Multivariable Calculus Spring 2018

Contact: gmelvin@middlebury.edu

MARCH 19 LECTURE

TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §2.3

PARTIAL DERIVATIVES

LEARNING OBJECTIVES:

- Understand the definition of a partial derivative of a function of several variables.
- Learn how to compute partial derivatives.
- Understand the definition of a linear approximation of a function of two variables.

KEYWORDS: partial derivative, tangent plane, linear approximation

Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be function of several variables. Define the partial derivative of f with respect to x_i , denoted $\frac{\partial f}{\partial x_i}$, to be the function of several variables

$$\frac{\partial f}{\partial x_i}(\underline{x}) = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$

defined for those $\underline{x} = (x_1, \ldots, x_n) \in X$ such that this limit exists.

How can we make sense of this definition?

Consider the function

$$f: \{(x,y) \mid y \neq 0\} \to \mathbb{R} \; , \; (x,y) \mapsto \frac{3x^2}{y} - xy^2 + 2y$$

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{3(x+h)^2}{y} - (x+h)y^2 + 2y - \left(\frac{3x^2}{y} - xy^2 + 2y \right) \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{6hx}{y} + \frac{3h^2}{y} - hy^2 \right)$$

$$= \lim_{h \to 0} \left(\frac{6x}{y} + \frac{3h}{y} - y^2 \right) = \frac{6x}{y} - y^2$$

$$\frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{3x^2}{y+h} - x(y+h)^2 + 2(y+h) - (\frac{3x^2}{y} - xy^2 + 2y) \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{-3x^2h}{y(y+h)} - 2xyh - xh^2 + 2h \right)$$

$$= \lim_{h \to 0} \left(\frac{-3x^2}{y(y+h)} - 2xy - xh + 2 \right) = \frac{-3x^2}{y^2} - 2xy - x + 2$$

Observation:

- $\frac{\partial f}{\partial x}(x,y)$ is obtained from f(x,y) by differentiating with respect to x and treating y as a constant.
- $\frac{\partial f}{\partial y}(x,y)$ is obtained from f(x,y) by differentiating with respect to y and treating x as a constant.

Computation of partial derivatives

Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function. To compute $\frac{\partial f}{\partial x_i}$ you should treat all variables x_j , $j \neq i$, as constants, and differentiate (as usual) f with respect to x_i .

Example:

1. Let $f(x,y) = \frac{x}{y}$. Then

$$\frac{\partial f}{\partial x} = \frac{1}{y}, \qquad \frac{\partial f}{\partial y} = \frac{-x}{y^2}$$

2. Let $f(x,y) = \frac{2x^2+y^2}{x^2+y^2}$. Then,

$$\frac{\partial f}{\partial x} = \frac{4x(x^2 + y^2) - (2x^2 + y^2)2x}{(x^2 + y^2)^2} = \frac{2xy^2}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial y} = \frac{2y(x^2 + y^2) - (2x^2 + y^2)2y}{(x^2 + y^2)^2} = \frac{-2yx^2}{(x^2 + y^2)^2}$$

3. Let $f(x, y, z) = \sin(x^2z + y) - 2xyz^3 + 5y - 2$. Then,

$$rac{\partial f}{\partial x} = \cos(x^2z + y)2xz - 2yz^3,$$
 $rac{\partial f}{\partial y} = \cos(x^2z + y) - 2xz^3 + 5,$

$$\frac{\partial f}{\partial z} = \cos(x^2 z + y)x^2 - 6xyz^2.$$

CHECK YOUR UNDERSTANDING

Compute $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$, where $f(x,y,z) = \frac{(xyz)^2}{x+y+z}$. Recall the quotient rule $\left(\frac{u}{v}\right)' = \frac{vu'-uv'}{v^2}$

$$\frac{\partial f}{\partial x} = \frac{(x+y+2)^2z^2-(xy+2)^2}{(x+y+2)^2}$$

$$\frac{2f}{2y} = \frac{(x+y+2)^2 + 2^2 - (xy^2)^2}{(x+y+2)^2}$$

$$\frac{2f}{2z} = \frac{(x+y+z)2zx^2y^2 - (xyz)^2}{(x+y+z)^2}$$

Remark: We will also denote the partial derivative of f with respect to x_i , $\frac{\partial f}{\partial x_i}$, by

$$D_{x_i}f(x_1,\ldots,x_n)$$
 and $f_{x_i}(x_1,\ldots,x_n)$.

