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Partial Derivatives

Learning Objectives:
- Understand what it means for a function of several variables to be differentiable.
- Learn how to compute the matrix of partial derivatives.
- Understand the definition and basic properties of the derivative of a vector-valued
function of several variables.
- Learn how to compute higher order partial derivatives.
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Differentiability
Let f : X ⊆ R2 → R be a function of two variables, (a, b) ∈ X. Suppose that
the partial derivatives of f at (a, b) exist. The linearisation of f , L(x, y), is the
function

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)
and the tangent plane to the graph of f at (a, b, f(a, b)) is defined by the
equation

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b). (1)



Differentiability of f(x, y)

Let f : X ⊆ R2 → R be a function of two variables. We say that f is
differentiable at a = (a, b) ∈ X if the partial derivatives fx(a, b), fy(a, b)
exist and if

lim
x→a

f(x)− L(x)

|x− a|
= 0

If f is differentiable for every a ∈ X then we say that f is differentiable.

In words, f is differentiable at (a, b) if L(x, y) provides a ‘good’ approxima-
tion of f(x, y) near to (a, b).

Remark:

1. Analytically, ‘good’ means that f(x)− L(x) goes to 0 faster than |x− a|.

2. This definition of differentiability extends to scalar-valued functions of n vari-
ables f : X ⊆ Rn → R.

Example: Consider the function

f : R2 → R , (x, y) 7→ 10− x2 − y2

Then, the linearisation of f at a = (a, b) is

L(x, y) = 10− a2 − b2 − 2a(x− a)− 2b(y − b)

We have

f(x, y)− L(x, y) = a2 − x2 + b2 − y2 + 2a(x− a) + 2b(y − b)
= −(x− a)2 − (y − b)2

Then,

f(x, y)− L(x, y)

|x− a|
= −

(
(x− a)2 + (y − b)2√
(x− a)2 + (y − b)2

)
= −

√
(x− a)2 + (y − b)2

It is now not too difficult to see that

lim
x→a

f(x, y)− L(x, y)

|x− a|
= 0

Hence, f is differentiable.
Exercise: show that

lim
x→a

f(x, y)− L(x, y)

|x− a|
= 0

using ε− δ definition.



Remark: Geometrically, f is differentiable if its graph does not have any ‘corners’.

Sufficient Condition for differentiability

Let f : X ⊆ R2 → R be a function of two variables, (a, b) ∈ X. If the partial
derivatives fx(x, y) and fy(x, y) are continuous in a sufficiently small disk
centred at (a, b) then f is differentiable at (a, b).

Necessary Condition for differentiability

Let f : X ⊆ R2 → R be a function of two variables, (a, b) ∈ X. If f is
differentiable at (a, b) then f is continuous at (a, b).

Example:

1. Consider the function f(x, y) = 2xy + cos(y2 + x2). Then,

fx(x, y) = 2y − 2x sin(y2 + x2),

fy(x, y) = 2x− 2y cos(y2 + x2).

Both the partial derivatives are continuous - use the Algebraic Properties of
Continuous Functions (p.111 of Colley). Hence, f is differentiable.

2. Consider the function f(x, y) = x3+5y4

1+x2+y2
, defined for all (x, y) ∈ R2. Then,

fx(x, y) =
3x2 + x4 + 3(xy)2 − 10xy4

(1 + x2 + y2)2

fy(x, y) =
20y3 + 20x2y3 + 10y5 − 2yx3

(1 + x2 + y2)2

Both of those functions are continuous - they are rational functions whose nu-
merator/denominator are polynomial functions are continuous. Hence, f(x, y)
is differentiable.

3. Consider the function

f(x, y) =

{
x2y2

x2+y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

The limit does not exist as (x, y) → (0, 0) (Exercise!). Hence, f(x, y) can’t
be continuous at (0, 0).



However, the partial derivatives

∂f

∂x
(0, 0) = limh→ 0

f(h, 0)− f(0, 0)

h
= lim

h→0
0 = 0

and
∂f

∂y
(0, 0) = limh→ 0

f(0, h)− f(0, 0)

h
= lim

h→0
0 = 0

do exist. Hence, we see that we require a stronger condition than existence of
partial derivatives to ensure differentiability of f at (0, 0).

Higher order partial derivatives
It’s possible to ‘mix and match’ partial derivatives: given a function f : X ⊆ Rn →
R we know how to compute ∂f

∂xi
. We may now compute the partial deriviative of this

function with respect to any of the n variables x1, . . . , xn.

