

# MARCH 16 LECTURE

## TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §2.2

# LIMITS & CONTINUITY

# LEARNING OBJECTIVES:

- Understand the rigorous definition of a limit of a function of several variables.

- Learn the basic properties of limits.
- Understand the definition of continuity for a function of several variables.

KEYWORDS: limit, continuity

# **Rigorous** definition of limit

Let  $\mathbf{f} : X \subseteq \mathbb{R}^n \to \mathbb{R}^m$  be a function. We write  $\lim_{\underline{x} \to \underline{a}} \mathbf{f}(\underline{x}) = \underline{L}$  if, given any  $\epsilon > 0$ , you can find  $\delta > 0$  such that

if  $\underline{x} \in X$  and  $0 < |\underline{x} - \underline{a}| < \delta$  then  $|\mathbf{f}(\underline{x}) - \underline{L}| < \epsilon$ 

We call  $\underline{L}$  the **limit of f as**  $\underline{x}$  **tends to**  $\underline{a}$ .

### Example:

1. We saw last lecture that, if  $\mathbf{f}$  is the function

$$\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3, \ (x, y) \mapsto (x, y, 2y)$$

then  $\lim_{\underline{x}\to(1,1)} \mathbf{f}(x,y) = (1,1,2)$  using the rigorous definition.

2. Define the function

$$p_x: \mathbb{R}^2 \to \mathbb{R} , \ (x, y) \mapsto x$$

If  $\underline{a} = (a, b)$  we claim (unsurprisingly) that  $\lim_{\underline{x} \to \underline{a}} p_x(x, y) = a$ : indeed, suppose we are given  $\epsilon > 0$ . Take  $\delta = \epsilon$ . Then, for any  $\underline{x} = (x, y)$  satisfying

$$0<|\underline{x}-\underline{a}|=\sqrt{(x-a)^2+(y-b)^2}<\delta$$

we find

$$|p_x(x,y) - a| = |x - a| < \delta = \epsilon.$$

Here we use that, when  $x \neq a$ ,

$$\sqrt{(x-a)^2 + (y-b)^2} = |x-a| \sqrt{1 + \frac{(y-b)^2}{(x-a)^2}} \ge |x-a|$$

Similarly, we could define  $p_y$  and  $p_z$  (or, more generally  $p_{x_i}$ ) and obtain analogous results. (Exercise: formulate and prove these results).

**Remark:** You will have seen a similar definition for the limit of a single variable function in Calculus I.

#### Determining limits of several variable functions

In general, checking the  $\epsilon - \delta$  definition gets very messy very quickly. **Observation:** Let  $\underline{a} \in \mathbb{R}^n$ , where n = 2, 3. If  $\underline{x} \in \mathbb{R}^n$  satisfies  $|\underline{x} - \underline{a}| < \delta$  then  $\underline{x}$  lies inside the disc/sphere of radius  $\delta$ , centred at  $\underline{a}$ .



Therefore, the statement  $\lim_{\underline{x}\to\underline{a}} \mathbf{f}(\underline{x}) = \underline{L}$  means that, as  $\underline{x}$  moves towards  $\underline{a}$ ,  $\mathbf{f}(\underline{x})$  moves towards  $\underline{L}$ , irrespective of the path  $\underline{x}$  takes to get close to  $\underline{a}$ .

#### Example:

1. Consider the function

$$f: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}, \ (x,y) \mapsto \frac{2x^2 + y^2}{x^2 + y^2}$$

This function is not defined at (0,0) - we can't evaluate the quantity  $\frac{0}{0}$ . However, we could still ask whether  $\lim_{x\to(0,0)} \mathbf{f}(\underline{x})$  exists.

If this limit did exist then it will be the same no matter how we approach (0, 0). For example, if we approach (0, 0) along the x-axis, where y = 0, then

$$\mathbf{f}(x,0) = \frac{2x^2 + 0}{x^2 + 0} = 2, \quad x \neq 0$$

This means that the function **f** is constant along the x-axis. Similarly, if we approach 0 along the y-axis, where x = 0, then

$$\mathbf{f}(0,y) = \frac{0+y^2}{0+y^2} = 1 \quad y \neq 0$$

We see that approaching (0,0) from two different directions gives rise to two distinct values for the limit. Therefore,  $\lim_{\underline{x}\to(0,0)} \mathbf{f}(\underline{x})$  does not exist.

2. We can also use different coordinate systems: consider the function

$$g: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R} \ , \ (x,y) \mapsto \frac{x^2 - y^2}{x^2 + y^2}$$

In polar coordinates we have

$$g(r\cos\theta, r\sin\theta) = \frac{r^2\cos^2\theta - r^2\sin^2\theta}{r^2} = \cos^2\theta - \sin^2\theta = \cos 2\theta$$

Evaluating  $\lim_{(x,y)\to(0,0)} g(x,y)$  is the same as understanding the behaviour of  $g(r\cos\theta, r\sin\theta)$  as  $r\to 0$ : in particular, there is no restriction on  $\theta$ . Moreover, if this limit exists then it should be *independent of*  $\theta$ . However, we see that

$$\lim_{r \to 0} g(r \cos \theta, r \sin \theta) = \lim_{r \to 0} \cos 2\theta = \cos 2\theta$$

so that the limit can't possibly exist.

**Exercise:** how does this approach using polar coordinates relate to determining the limit by approaching (0,0) along the x and y axes?

