March 14 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §2.2

Limits \& Continuity

Learning Objectives:

- Understand the concept of limit for a function of several variables.
- Learn how to determine limits for simple functions.

KEYWORDS: limit

Today we introduce the notion of a limit for a function of several variables. We will introduce the intuitive notion of a limit and see how to determine the limit of some rational functions. We will define what it means for a function of several variables to be continuous.

Limits of functions of several variables

Let

$$
\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \underline{x} \mapsto \mathbf{f}(\underline{x})=\left(f_{1}(\underline{x}), \ldots, f_{m}(\underline{x})\right)
$$

be a function of several variables.

Intuitive notion of limit I

Intuitively, the limit of \mathbf{f} as \underline{x} tends to \underline{a} is the vector $\underline{L} \in \mathbb{R}^{m}$ that $\mathbf{f}(\underline{x})$ approaches whenever \underline{x} is near to \underline{a} (but not equal to \underline{a}), should such a vector \underline{L} exist.

In the case that \underline{L} exists, we write

$$
\lim _{\underline{x} \rightarrow \underline{a}} \mathbf{f}(\underline{x})=\underline{L}
$$

We need to be more precise with what we mean by approaches and near to.

Intuitive notion of limit II

Intuitively,

$$
\lim _{\underline{x} \rightarrow \underline{a}} \mathbf{f}(\underline{x})=\underline{L}
$$

means that we can make $|\mathbf{f}(\underline{x})-\underline{L}|$ arbitrarily small (i.e. as close to 0 as we please) by keeping $|\underline{x}-\underline{a}|$ sufficiently small (but nonzero).

Example: Consider the function

$$
\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(x, y) \mapsto(x, y, 2 y)
$$

Intuitively, as $\underline{x}=(x, y)$ gets close, but not equal, to $\underline{a}=(1,1)$ we expect that $\mathbf{f}(\underline{x})$ gets close to $\underline{L}=(1,1,2)$: for \underline{x} such that

$$
\left|\underline{x}-\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right|=\sqrt{(x-1)^{2}+(y-1)^{2}}
$$

is sufficiently small (i.e. \underline{x} is sufficiently close to $(1,1)$), we find that we can make

$$
\left|\mathbf{f}(\underline{x})-\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]\right|=\sqrt{(x-1)^{2}+(y-1)^{2}+(2 y-2)^{2}}=\sqrt{(x-1)^{2}+5(y-1)^{2}}
$$

arbitrarily small.
For example, to make $|\mathbf{f}(\underline{x})-\underline{L}|<0.01$ we can take those $\underline{x} \in \mathbb{R}^{2}$ such that $|\underline{x}-\underline{a}|<\frac{1}{1000}=0.001$: indeed, in this case

$$
\begin{aligned}
|\mathbf{f}(\underline{x})-\underline{a}| & =\sqrt{(x-1)^{2}+5(y-1)^{2}} \\
& \leq|x-1|+5|y-1| \\
& \leq 5|x-1|+5|y-1| \\
& <\frac{5}{1000}+\frac{5}{1000} \\
& =\frac{1}{100}=0.01
\end{aligned}
$$

Notes:

Check your understanding

1. Determine $\delta>0$ such that $|\mathbf{f}(\underline{x})-\underline{L}|<\frac{1}{500}$ whenever $|\underline{x}-\underline{a}|<\delta$.
2. Let $\epsilon>0$. Determine $\delta>0$ such that $|\mathbf{f}(\underline{x})-\underline{L}|<\epsilon$ whenever $|\underline{x}-\underline{a}|<\delta$.

Rigorous definition of limit

Let $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function. We write $\lim _{\underline{x} \rightarrow \underline{\mathbf{f}}} \mathbf{f}(\underline{x})=\underline{L}$ if, given any $\epsilon>0$, you can find $\delta>0$ such that

$$
\text { if } \underline{x} \in X \text { and } 0<|\underline{x}-\underline{a}|<\delta \text { then }|\mathbf{f}(\underline{x})-\underline{L}|<\epsilon
$$

We call \underline{L} the limit of \mathbf{f} as \underline{x} tends to \underline{a}.
Remark: You should have seen a similar definition for the limit of a single variable function in Calculus I.

Determining limits of several variable functions

In general, verifying the $\epsilon-\delta$ condition above gets very messy very quickly. One important observation is the following:
Observation: Let $\underline{a} \in \mathbb{R}^{n}$, where $n=2$, 3 . If $\underline{x} \in \mathbb{R}^{n}$ satisfies $|\underline{x}-\underline{a}|<\delta$ then \underline{x} lies inside the disc/sphere of radius δ, centred at \underline{a}.

Therefore, the statement $\lim _{\underline{x} \rightarrow \underline{a}} \mathbf{f}(\underline{x})=\underline{L}$ means that, as \underline{x} moves towards $\underline{a}, \mathbf{f}(\underline{x})$ moves towards \underline{L}, irrespective of the path \underline{x} takes to get close to \underline{a}.

Example: Consider the function

$$
f: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}, \quad(x, y) \mapsto \frac{2 x^{2}+y^{2}}{x^{2}+y^{2}}
$$

This function is not defined at $(0,0)$ - we can't evaluate the quantity $\frac{0}{0}$. However, we could still ask whether $\lim _{\underline{x} \rightarrow(0,0)} \mathbf{f}(\underline{x})$ exists.

If this limit did exist then it will be the same no matter how we approach $(0,0)$. For example, if we approach $(0,0)$ along the x-axis, where $y=0$, then

$$
\mathbf{f}(x, 0)=\frac{2 x^{2}+0}{x^{2}+0}=2, \quad x \neq 0
$$

This means that the function \mathbf{f} is constant along the x-axis. Similarly, if we approach 0 along the y-axis, where $x=0$, then

$$
\mathbf{f}(0, y)=\frac{0+y^{2}}{0+y^{2}}=1 \quad y \neq 0
$$

We see that approaching $(0,0)$ from two different directions gives rise to two distinct values for the limit. Therefore, $\lim _{\underline{x} \rightarrow(0,0)} \mathbf{f}(\underline{x})$ does not exist.