For example, if f(x, y, z) = x2 − 2yz3 + 3xy2

z
. Then,

∂f

∂x
= 2x+

3y2

z
,

∂f

∂y
= −2z3 +

6xy

z
,

∂f

∂z
= −6yz2 − 3xy2

z2

We may now compute the partial derivatives of each of these functions with respect
to x, y, z (to obtain a total of nine new functions). We call these functions second
order (or mixed) partial deriviatives of f :

∂2f

∂x2
def
=

∂

∂x

(
∂f

∂x

)
= 2

∂2f

∂x∂y

def
=

∂

∂x

(
∂f

∂y

)
=

6y

z

∂2f

∂x∂z

def
=

∂

∂x

(
∂f

∂z

)
= −3y2

z2
, · · · etc.

Check your understanding
Compute three of the remaining six second order partial derivatives.

Clairaut’s Theorem

Let f : X ⊆ Rn → R be a function of n variables, (a, b) ∈ X. If all first order
and second order partial derivatives exist and are continuous then, for any
i, j = 1, . . . , n,

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

In words, partial differentiation commutes.



The Derivative
Let f : X ⊆ R2 → R be a function of two variables. The gradient of f at a is the
(row) vector

∇f(a) =
[
fx(a) fy(a)

]
Observation: we can write (1) as

z = f(a) +∇f(a)(x− a), x =

[
x
y

]
(1*)

The product here is muliplication of the 1× 2 matrix ∇(f)(a) with the 2× 1 matrix
x− a.

Remark:

1. Note the analogy with the equation of a tangent line of the graph of a single
variable function:

y = f(a) + f ′(a)(x− a).

2. If we consider the change of coordinates

x̂ = x− a, ŷ = y − b, ẑ = z − f(a, b)

then (1*) becomes

ẑ = ∇f(a)x̂, x̂ =

[
x̂
ŷ

]
3. The above remarks generalise to scalar-valed functions f : X ⊆ Rn → R, where

we define the gradient of f at a to be the 1× n row vector

∇f(a) =
[
fx1(a) fx2(a) · · · fxn(a)

]
Suppose that f : X ⊂ Rn → Rm is a vector-valued function, f(x) = (f1(x), . . . , fm(x)),
with each f1, . . . , fm : X ⊆ Rn → R a scalar-valued function.

Define the matrix of partial derivatives of f at a ∈ X, or the Jacobian matrix
of f at a, to be the m× n matrix Df(a) having ith row ∇fi(a):

Df(a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)
...

...
. . .

...
∂fm
∂x1

(a) ∂fm
∂x2

(a) · · · ∂fm
∂xn

(a)


We write Df(x), or simple Df , for the m × n matrix whose ij-entry is ∂fi

∂xj
(x), and

call it the Jacobian of f .

Define the linearisation of f at a ∈ X to be the function

L(x) = f(a) +Df(a)(x− a), x ∈ Rn

The product here is multiplication of the m× n matrix with the n× 1 matrix x− a.
In particular, L(x) ∈ Rm.



Example: Consider the function

f : R2 → R3 , (x, y) 7→ (x2 + y, 2xy, x+ y2)

Then,

Df(x) =

2x 1
2y 2x
1 2y


Differentiability of f(x)

Let f : X ⊆ Rn → Rm be a vector-valued function. We say that f is
differentiable at a ∈ X if all partial derivatives fxi

(a) exist and if

lim
x→a

f(x)− L(x)

|x− a|
= 0

If f is differentiable for every a ∈ X then we say that f is differentiable.

There are analogous results as for the two variable case.

Sufficient Condition for differentiability

Let f : X ⊆ Rn → Rm, a ∈ X. If all partial derivatives fxi
(x) are continuous

nearby to a then f is differentiable at a.

Necessary Condition for differentiability

Let f : X ⊆ Rn → Rm, a ∈ X. If f is differentiable at a then f is continuous
at a.

Moreover, we can reduce differentiability of vector-valued functions to the differen-
tiability of its component functions

Let f : X ⊆ Rn → Rm, f(x) = (f1(x, . . . fm(x)), a ∈ X. If f1, . . . , fm are
differentiable at a then f is differentiable at a.

What is the derivative?
Observe the similarity between the linearisation of f at a

L(x) = f(a) +Df(a)(x− a)

and function whose graph is the tangent line of a single variable function f(x):

L(x) = f(a) + f ′(a)(x− a)

Define the ‘multiplication by Df(a)’ linear map

TDf(a) : Rn → Rm , x 7→ Df(a)x

then the linear map TDf(a) plays the role of the derivative.

The derivative of a vector-valued function f of several variables is
the linear map defined by the Jacobian of f .


