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FEBRUARY 28 LECTURE

TEXTBOOK REFERENCE: ,
- Vector Calculus, Colley, 4th Edition: §3.1

PARAMETERISED CURVES

LEARNING OBJECTIVES: _
- Understand the distinction between a path and its image curve.

- Learn how to compute the velocity vector of a path and its geometric interpretation.
- Learn how to compute the tangent line of a curve and its- geometric interpretation.

- Lines as parameterised curves: Consider the following distinct parameterisations
of a line L: '
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1. Connect the mathematical object with the correct terminology
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2. Compute the velocity vectors 7 (¢) and r5(s).
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3. Given a parameteric description of a line r(t) = 0P +t%, what is the velocity
7'(t)? What is the speed of the path?
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4. In your groups, discuss the correctness of following statement:

“the velocity vector of a line is constant”



Tangent lines of curves: Given a path :z:(t) with i image curve C, the tangent
line to C at the point z, = z(ty) is

I(s) =z + 523.’(750), s€R

1. Consider the path z(t) = te~% + ¢t j,te€ R. Compute the tangent line to the -
image curve of z at the point z(0). Sketch the tangent line in the plane.
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' should split up the computatzons among your group)
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« (\’ e ’{ 2. Compute the velocity vector of z at z(t),-where ¢ =—1,—%,-1,3, 1, 1. (You
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3. Use your computations to give an approximate sketch of the i image curve of
z(t), for ¢ near to 0.



Sketching parameterised curves:

2
Consider the path z(t) = t3t_ 2 tE R. Denote its image curve by C. This is
the planar curve described by the equation y® = z(z — 1), .

1. Find #; # 4 so that z(t1) = z(b,).(Hint: it must be the case that t; = —t)
How can you interpret your solution geometrically?
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2. Determine the tangent lines to C at z(;) and z(tp). | Canwint.
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3. For Which t-is the t

angent line to C' at z(¢) horizontal? Vertical? ' T —X
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4. Using what you’ve found above, sketch C' below. x vy = 3y
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