Middlebury
College

March 21 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §2.3, 2.4

Partial Derivatives

Learning Objectives:

- Understand what it means for a function of several variables to be differentiable.
- Learn how to compute the matrix of partial derivatives.
- Understand the definition and basic properties of the derivative of a vector-valued function of several variables.
- Learn how to compute higher order partial derivatives.

KEYWORDS: differentiability, matrix of partial derivatives, the derivative, mixed partial derivatives

Differentiability

Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function of two variables, $(a, b) \in X$. Suppose that the partial derivatives of f at (a, b) exist. The linearisation of $f, L(x, y)$, is the function

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

and the tangent plane to the graph of f at $(a, b, f(a, b))$ is defined by the equation

$$
\begin{equation*}
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \tag{1}
\end{equation*}
$$

Differentiability of $f(x, y)$

Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function of two variables. We say that f is differentiable at $\underline{a}=(a, b) \in X$ if the partial derivatives $f_{x}(a, b), f_{y}(a, b)$ exist and if

$$
\lim _{\underline{x} \rightarrow \underline{a}} \frac{f(\underline{x})-L(\underline{x})}{|\underline{x}-\underline{a}|}=0
$$

If f is differentiable for every $\underline{a} \in X$ then we say that f is differentiable.
In words, f is differentiable at (a, b) if $L(x, y)$ provides a 'good' approximation of $f(x, y)$ near to (a, b).

Remark:

1. Analytically, 'good' means that $f(\underline{x})-L(\underline{x})$ goes to 0 faster than $|\underline{x}-\underline{a}|$.
2. This definition of differentiability extends to scalar-valued functions of n variables $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Example: Consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto 10-x^{2}-y^{2}
$$

Then, the linearisation of f at $\underline{a}=(a, b)$ is

$$
L(x, y)=10-a^{2}-b^{2}-2 a(x-a)-2 b(y-b)
$$

We have

$$
\begin{aligned}
f(x, y)-L(x, y) & =a^{2}-x^{2}+b^{2}-y^{2}+2 a(x-a)+2 b(y-b) \\
& =-(x-a)^{2}-(y-b)^{2}
\end{aligned}
$$

Then,

$$
\frac{f(x, y)-L(x, y)}{|\underline{x}-\underline{a}|}=-\left(\frac{(x-a)^{2}+(y-b)^{2}}{\sqrt{(x-a)^{2}+(y-b)^{2}}}\right)=-\sqrt{(x-a)^{2}+(y-b)^{2}}
$$

It is now not too difficult to see that

$$
\lim _{\underline{x} \rightarrow \underline{a}} \frac{f(x, y)-L(x, y)}{|\underline{x}-\underline{a}|}=0
$$

Hence, f is differentiable.
Exercise: show that

$$
\lim _{\underline{x} \rightarrow \underline{a}} \frac{f(x, y)-L(x, y)}{|\underline{x}-\underline{a}|}=0
$$

using $\epsilon-\delta$ definition.

Remark: Geometrically, f is differentiable if its graph does not have any 'corners'.

Sufficient Condition for differentiability

Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function of two variables, $(a, b) \in X$. If the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ are continuous in a sufficiently small disk centred at (a, b) then f is differentiable at (a, b).

Necessary Condition for differentiability

Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function of two variables, $(a, b) \in X$. If f is differentiable at (a, b) then f is continuous at (a, b).

Example:

1. Consider the function $f(x, y)=2 x y+\cos \left(y^{2}+x^{2}\right)$. Then,

$$
\begin{aligned}
& f_{x}(x, y)=2 y-2 x \sin \left(y^{2}+x^{2}\right) \\
& f_{y}(x, y)=2 x-2 y \cos \left(y^{2}+x^{2}\right) .
\end{aligned}
$$

Both the partial derivatives are continuous - use the Algebraic Properties of Continuous Functions (p. 111 of Colley). Hence, f is differentiable.
2. Consider the function $f(x, y)=\frac{x^{3}+5 y^{4}}{1+x^{2}+y^{2}}$, defined for all $(x, y) \in \mathbb{R}^{2}$. Then,

$$
\begin{aligned}
f_{x}(x, y) & =\frac{3 x^{2}+x^{4}+3(x y)^{2}-10 x y^{4}}{\left(1+x^{2}+y^{2}\right)^{2}} \\
f_{y}(x, y) & =\frac{20 y^{3}+20 x^{2} y^{3}+10 y^{5}-2 y x^{3}}{\left(1+x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Both of those functions are continuous - they are rational functions whose numerator/denominator are polynomial functions are continuous. Hence, $f(x, y)$ is differentiable.
3. Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{2} y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

The limit does not exist as $(x, y) \rightarrow(0,0)$ (Exercise!). Hence, $f(x, y)$ can't be continuous at $(0,0)$.