Geometric interpretation of partial derivatives Consider a function of two variables $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$, $\underline{a} = (a, b) \in X$.

• Define the single variable function $F_b(x) = f(x, b)$. Then,

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} = \lim_{h \to 0} \frac{F_b(a+h) - F_b(a)}{h} = F_b'(a),$$

the derivative of $F_b(x)$ at x = a, if this limit exists. The graph of the single variable function $F_b(x)$ is the curve obtained by intersecting $\Gamma(f)$, the graph of f(x,y), with the plane y = b. Then, $\frac{\partial f}{\partial x}(a,b)$ is the slope of the curve at (a,b,f(a,b)).

We may parameterise this curve $\underline{r}_{F_b}(t) = \begin{bmatrix} t \\ b \\ f(t,b) \end{bmatrix}$.

• Define the single variable function $G_a(y) = f(a, y)$. Then,

$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h} = \lim_{h \to 0} \frac{G_a(b+h) - G_a(b)}{h} = G'_a(b),$$

the derivative of $G_a(y)$ at y = b, if this limit exists. The graph of the single variable function $G_a(y)$ is the curve obtained by intersecting $\Gamma(f)$, the graph of f(x,y), with the plane x=a. Then, $\frac{\partial f}{\partial y}(a,b)$ is the slope of this curve at (a,b,f(a,b)).

We may parameterise this curve $\underline{r}_{G_a}(t) = \begin{bmatrix} a \\ t \\ f(a,t) \end{bmatrix}$.

Linear Approximations

Let $f: X \subset \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables, $\underline{a} = (a, b) \in X$. Suppose that $\frac{\partial f}{\partial x}(a, b)$ and $\frac{\partial f}{\partial y}(a, b)$ are defined (i.e. the limits exist). Define the linear approximation of f(x, y) at \underline{a} to be the function

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

The graph $\Gamma(L)$ of L(x,y) is defined by the equation

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

This is the equation of the plane

$$-f_x(a,b)x - f_y(a,b)y + z = f(a,b) - f_x(a,b)a - f_y(a,b)b$$

having normal vector
$$\underline{n} = \begin{bmatrix} -f_x(a,b) \\ -f_y(a,b) \end{bmatrix}$$
 and passing through $(a,b,f(a,b))$.

It can be shown that $\underline{n} = \underline{r}'_{F_b}(a) \times \underline{r}'_{G_a}(b)$ (Exercise!). In particular, the graph of the linear approximation L(x,y) is tangent to the graphs of $F_b(x)$ and $G_a(y)$. We call this plane the tangent plane to $\Gamma(f)$ at \underline{a} (should it exist).

The following definition will be useful.

Definition: Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function of several variables, $\underline{a} \in X$. Define the gradient of f at \underline{a} to be the vector (should it exist)

$$\nabla f(\underline{a}) = \begin{bmatrix} f_{x_1}(\underline{a}) \\ \vdots \\ f_{x_n}(\underline{a}) \end{bmatrix}$$

We say 'grad f' for ∇f .

Example: Let $f(x,y) = 10 - x^2 - y^2$. Then, the linear approximation of f(x,y) at (1,2) is

$$L(x,y) = 5 - 2(x-1) - 4(y-2)$$

The tangent plane to the graph of f at (1,2) is plane

$$z = 5 - 2(x - 1) - 4(y - 2)$$
 \implies $2x + 4y + z = 15$

The tangent plane provides a linear approximation to the graph of f nearby to (a,b,f(a,b)). In particular, compute

$$L(0.9, 2.1) = 5 - 2(-0.1) - 4(0.1) = 4.8$$

Compare this with

$$f(0.9, 2.1) = 10 - (0.9)^2 - (2.1)^2 = 4.78$$