March 16 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §2.2

Limits \& Continuity

Learning Objectives:

- Understand the rigorous definition of a limit of a function of several variables.
- Learn the basic properties of limits.
- Understand the definition of continuity for a function of several variables.

Keywords: limit, continuity

Rigorous definition of limit

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function. We write $\lim _{\underline{x} \rightarrow \underline{\mathbf{f}}} \mathbf{f}(\underline{x})=\underline{L}$ if, given any $\epsilon>0$, you can find $\delta>0$ such that

$$
\text { if } \underline{x} \in X \text { and } 0<|\underline{x}-\underline{a}|<\delta \text { then }|\mathbf{f}(\underline{x})-\underline{L}|<\epsilon
$$

We call \underline{L} the limit of \mathbf{f} as \underline{x} tends to \underline{a}.

Example:

1. We saw last lecture that, if \mathbf{f} is the function

$$
\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(x, y, 2 y)
$$

then $\lim _{\underline{x} \rightarrow(1,1)} \mathbf{f}(x, y)=(1,1,2)$ using the rigorous definition.
2. Define the function

$$
p_{x}: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \mapsto x
$$

If $\underline{a}=(a, b)$ we claim (unsurprisingly) that $\lim _{\underline{x} \rightarrow \underline{a}} p_{x}(x, y)=a$: indeed, suppose we are given $\epsilon>0$. Take $\delta=\epsilon$. Then, for any $\underline{x}=(x, y)$ satisfying

$$
0<|\underline{x}-\underline{a}|=\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta
$$

we find

$$
\left|p_{x}(x, y)-a\right|=|x-a|<\delta=\epsilon .
$$

Here we use that, when $x \neq a$,

$$
\sqrt{(x-a)^{2}+(y-b)^{2}}=|x-a| \sqrt{1+\frac{(y-b)^{2}}{(x-a)^{2}}} \geq|x-a|
$$

Similarly, we could define p_{y} and p_{z} (or, more generally $p_{x_{i}}$) and obtain analogous results. (Exercise: formulate and prove these results).

Remark: You will have seen a similar definition for the limit of a single variable function in Calculus I.

Determining limits of several variable functions

In general, checking the $\epsilon-\delta$ definition gets very messy very quickly.
Observation: Let $\underline{a} \in \mathbb{R}^{n}$, where $n=2$, 3 . If $\underline{x} \in \mathbb{R}^{n}$ satisfies $|\underline{x}-\underline{a}|<\delta$ then \underline{x} lies inside the disc/sphere of radius δ, centred at \underline{a}.

Therefore, the statement $\lim _{\underline{x} \rightarrow \underline{a}} \mathbf{f}(\underline{x})=\underline{L}$ means that, as \underline{x} moves towards \underline{a}, $\mathbf{f}(\underline{x})$ moves towards \underline{L}, irrespective of the path \underline{x} takes to get close to \underline{a}.

Example:

1. Consider the function

$$
f: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R},(x, y) \mapsto \frac{2 x^{2}+y^{2}}{x^{2}+y^{2}}
$$

This function is not defined at $(0,0)$ - we can't evaluate the quantity $\frac{0}{0}$. However, we could still ask whether $\lim _{\underline{x} \rightarrow(0,0)} \mathbf{f}(\underline{x})$ exists.
If this limit did exist then it will be the same no matter how we approach $(0,0)$. For example, if we approach $(0,0)$ along the x-axis, where $y=0$, then

$$
\mathbf{f}(x, 0)=\frac{2 x^{2}+0}{x^{2}+0}=2, \quad x \neq 0
$$

This means that the function \mathbf{f} is constant along the x-axis. Similarly, if we approach 0 along the y-axis, where $x=0$, then

$$
\mathbf{f}(0, y)=\frac{0+y^{2}}{0+y^{2}}=1 \quad y \neq 0
$$

We see that approaching $(0,0)$ from two different directions gives rise to two distinct values for the limit. Therefore, $\lim _{\underline{x} \rightarrow(0,0)} \mathbf{f}(\underline{x})$ does not exist.
2. We can also use different coordinate systems: consider the function

$$
g: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}, \quad(x, y) \mapsto \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

In polar coordinates we have

$$
g(r \cos \theta, r \sin \theta)=\frac{r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta}{r^{2}}=\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta
$$

Evaluating $\lim _{(x, y) \rightarrow(0,0)} g(x, y)$ is the same as understanding the behaviour of $g(r \cos \theta, r \sin \theta)$ as $r \rightarrow 0$: in particular, there is no restriction on θ. Moreover, if this limit exists then it should be independent of θ. However, we see that

$$
\lim _{r \rightarrow 0} g(r \cos \theta, r \sin \theta)=\lim _{r \rightarrow 0} \cos 2 \theta=\cos 2 \theta
$$

so that the limit can't possibly exist.
Exercise: how does this approach using polar coordinates relate to determining the limit by approaching $(0,0)$ along the x and y axes?
3. We can also use different coordiante systems to determine limits: consider the function

$$
h: \mathbb{R}^{2}-\left\{(0,0\} \rightarrow \mathbb{R}, \quad(x, y) \mapsto \frac{x^{4}+3 y^{5}}{x^{2}+y^{2}}\right.
$$

Then, in polar coordinates

$$
h(r \cos \theta, r \sin \theta)=r^{2}\left(\cos ^{4} \theta+3 r \sin ^{5} \theta\right)
$$