However, the partial derivatives

$$
\frac{\partial f}{\partial x}(0,0)=\lim h \rightarrow 0 \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} 0=0
$$

and

$$
\frac{\partial f}{\partial y}(0,0)=\lim h \rightarrow 0 \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} 0=0
$$

do exist. Hence, we see that we require a stronger condition than existence of partial derivatives to ensure differentiability of f at $(0,0)$.

Higher order partial derivatives

It's possible to 'mix and match' partial derivatives: given a function $f: X \subseteq \mathbb{R}^{n} \rightarrow$ \mathbb{R} we know how to compute $\frac{\partial f}{\partial x_{i}}$. We may now compute the partial deriviative of this function with respect to any of the n variables x_{1}, \ldots, x_{n}.
For example, if $f(x, y, z)=x^{2}-2 y z^{3}+\frac{3 x y^{2}}{z}$. Then,

$$
\frac{\partial f}{\partial x}=2 x+\frac{3 y^{2}}{z}, \quad \frac{\partial f}{\partial y}=-2 z^{3}+\frac{6 x y}{z}, \quad \frac{\partial f}{\partial z}=-6 y z^{2}-\frac{3 x y^{2}}{z^{2}}
$$

We may now compute the partial derivatives of each of these functions with respect to x, y, z (to obtain a total of nine new functions). We call these functions second order (or mixed) partial deriviatives of f :

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x^{2}} \stackrel{\text { def }}{=} \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=2 \\
\frac{\partial^{2} f}{\partial x \partial y} \stackrel{\text { def }}{=} \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{6 y}{z} \\
\frac{\partial^{2} f}{\partial x \partial z} \stackrel{\text { def }}{=} \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial z}\right)=-\frac{3 y^{2}}{z^{2}}, \cdots \text { etc. }
\end{gathered}
$$

Check your understanding
Compute three of the remaining six second order partial derivatives.

Clairaut's Theorem

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function of n variables, $(a, b) \in X$. If all first order and second order partial derivatives exist and are continuous then, for any $i, j=1, \ldots, n$,

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

In words, partial differentiation commutes.

The Derivative

Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function of two variables. The gradient of f at \underline{a} is the (row) vector

$$
\nabla f(\underline{a})=\left[\begin{array}{ll}
f_{x}(\underline{a}) & f_{y}(\underline{a})
\end{array}\right]
$$

Observation: we can write (1) as

$$
z=f(\underline{a})+\nabla f(\underline{a})(\underline{x}-\underline{a}), \quad \underline{x}=\left[\begin{array}{l}
x \tag{*}\\
y
\end{array}\right]
$$

The product here is muliplication of the 1×2 matrix $\nabla(f)(\underline{a})$ with the 2×1 matrix $\underline{x}-\underline{a}$.

Remark:

1. Note the analogy with the equation of a tangent line of the graph of a single variable function:

$$
y=f(a)+f^{\prime}(a)(x-a) .
$$

2. If we consider the change of coordinates

$$
\hat{x}=x-a, \quad \hat{y}=y-b, \quad \hat{z}=z-f(a, b)
$$

then $\left(1^{*}\right)$ becomes

$$
\hat{z}=\nabla f(\underline{a}) \underline{\hat{x}}, \quad \underline{\hat{x}}=\left[\begin{array}{l}
\hat{x} \\
\hat{y}
\end{array}\right]
$$

3. The above remarks generalise to scalar-valed functions $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, where we define the gradient of f at \underline{a} to be the $1 \times n$ row vector

$$
\nabla f(\underline{a})=\left[\begin{array}{llll}
f_{x_{1}}(\underline{a}) & f_{x_{2}}(\underline{a}) & \cdots & f_{x_{n}}(\underline{a})
\end{array}\right]
$$

Suppose that $\mathbf{f}: X \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a vector-valued function, $\mathbf{f}(\underline{x})=\left(f_{1}(\underline{x}), \ldots, f_{m}(\underline{x})\right)$, with each $f_{1}, \ldots, f_{m}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ a scalar-valued function.

