

MARCH 14 LECTURE

TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §2.2

LIMITS & CONTINUITY

LEARNING OBJECTIVES:

- Understand the concept of limit for a function of several variables.

- Learn how to determine limits for simple functions.

Keywords: limit

Today we introduce the notion of a limit for a function of several variables. We will introduce the intuitive notion of a limit and see how to determine the limit of some rational functions. We will define what it means for a function of several variables to be continuous.

Limits of functions of several variables Let

 $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m, \ \underline{x} \mapsto \mathbf{f}(\underline{x}) = (f_1(\underline{x}), \dots, f_m(\underline{x}))$

be a function of several variables.

Intuitive notion of limit I

Intuitively, the **limit of f as** \underline{x} **tends to** \underline{a} is the vector $\underline{L} \in \mathbb{R}^m$ that $\mathbf{f}(\underline{x})$ approaches whenever \underline{x} is near to \underline{a} (but not equal to \underline{a}), should such a vector \underline{L} exist.

In the case that \underline{L} exists, we write

$$\lim_{\underline{x} \to \underline{a}} \mathbf{f}(\underline{x}) = \underline{L}$$

We need to be more precise with what we mean by approaches and near to.

Intuitive notion of limit II

Intuitively,

$$\lim_{x \to a} \mathbf{f}(\underline{x}) = \underline{L}$$

means that we can make $|\mathbf{f}(\underline{x}) - \underline{L}|$ arbitrarily small (i.e. as close to 0 as we please) by keeping $|\underline{x} - \underline{a}|$ sufficiently small (but nonzero).

Example: Consider the function

$$\mathbf{f}:\mathbb{R}^2\to\mathbb{R}^3\ ,\ (x,y)\mapsto (x,y,2y)$$

Intuitively, as $\underline{x} = (x, y)$ gets close, but not equal, to $\underline{a} = (1, 1)$ we expect that $\mathbf{f}(\underline{x})$ gets close to $\underline{L} = (1, 1, 2)$: for \underline{x} such that

$$\left|\underline{x} - \begin{bmatrix} 1\\1 \end{bmatrix}\right| = \sqrt{(x-1)^2 + (y-1)^2}$$

is sufficiently small (i.e. \underline{x} is sufficiently close to (1,1)), we find that we can make

$$\begin{vmatrix} \mathbf{f}(\underline{x}) - \begin{bmatrix} 1\\1\\2 \end{vmatrix} \end{vmatrix} = \sqrt{(x-1)^2 + (y-1)^2 + (2y-2)^2} = \sqrt{(x-1)^2 + 5(y-1)^2}$$

arbitrarily small.

For example, to make $|\mathbf{f}(\underline{x}) - \underline{L}| < 0.01$ we can take those $\underline{x} \in \mathbb{R}^2$ such that $|\underline{x} - \underline{a}| < \frac{1}{1000} = 0.001$: indeed, in this case

$$\begin{aligned} \mathbf{f}(\underline{x}) - \underline{a} &| = \sqrt{(x-1)^2 + 5(y-1)^2} \\ &\leq |x-1| + 5|y-1| \\ &\leq 5|x-1| + 5|y-1| \\ &< \frac{5}{1000} + \frac{5}{1000} \\ &= \frac{1}{100} = 0.01 \end{aligned}$$

Notes:

CHECK YOUR UNDERSTANDING

1. Determine $\delta > 0$ such that $|\mathbf{f}(\underline{x}) - \underline{L}| < \frac{1}{500}$ whenever $|\underline{x} - \underline{a}| < \delta$.

2. Let $\epsilon > 0$. Determine $\delta > 0$ such that $|\mathbf{f}(\underline{x}) - \underline{L}| < \epsilon$ whenever $|\underline{x} - \underline{a}| < \delta$.

Rigorous definition of limit Let $\mathbf{f} : X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a function. We write $\lim_{\underline{x}\to\underline{a}} \mathbf{f}(\underline{x}) = \underline{L}$ if, given any $\epsilon > 0$, you can find $\delta > 0$ such that if $\underline{x} \in X$ and $0 < |\underline{x} - \underline{a}| < \delta$ then $|\mathbf{f}(\underline{x}) - \underline{L}| < \epsilon$ We call \underline{L} the **limit of f as** \underline{x} **tends to** \underline{a} .

Remark: You should have seen a similar definition for the limit of a single variable function in Calculus I.

Determining limits of several variable functions

In general, verifying the $\epsilon - \delta$ condition above gets very messy very quickly. One important observation is the following:

Observation: Let $\underline{a} \in \mathbb{R}^n$, where n = 2, 3. If $\underline{x} \in \mathbb{R}^n$ satisfies $|\underline{x} - \underline{a}| < \delta$ then \underline{x} lies inside the disc/sphere of radius δ , centred at \underline{a} .

Therefore, the statement $\lim_{\underline{x}\to\underline{a}} \mathbf{f}(\underline{x}) = \underline{L}$ means that, as \underline{x} moves towards \underline{a} , $\mathbf{f}(\underline{x})$ moves towards \underline{L} , irrespective of the path \underline{x} takes to get close to \underline{a} .

Example: Consider the function

$$f: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}, \ (x,y) \mapsto \frac{2x^2 + y^2}{x^2 + y^2}$$

This function is not defined at (0,0) - we can't evaluate the quantity $\frac{0}{0}$. However, we could still ask whether $\lim_{\underline{x}\to(0,0)} \mathbf{f}(\underline{x})$ exists.

If this limit did exist then it will be the same no matter how we approach (0, 0). For example, if we approach (0, 0) along the x-axis, where y = 0, then

$$\mathbf{f}(x,0) = \frac{2x^2 + 0}{x^2 + 0} = 2, \quad x \neq 0$$

This means that the function **f** is constant along the x-axis. Similarly, if we approach 0 along the y-axis, where x = 0, then

$$\mathbf{f}(0,y) = \frac{0+y^2}{0+y^2} = 1 \quad y \neq 0$$

We see that approaching (0,0) from two different directions gives rise to two distinct values for the limit. Therefore, $\lim_{\underline{x}\to(0,0)} \mathbf{f}(\underline{x})$ does not exist.