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Limits & Continuity

Learning Objectives:
- Understand the concept of limit for a function of several variables.
- Learn how to determine limits for simple functions.
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Today we introduce the notion of a limit for a function of several variables. We
will introduce the intuitive notion of a limit and see how to determine the limit
of some rational functions. We will define what it means for a function of several
variables to be continuous.

Limits of functions of several variables
Let

f : X ⊆ Rn → Rm , x 7→ f(x) = (f1(x), . . . , fm(x))

be a function of several variables.

Intuitive notion of limit I

Intuitively, the limit of f as x tends to a is the vector L ∈ Rm that f(x)
approaches whenever x is near to a (but not equal to a), should such a vector
L exist.

In the case that L exists, we write

lim
x→a

f(x) = L

•
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We need to be more precise with what we mean by approaches and near to.



Intuitive notion of limit II

Intuitively,
lim
x→a

f(x) = L

means that we can make |f(x)− L| arbitrarily small (i.e. as close to 0 as we
please) by keeping |x− a| sufficiently small (but nonzero).

Example: Consider the function

f : R2 → R3 , (x, y) 7→ (x, y, 2y)

Intuitively, as x = (x, y) gets close, but not equal, to a = (1, 1) we expect that f(x)
gets close to L = (1, 1, 2): for x such that∣∣∣∣x− [11

]∣∣∣∣ =
√

(x− 1)2 + (y − 1)2

is sufficiently small (i.e. x is sufficiently close to (1, 1)), we find that we can make∣∣∣∣∣∣f(x)−

1
1
2

∣∣∣∣∣∣ =
√

(x− 1)2 + (y − 1)2 + (2y − 2)2 =
√

(x− 1)2 + 5(y − 1)2

arbitrarily small.
For example, to make |f(x)− L| < 0.01 we can take those x ∈ R2 such that

|x− a| < 1
1000

= 0.001: indeed, in this case

|f(x)− a| =
√

(x− 1)2 + 5(y − 1)2

≤ |x− 1|+ 5|y − 1|
≤ 5|x− 1|+ 5|y − 1|

<
5

1000
+

5

1000

=
1

100
= 0.01

Notes:



Check your understanding

1. Determine δ > 0 such that |f(x)− L| < 1
500

whenever |x− a| < δ.

2. Let ε > 0. Determine δ > 0 such that |f(x)− L| < ε whenever |x− a| < δ.

Rigorous definition of limit

Let f : X ⊆ Rn → Rm be a function. We write limx→a f(x) = L if,
given any ε > 0, you can find δ > 0 such that

if x ∈ X and 0 < |x− a| < δ then |f(x)− L| < ε

We call L the limit of f as x tends to a.

Remark: You should have seen a similar definition for the limit of a single variable
function in Calculus I.

Determining limits of several variable functions
In general, verifying the ε − δ condition above gets very messy very quickly. One
important observation is the following:
Observation: Let a ∈ Rn, where n = 2, 3. If x ∈ Rn satisfies |x− a| < δ then x lies
inside the disc/sphere of radius δ, centred at a.

•
a•

x

δ

Therefore, the statement limx→a f(x) = L means that, as x moves
towards a, f(x) moves towards L, irrespective of the path x takes
to get close to a.



Example: Consider the function

f : R2 − {(0, 0)} → R , (x, y) 7→ 2x2 + y2

x2 + y2

This function is not defined at (0, 0) - we can’t evaluate the quantity 0
0
. However,

we could still ask whether limx→(0,0) f(x) exists.
If this limit did exist then it will be the same no matter how we approach (0, 0).

For example, if we approach (0, 0) along the x-axis, where y = 0, then

f(x, 0) =
2x2 + 0

x2 + 0
= 2, x 6= 0

This means that the function f is constant along the x-axis. Similarly, if we approach
0 along the y-axis, where x = 0, then

f(0, y) =
0 + y2

0 + y2
= 1 y 6= 0

We see that approaching (0, 0) from two different directions gives rise to two distinct
values for the limit. Therefore, limx→(0,0) f(x) does not exist.