Define the matrix of partial derivatives of \mathbf{f} at $\underline{a} \in X$, or the Jacobian matrix of \mathbf{f} at \underline{a}, to be the $m \times n$ matrix $D \mathbf{f}(\underline{a})$ having $i^{t h}$ row $\nabla f_{i}(\underline{a})$:

$$
D \mathbf{f}(\underline{a})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(\underline{a}) & \frac{\partial f_{1}}{\partial x_{1}}(\underline{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\underline{a}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\underline{a}) & \frac{\partial f_{2}}{\partial x_{2}}(\underline{a}) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(\underline{a}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\underline{a}) & \frac{\partial f_{m}}{\partial x_{2}}(\underline{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\underline{a})
\end{array}\right]
$$

We write $D \mathbf{f}(\underline{x})$, or simple $D \mathbf{f}$, for the $m \times n$ matrix whose $i j$-entry is $\frac{\partial f_{i}}{\partial x_{j}}(\underline{x})$, and call it the Jacobian of f.
Define the linearisation of \mathbf{f} at $\underline{a} \in X$ to be the function

$$
\mathbf{L}(\underline{x})=\mathbf{f}(\underline{a})+D \mathbf{f}(\underline{a})(\underline{x}-\underline{a}), \quad \underline{x} \in \mathbb{R}^{n}
$$

The product here is multiplication of the $m \times n$ matrix with the $n \times 1$ matrix $\underline{x}-\underline{a}$. In particular, $\mathbf{L}(\underline{x}) \in \mathbb{R}^{m}$.

Example: Consider the function

$$
\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto\left(x^{2}+y, 2 x y, x+y^{2}\right)
$$

Then,

$$
D \mathbf{f}(\underline{x})=\left[\begin{array}{cc}
2 x & 1 \\
2 y & 2 x \\
1 & 2 y
\end{array}\right]
$$

Differentiability of $\mathbf{f}(\underline{x})$

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a vector-valued function. We say that \mathbf{f} is differentiable at $\underline{a} \in X$ if all partial derivatives $f_{x_{i}}(\underline{a})$ exist and if

$$
\lim _{\underline{x} \rightarrow \underline{a}} \frac{\mathbf{f}(\underline{x})-\mathbf{L}(\underline{x})}{|\underline{x}-\underline{a}|}=0
$$

If \mathbf{f} is differentiable for every $\underline{a} \in X$ then we say that \mathbf{f} is differentiable.
There are analogous results as for the two variable case.

Sufficient Condition for differentiability

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \underline{a} \in X$. If all partial derivatives $f_{x_{i}}(\underline{x})$ are continuous nearby to \underline{a} then \mathbf{f} is differentiable at \underline{a}.

Necessary Condition for differentiability

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \underline{a} \in X$. If \mathbf{f} is differentiable at \underline{a} then \mathbf{f} is continuous at \underline{a}.

Moreover, we can reduce differentiability of vector-valued functions to the differentiability of its component functions

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{f}(\underline{x})=\left(f_{1}\left(\underline{x}, \ldots f_{m}(\underline{x})\right), \underline{a} \in X\right.$. If f_{1}, \ldots, f_{m} are differentiable at \underline{a} then \mathbf{f} is differentiable at \underline{a}.

What is the derivative?

Observe the similarity between the linearisation of \mathbf{f} at \underline{a}

$$
\mathbf{L}(\underline{x})=\mathbf{f}(\underline{a})+D \mathbf{f}(\underline{a})(\underline{x}-\underline{a})
$$

and function whose graph is the tangent line of a single variable function $f(x)$:

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Define the 'multiplication by $D \mathbf{f}(\underline{a})$ ' linear map

$$
T_{D \mathbf{f}(\underline{a})}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \underline{x} \mapsto D \mathbf{f}(\underline{a}) \underline{x}
$$

then the linear map $T_{D \mathbf{f}(\underline{a})}$ plays the role of the derivative.
The derivative of a vector-valued function f of several variables is the linear map defined by the Jacobian of f.

