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Learning Objectives:
- Understand the rigorous definition of a limit of a function of several variables.
- Learn the basic properties of limits.
- Understand the definition of continuity for a function of several variables.

Keywords: limit, continuity

Rigorous definition of limit

Let f : X ⊆ Rn → Rm be a function. We write limx→a f(x) = L if,
given any ε > 0, you can find δ > 0 such that

if x ∈ X and 0 < |x− a| < δ then |f(x)− L| < ε

We call L the limit of f as x tends to a.

Example:

1. We saw last lecture that, if f is the function

f : R2 → R3 , (x, y) 7→ (x, y, 2y)

then limx→(1,1) f(x, y) = (1, 1, 2) using the rigorous definition.

2. Define the function
px : R2 → R , (x, y) 7→ x

If a = (a, b) we claim (unsurprisingly) that limx→a px(x, y) = a: indeed, suppose
we are given ε > 0. Take δ = ε. Then, for any x = (x, y) satisfying

0 < |x− a| =
√

(x− a)2 + (y − b)2 < δ

we find
|px(x, y)− a| = |x− a| < δ = ε.

Here we use that, when x 6= a,

√
(x− a)2 + (y − b)2 = |x− a|

√
1 +

(y − b)2
(x− a)2

≥ |x− a|

Similarly, we could define py and pz (or, more generally pxi
) and obtain analo-

gous results. (Exercise: formulate and prove these results).



Remark: You will have seen a similar definition for the limit of a single variable
function in Calculus I.

Determining limits of several variable functions
In general, checking the ε− δ definition gets very messy very quickly.
Observation: Let a ∈ Rn, where n = 2, 3. If x ∈ Rn satisfies |x− a| < δ then x lies
inside the disc/sphere of radius δ, centred at a.

•
a•

x

δ

Therefore, the statement limx→a f(x) = L means that, as x moves towards a,
f(x) moves towards L, irrespective of the path x takes to get close to a.

Example:

1. Consider the function

f : R2 − {(0, 0)} → R , (x, y) 7→ 2x2 + y2

x2 + y2

This function is not defined at (0, 0) - we can’t evaluate the quantity 0
0
. How-

ever, we could still ask whether limx→(0,0) f(x) exists.

If this limit did exist then it will be the same no matter how we approach (0, 0).
For example, if we approach (0, 0) along the x-axis, where y = 0, then

f(x, 0) =
2x2 + 0

x2 + 0
= 2, x 6= 0

This means that the function f is constant along the x-axis. Similarly, if we
approach 0 along the y-axis, where x = 0, then

f(0, y) =
0 + y2

0 + y2
= 1 y 6= 0

We see that approaching (0, 0) from two different directions gives rise to two
distinct values for the limit. Therefore, limx→(0,0) f(x) does not exist.

2. We can also use different coordinate systems: consider the function

g : R2 − {(0, 0)} → R , (x, y) 7→ x2 − y2

x2 + y2

In polar coordinates we have

g(r cos θ, r sin θ) =
r2 cos2 θ − r2 sin2 θ

r2
= cos2 θ − sin2 θ = cos 2θ



Evaluating lim(x,y)→(0,0) g(x, y) is the same as understanding the behaviour of
g(r cos θ, r sin θ) as r → 0: in particular, there is no restriction on θ. Moreover,
if this limit exists then it should be independent of θ. However, we see that

lim
r→0

g(r cos θ, r sin θ) = lim
r→0

cos 2θ = cos 2θ

so that the limit can’t possibly exist.

Exercise: how does this approach using polar coordinates relate to determin-
ing the limit by approaching (0, 0) along the x and y axes?

3. We can also use different coordiante systems to determine limits: consider
the function

h : R2 − {(0, 0} → R , (x, y) 7→ x4 + 3y5

x2 + y2

Then, in polar coordinates

h(r cos θ, r sin θ) = r2(cos4 θ + 3r sin5 θ)

Then, we certainly have

−3r ≤ cos4 θ + 3r sin5 θ ≤ 1 + 3r

=⇒ −3r3 ≤ h(r cos θ, r sin θ) ≤ r2 + 3r3

Thus, by the Squeeze Theorem,

lim
(x,y)→(0,0)

h(x, y) = lim
r→0

h(r cos θ, r sin θ) = 0

Properties of Limits
Determining the limit of a function of several variables using the rigorous definition
is difficult. This is why Theorems are helpful: they are tools that make life easier
for us. An intuitively obvious, but very important, result is the following:

Theorem: (Uniqueness of Limits) If a limit exists then it is unique.

We also have the following:

Algebraic Properties of Limits

1. If limx→a f(x) = L and limx→a g(x) = M then
limx→a(f + g)(x) = L+M .

2. If limx→a f(x) = L then limx→a(kf)(x) = kL, for any scalar
k.

3. If f, g are scalar-valued functions, limx→a f(x) = L and

limx→a g(x) = M , with M 6= 0, then limx→a

(
f
g

)
(x) = L

M
.



Example: A polynomial function in x, y is a function of the form (e.g.)

f(x, y) = x2y3 − 10y3 + x3y2 + x+ 2

If a = (a, b) then for a polynomial function f(x, y)

lim
x→a

f(x, y) = f(a, b)

To see this for the example above, note the equality of functions (where px, py are
defined above)

f(x, y) = ((px)2(py)
3 − 10(py)

3 + (px)3(py)
2 + px + 2)(x, y) (∗)

Since we’ve shown that limx→a px(x, y) = a, and it’s not too hard to show that
limx→a py(x, y) = b, we can use the Algebraic Properties and (∗) to obtain

lim
x→a

f(x, y) = a2b3 − 10b3 + a3b2 + a+ 2 = f(a, b)

There’s an analogous notion of a polynomial function f(x) in n variables x =
(x1, . . . xn).

Continuity
Let f : X ⊆ Rn → Rm be a function of several variables, a ∈ X. We say that f is
continuous at a if

lim
x→a

f(x) = f(a)

We say that f is continuous if it is continuous at a, for every a ∈ X.

Remark: 1. A scalar-valued function f : X ⊆ Rn → R is continuous if its graph
Γ(f) admits no jumps/breaks/gaps.

2. The Algebraic Properties of Limits translate into Algebraic Properties of Contin-
uous Functions (see p.111 of Colley).

Example:

1. A polynomial function f(x) in n variables is continuous.

2. The function

f : R2 → R ,

{
2x2+y2

x2+y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

is not continuous at (0, 0): limx→(0,0) f(x, y) does not even exist.

3. The function

g : R2 → R ,

{
x4+3y5

x2+y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

is continuous at (x, y) = (0, 0): we’ve shown above that limx→(0,0) g(x, y) = 0 =
g(0, 0). In fact, this function is continuous (i.e. continuous at all a ∈ R2).

The following result reduces the analysis of vector-valued continuous functions to
that of scalar-valued continuous functions.

Theorem: Let f : X ⊆ Rn → Rm be a functions of several variables,
f(x) = (f1(x), . . . , fm(x)). Then, f is continuous at a ∈ X if and only if the
component functions f1(x), . . . fm(x) are continuous at a ∈ X.


