Middlebury College

March 19 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §2.3

Partial Derivatives

Learning Objectives:

- Understand the definition of a partial derivative of a function of several variables.
- Learn how to compute partial derivatives.
- Understand the definition of a linear approximation of a function of two variables.

KEYWORDS: partial derivative, tangent plane, linear approximation

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be function of several variables. Define the partial derivative of f with respect to x_{i}, denoted $\frac{\partial f}{\partial x_{i}}$, to be the function of several variables

$$
\frac{\partial f}{\partial x_{i}}(\underline{x})=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}
$$

defined for those $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in X$ such that this limit exists.

How can we make sense of this definition?

Consider the function

$$
f:\{(x, y) \mid y \neq 0\} \rightarrow \mathbb{R},(x, y) \mapsto \frac{3 x^{2}}{y}-x y^{2}+2 y
$$

Then,

$$
\begin{aligned}
\frac{\partial f}{\partial x}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{3(x+h)^{2}}{y}-(x+h) y^{2}+2 y-\left(\frac{3 x^{2}}{y}-x y^{2}+2 y\right)\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{6 h x}{y}+\frac{3 h^{2}}{y}-h y^{2}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{6 x}{y}+\frac{3 h}{y}-y^{2}\right)=\frac{6 x}{y}-y^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial f}{\partial y}(x, y) & =\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{3 x^{2}}{y+h}-x(y+h)^{2}+2(y+h)-\left(\frac{3 x^{2}}{y}-x y^{2}+2 y\right)\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-3 x^{2} h}{y(y+h)}-2 x y h-x h^{2}+2 h\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{-3 x^{2}}{y(y+h)}-2 x y-x h+2\right)=\frac{-3 x^{2}}{y^{2}}-2 x y-x+2
\end{aligned}
$$

Observation:

- $\frac{\partial f}{\partial x}(x, y)$ is obtained from $f(x, y)$ by differentiating with respect to x and treating y as a constant.
- $\frac{\partial f}{\partial y}(x, y)$ is obtained from $f(x, y)$ by differentiating with respect to y and treating x as a constant.

Computation of partial derivatives

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function. To compute $\frac{\partial f}{\partial x_{i}}$ you should treat all variables $x_{j}, j \neq i$, as constants, and differentiate (as usual) f with respect to x_{i}.

Example:

1. Let $f(x, y)=\frac{x}{y}$. Then

$$
\frac{\partial f}{\partial x}=\frac{1}{y}, \quad \frac{\partial f}{\partial y}=\frac{-x}{y^{2}}
$$

2. Let $f(x, y)=\frac{2 x^{2}+y^{2}}{x^{2}+y^{2}}$. Then,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{4 x\left(x^{2}+y^{2}\right)-\left(2 x^{2}+y^{2}\right) 2 x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial f}{\partial y}=\frac{2 y\left(x^{2}+y^{2}\right)-\left(2 x^{2}+y^{2}\right) 2 y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-2 y x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

3. Let $f(x, y, z)=\sin \left(x^{2} z+y\right)-2 x y z^{3}+5 y-2$. Then,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\cos \left(x^{2} z+y\right) 2 x z-2 y z^{3} \\
& \frac{\partial f}{\partial y}=\cos \left(x^{2} z+y\right)-2 x z^{3}+5 \\
& \frac{\partial f}{\partial z}=\cos \left(x^{2} z+y\right) x^{2}-6 x y z^{2}
\end{aligned}
$$

Check your understanding
Compute $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$, where $f(x, y, z)=\frac{(x y z)^{2}}{x+y+z}$. Recall the quotient rule $\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$

Remark: We will also denote the partial derivative of f with respect to $x_{i}, \frac{\partial f}{\partial x_{i}}$, by

$$
D_{x_{i}} f\left(x_{1}, \ldots, x_{n}\right) \quad \text { and } \quad f_{x_{i}}\left(x_{1}, \ldots, x_{n}\right)
$$

Geometric interpretation of partial derivatives

Consider a function of two variables $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}, \underline{a}=(a, b) \in X$.