Then, we certainly have

$$
\begin{gathered}
-3 r \leq \cos ^{4} \theta+3 r \sin ^{5} \theta \leq 1+3 r \\
\Longrightarrow \quad-3 r^{3} \leq h(r \cos \theta, r \sin \theta) \leq r^{2}+3 r^{3}
\end{gathered}
$$

Thus, by the Squeeze Theorem,

$$
\lim _{(x, y) \rightarrow(0,0)} h(x, y)=\lim _{r \rightarrow 0} h(r \cos \theta, r \sin \theta)=0
$$

Properties of Limits

Determining the limit of a function of several variables using the rigorous definition is difficult. This is why Theorems are helpful: they are tools that make life easier for us. An intuitively obvious, but very important, result is the following:

Theorem: (Uniqueness of Limits) If a limit exists then it is unique.
We also have the following:

Algebraic Properties of Limits

1. If $\lim _{\underline{x} \rightarrow \underline{a}} \mathbf{f}(x)=\underline{L}$ and $\lim _{\underline{x} \rightarrow \underline{a}} \mathbf{g}(x)=\underline{M}$ then
$\lim _{\underline{x} \rightarrow \underline{a}}(\mathbf{f}+\mathbf{g})(x)=\underline{L}+\underline{M}$.
2. If $\lim _{\underline{x} \rightarrow \underline{a}} \mathbf{f}(x)=\underline{L}$ then $\lim _{\underline{x} \rightarrow \underline{a}}(k \mathbf{f})(x)=k \underline{L}$, for any scalar k.
3. If f, g are scalar-valued functions, $\lim _{\underline{x} \rightarrow \underline{a}} f(x)=L$ and $\lim _{\underline{x} \rightarrow \underline{a}} g(x)=M$, with $M \neq 0$, then $\lim _{\underline{x} \rightarrow \underline{a}}\left(\frac{f}{g}\right)(x)=\frac{L}{M}$.

Example: A polynomial function in x, y is a function of the form (e.g.)

$$
f(x, y)=x^{2} y^{3}-10 y^{3}+x^{3} y^{2}+x+2
$$

If $\underline{a}=(a, b)$ then for a polynomial function $f(x, y)$

$$
\lim _{\underline{x} \rightarrow \underline{a}} f(x, y)=f(a, b)
$$

To see this for the example above, note the equality of functions (where p_{x}, p_{y} are defined above)

$$
\begin{equation*}
f(x, y)=\left(\left(p_{x}\right)^{2}\left(p_{y}\right)^{3}-10\left(p_{y}\right)^{3}+\left(p_{x}\right)^{3}\left(p_{y}\right)^{2}+p_{x}+2\right)(x, y) \tag{*}
\end{equation*}
$$

Since we've shown that $\lim _{\underline{x} \rightarrow \underline{a}} p_{x}(x, y)=a$, and it's not too hard to show that $\lim _{\underline{x} \rightarrow \underline{a}} p_{y}(x, y)=b$, we can use the Algebraic Properties and ($*$) to obtain

$$
\lim _{\underline{x} \rightarrow \underline{a}} f(x, y)=a^{2} b^{3}-10 b^{3}+a^{3} b^{2}+a+2=f(a, b)
$$

There's an analogous notion of a polynomial function $f(\underline{x})$ in n variables $\underline{x}=$ $\left(x_{1}, \ldots x_{n}\right)$.

Continuity

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function of several variables, $\underline{a} \in X$. We say that \mathbf{f} is continuous at \underline{a} if

$$
\lim _{\underline{x} \rightarrow \underline{a}} \mathbf{f}(\underline{x})=\mathbf{f}(\underline{a})
$$

We say that \mathbf{f} is continuous if it is continuous at \underline{a}, for every $\underline{a} \in X$.
Remark: 1. A scalar-valued function $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous if its graph $\Gamma(f)$ admits no jumps/breaks/gaps.
2. The Algebraic Properties of Limits translate into Algebraic Properties of Continuous Functions (see p. 111 of Colley).

Example:

1. A polynomial function $f(\underline{x})$ in n variables is continuous.
2. The function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R},\left\{\begin{array}{l}
\frac{2 x^{2}+y^{2}}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0) \\
0, \quad(x, y)=(0,0)
\end{array}\right.
$$

is not continuous at $(0,0): \lim _{\underline{x} \rightarrow(0,0)} f(x, y)$ does not even exist.
3. The function

$$
g: \mathbb{R}^{2} \rightarrow \mathbb{R},\left\{\begin{array}{l}
\frac{x^{4}+3 y^{5}}{x^{2}+y^{2}}, \quad(x, y) \neq(0,0) \\
0, \quad(x, y)=(0,0)
\end{array}\right.
$$

is continuous at $(x, y)=(0,0)$: we've shown above that $\lim _{\underline{x} \rightarrow(0,0)} g(x, y)=0=$ $g(0,0)$. In fact, this function is continuous (i.e. continuous at all $\underline{a} \in \mathbb{R}^{2}$).
The following result reduces the analysis of vector-valued continuous functions to that of scalar-valued continuous functions.

Theorem: Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a functions of several variables, $\mathbf{f}(\underline{x})=\left(f_{1}(\underline{x}), \ldots, f_{m}(\underline{x})\right)$. Then, \mathbf{f} is continuous at $\underline{a} \in X$ if and only if the component functions $f_{1}(\underline{x}), \ldots f_{m}(\underline{x})$ are continuous at $\underline{a} \in X$.

