[^0]1. Consider the vector field $\underline{F}(x, y)=\left[\begin{array}{l}x \\ y\end{array}\right]$, defined for every $(x, y) \in \mathbb{R}^{2}$. We can represent this vector field

General features:

2. Consider the vector field $\underline{F}(x, y)=\left[\begin{array}{c}1 \\ (x-y)\end{array}\right]$, defined for every $(x, y) \in \mathbb{R}^{2}$. We can represent this vector field

General features:

Observe that long the line $y=x$ the vector field gives horizontal vectors pointing to the right: when $x=y$, the vector field outputs the vector

$$
\underline{F}(x, x)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

so that, for any point (x, x) on the line, we draw the vector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
3. Consider the vector field $\underline{F}(x, y)=\left[\begin{array}{c}-y \\ x\end{array}\right]$, defined for every $(x, y) \in \mathbb{R}^{2}$. We can represent this vector field

General features:

Observe that $\underline{F}(x, y) \cdot\left[\begin{array}{l}x \\ y\end{array}\right]=0$, for every (x, y).
Remark: given a vector field in \mathbb{R}^{2} or \mathbb{R}^{3}, it can be difficult to represent the vector field visually. However, it's important to think about the general features of the vector field: Do the vectors point in a general direction in certain regions of the plane/space? Can you identify where the vectors are zero? Can you identify where the vectors have large/small magnitude? Can you identify where the vectors are horizontal/vertical?

Check your understanding
Sketch the given vector fields in \mathbb{R}^{2}.

1. $F(x, y)=\left[\begin{array}{l}2 \\ x\end{array}\right]$
2. $F(x, y)=\left[\begin{array}{c}x \\ -x\end{array}\right]$
3. $F(x, y)=\left[\begin{array}{l}y^{2} \\ y\end{array}\right]$

Vector fields in nature:

Vector fields arise in lots of places. You've already been looking at vector fields since you were a child:

Figure 1: Wind reports are represented as vector fields

Other examples:

Figure 2: Vector field describing relationship between buy/sell strategy for two stocks in a certain market

Figure 3: Vector field describing relationship between two stocks with flow lines

Definition: Let \underline{F} be vector field in \mathbb{R}^{n}. A flow line of \underline{F} is a differentiable path $\underline{x}: I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n}$ satisfying

$$
\underline{x}^{\prime}(t)=\underline{F}(\underline{x}(t)), \quad \text { for every } t \in I .
$$

A flow line is a path \underline{x} whose velocity vector at time t is the value of the vector field at the point $\underline{x}(t)$ on the image curve of \underline{x}.

Example:

1. Consider the vector field $\underline{F}(x, y)=\left[\begin{array}{c}-y \\ x\end{array}\right]$. The vector field is plotted above. The curve $\underline{x}(t)=\left[\begin{array}{c}\cos (t) \\ \sin (t)\end{array}\right]$ is a flow line for \underline{F} : indeed,

$$
\underline{x}^{\prime}(t)=\left[\begin{array}{c}
-\sin (t) \\
\cos (t)
\end{array}\right]
$$

and

$$
\underline{F}(\underline{x}(t))=\underline{F}\left(\left[\begin{array}{c}
\cos (t) \\
\sin (t)
\end{array}\right]\right)=\left[\begin{array}{c}
-\sin (t) \\
\cos (t)
\end{array}\right]=\underline{x}^{\prime}(t), \quad \text { for all } t
$$

Think about the relationship between the path $\underline{x}(t)$ and the general 'shape' of \underline{F}.
2. Consider the vector field $\underline{F}(x, y)=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. The vector field is plotted below.

A flow line $\underline{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ must satisfy

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\underline{x}^{\prime}(t)=\underline{F}\left(\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

That is, we require

$$
x^{\prime}(t)=2, \quad y^{\prime}(t)=3 \quad \Longrightarrow \quad x(t)=2 t+a, \quad y(t)=3 t+b
$$

Hence, the flow line must take the form

$$
\underline{x}(t)=\left[\begin{array}{l}
2 t+a \\
3 t+b
\end{array}\right]
$$

This is a line in the direction $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ passing through the point (a, b).

[^0]: ${ }^{1}$ We will discuss what continuity means for functions of several variables in a couple of weeks.