- Define the single variable function $F_{b}(x)=f(x, b)$. Then,

$$
\frac{\partial f}{\partial x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}=\lim _{h \rightarrow 0} \frac{F_{b}(a+h)-F_{b}(a)}{h}=F_{b}^{\prime}(a),
$$

the derivative of $F_{b}(x)$ at $x=a$, if this limit exists. The graph of the single variable function $F_{b}(x)$ is the curve obtained by intersecting $\Gamma(f)$, the graph of $f(x, y)$, with the plane $y=b$. Then, $\frac{\partial f}{\partial x}(a, b)$ is the slope of the curve at $(a, b, f(a, b))$.

We may parameterise this curve $\underline{r}_{F_{b}}(t)=\left[\begin{array}{c}t \\ b \\ f(t, b)\end{array}\right]$.

- Define the single variable function $G_{a}(y)=f(a, y)$. Then,

$$
\frac{\partial f}{\partial y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h}=\lim _{h \rightarrow 0} \frac{G_{a}(b+h)-G_{a}(b)}{h}=G_{a}^{\prime}(b),
$$

the derivative of $G_{a}(y)$ at $y=b$, if this limit exists. The graph of the single variable function $G_{a}(y)$ is the curve obtained by intersecting $\Gamma(f)$, the graph of $f(x, y)$, with the plane $x=a$. Then, $\frac{\partial f}{\partial y}(a, b)$ is the slope of this curve at $(a, b, f(a, b))$.

We may parameterise this curve $\underline{r}_{G_{a}}(t)=\left[\begin{array}{c}a \\ t \\ f(a, t)\end{array}\right]$.

Linear Approximations

Let $f: X \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function of two variables, $\underline{a}=(a, b) \in X$. Suppose that $\frac{\partial f}{\partial x}(a, b)$ and $\frac{\partial f}{\partial y}(a, b)$ are defined (i.e. the limits exist). Define the linear approximation of $f(x, y)$ at \underline{a} to be the function

$$
L(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

The graph $\Gamma(L)$ of $L(x, y)$ is defined by the equation

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

This is the equation of the plane

$$
-f_{x}(a, b) x-f_{y}(a, b) y+z=f(a, b)-f_{x}(a, b) a-f_{y}(a, b) b
$$

having normal vector $\underline{n}=\left[\begin{array}{c}-f_{x}(a, b) \\ -f_{y}(a, b) \\ 1\end{array}\right]$ and passing through $(a, b, f(a, b))$.
It can be shown that $\underline{n}=\underline{r}_{F_{b}}^{\prime}(a) \times \underline{r}_{G_{a}}^{\prime}(b)$ (Exercise!). In particular, the graph of the linear approximation $L(x, y)$ is tangent to the graphs of $F_{b}(x)$ and $G_{a}(y)$. We call this plane the tangent plane to $\Gamma(f)$ at \underline{a} (should it exist).

The following definition will be useful.
Definition: Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function of several variables, $\underline{a} \in X$. Define the gradient of f at \underline{a} to be the vector (should it exist)

$$
\nabla f(\underline{a})=\left[\begin{array}{c}
f_{x_{1}}(\underline{a}) \\
\vdots \\
f_{x_{n}}(\underline{a})
\end{array}\right]
$$

We say 'grad f ' for ∇f.
Example: Let $f(x, y)=10-x^{2}-y^{2}$. Then, the linear approximation of $f(x, y)$ at $(1,2)$ is

$$
L(x, y)=5-2(x-1)-4(y-2)
$$

The tangent plane to the graph of f at $(1,2)$ is plane

$$
z=5-2(x-1)-4(y-2) \quad \Longrightarrow \quad 2 x+4 y+z=15
$$

The tangent plane provides a linear approximation to the graph of f nearby to $(a, b, f(a, b))$. In particular, compute

$$
L(0.9,2.1)=5-2(-0.1)-4(0.1)=4.8
$$

Compare this with

$$
f(0.9,2.1)=10-(0.9)^{2}-(2.1)^{2}=4.78
$$