3. We can also use different coordiante systems to **determine limits**: consider the function

$$h: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}, \ (x,y) \mapsto \frac{x^4 + 3y^3}{x^2 + y^2}$$

Then, in polar coordinates

$$h(r\cos\theta, r\sin\theta) = r^2(\cos^4\theta + 3r\sin^5\theta)$$

Then, we certainly have

$$-3r \le \cos^4 \theta + 3r \sin^5 \theta \le 1 + 3r$$
$$\implies -3r^3 \le h(r\cos\theta, r\sin\theta) \le r^2 + 3r^3$$

Thus, by the Squeeze Theorem,

=

$$\lim_{(x,y)\to(0,0)} h(x,y) = \lim_{r\to 0} h(r\cos\theta, r\sin\theta) = 0$$

#### **Properties of Limits**

Determining the limit of a function of several variables using the rigorous definition is difficult. This is why Theorems are helpful: they are tools that make life easier for us. An intuitively obvious, but very important, result is the following:

**Theorem:** (Uniqueness of Limits) If a limit exists then it is unique.

We also have the following:

# **Algebraic Properties of Limits**

- 1. If  $\lim_{\underline{x}\to\underline{a}} \mathbf{f}(x) = \underline{L}$  and  $\lim_{\underline{x}\to\underline{a}} \mathbf{g}(x) = \underline{M}$  then  $\lim_{x\to a} (\mathbf{f} + \mathbf{g})(x) = \underline{L} + \underline{M}$ .
- 2. If  $\lim_{\underline{x}\to\underline{a}} \mathbf{f}(x) = \underline{L}$  then  $\lim_{\underline{x}\to\underline{a}} (k\mathbf{f})(x) = k\underline{L}$ , for any scalar k.
- 3. If f, g are scalar-valued functions,  $\lim_{\underline{x}\to\underline{a}} f(x) = L$  and  $\lim_{\underline{x}\to\underline{a}} g(x) = M$ , with  $M \neq 0$ , then  $\lim_{\underline{x}\to\underline{a}} \left(\frac{f}{g}\right)(x) = \frac{L}{M}$ .

**Example:** A polynomial function in x, y is a function of the form (e.g.)

$$f(x,y) = x^2y^3 - 10y^3 + x^3y^2 + x + 2$$

If  $\underline{a} = (a, b)$  then for a polynomial function f(x, y)

$$\lim_{\underline{x} \to \underline{a}} f(x, y) = f(a, b)$$

To see this for the example above, note the equality of functions (where  $p_x$ ,  $p_y$  are defined above)

$$f(x,y) = ((p_x)^2 (p_y)^3 - 10(p_y)^3 + (p_x)^3 (p_y)^2 + p_x + 2)(x,y)$$
(\*)

Since we've shown that  $\lim_{\underline{x}\to\underline{a}} p_x(x,y) = a$ , and it's not too hard to show that  $\lim_{x\to a} p_y(x,y) = b$ , we can use the Algebraic Properties and (\*) to obtain

$$\lim_{\underline{x}\to\underline{a}} f(x,y) = a^2 b^3 - 10b^3 + a^3 b^2 + a + 2 = f(a,b)$$

There's an analogous notion of a **polynomial function**  $f(\underline{x})$  in *n* variables  $\underline{x} = (x_1, \ldots x_n)$ .

## Continuity

Let  $\mathbf{f} : X \subseteq \mathbb{R}^n \to \mathbb{R}^m$  be a function of several variables,  $\underline{a} \in X$ . We say that  $\mathbf{f}$  is continuous at  $\underline{a}$  if

$$\lim_{\underline{x} \to \underline{a}} \mathbf{f}(\underline{x}) = \mathbf{f}(\underline{a})$$

We say that **f** is continuous if it is continuous at  $\underline{a}$ , for every  $\underline{a} \in X$ .

**Remark:** 1. A scalar-valued function  $f : X \subseteq \mathbb{R}^n \to \mathbb{R}$  is continuous if its graph  $\Gamma(f)$  admits no jumps/breaks/gaps.

2. The Algebraic Properties of Limits translate into Algebraic Properties of Continuous Functions (see p.111 of Colley).

#### Example:

- 1. A polynomial function  $f(\underline{x})$  in *n* variables is continuous.
- 2. The function

$$f: \mathbb{R}^2 \to \mathbb{R}, \begin{cases} \frac{2x^2 + y^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

is not continuous at (0,0):  $\lim_{x\to(0,0)} f(x,y)$  does not even exist.

3. The function

$$g: \mathbb{R}^2 \to \mathbb{R} , \begin{cases} \frac{x^4 + 3y^5}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

is continuous at (x, y) = (0, 0): we've shown above that  $\lim_{\underline{x}\to(0,0)} g(x, y) = 0 = g(0, 0)$ . In fact, this function is continuous (i.e. continuous at all  $\underline{a} \in \mathbb{R}^2$ ).

The following result reduces the analysis of vector-valued continuous functions to that of scalar-valued continuous functions.

**Theorem:** Let  $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$  be a functions of several variables,  $\mathbf{f}(\underline{x}) = (f_1(\underline{x}), \dots, f_m(\underline{x}))$ . Then,  $\mathbf{f}$  is continuous at  $\underline{a} \in X$  if and only if the component functions  $f_1(\underline{x}), \dots, f_m(\underline{x})$  are continuous at  $\underline{a} \in X$ .