February 28 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §3.1

Parameterised Curves

Learning Objectives:

- Understand the distinction between a path and its image curve.
- Learn how to compute the velocity vector of a path and its geometric interpretation.
- Learn how to compute the tangent line of a curve and its geometric interpretation.

Lines as parameterised curves: Consider the following distinct parameterisations of a line L :

$$
\underline{r}_{1}(t)=\left[\begin{array}{c}
-1+2 t \\
t
\end{array}\right], \quad t \in \mathbb{R}, \quad \text { and } \quad \underline{r}_{2}(s)=\left[\begin{array}{l}
5-4 s \\
3-2 s
\end{array}\right], \quad s \in \mathbb{R}
$$

1. Connect the mathematical object with the correct terminology

$$
\begin{array}{lc}
\text { path } & \underline{r}_{1}(t) \\
\text { curve } & L \\
& \underline{r}_{2}(s)
\end{array}
$$

2. Compute the velocity vectors $\underline{r}_{1}^{\prime}(t)$ and $\underline{r}_{2}^{\prime}(s)$.
3. Given a parameteric description of a line $\underline{r}(t)=\overrightarrow{O P}+t \vec{u}$, what is the velocity $\underline{r}^{\prime}(t)$? What is the speed of the path?
4. In your groups, discuss the correctness of following statement:

Tangent lines of curves: Given a path $\underline{x}(t)$ with image curve C, the tangent line to C at the point $\underline{x}_{0}=\underline{x}\left(t_{0}\right)$ is

$$
\underline{l}(s)=\underline{x}_{0}+s \underline{s}^{\prime}\left(t_{0}\right), \quad s \in \mathbb{R}
$$

1. Consider the path $\underline{x}(t)=t e^{-t} \underline{i}+e^{t} \underline{j}, t \in \mathbb{R}$. Compute the tangent line to the image curve of \underline{x} at the point $\underline{x}(0)$. Sketch the tangent line in the plane.

2. Compute the velocity vector of \underline{x} at $\underline{x}(t)$, where $t=-1,-\frac{1}{2},-\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 1$. (You should split up the computations among your group)
3. Use your computations to give an approximate sketch of the image curve of $\underline{x}(t)$, for t near to 0 .

Sketching parameterised curves:

Consider the path $\underline{x}(t)=\left[\begin{array}{c}t^{2} \\ t^{3}-t\end{array}\right], t \in \mathbb{R}$. Denote its image curve by C. This is the planar curve described by the equation $y^{2}=x(x-1)^{2}$.

1. Find $t_{1} \neq t_{2}$ so that $\underline{x}\left(t_{1}\right)=\underline{x}\left(t_{2}\right)$.(Hint: it must be the case that $t_{1}=-t_{2}$) How can you interpret your solution geometrically?
2. Determine the tangent lines to C at $\underline{x}\left(t_{1}\right)$ and $\underline{x}\left(t_{2}\right)$.
3. For which t is the tangent line to C at $\underline{x}(t)$ horizontal? Vertical?
4. Using what you've found above, sketch C below.

Misc:

1. Tangent Slopes

Let $\underline{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ be a path in \mathbb{R}^{2}.
(a) Determine conditions for the tangent line to the image curve of \underline{x} to be horizontal/vertical.
(b) Write down an expression for the slope of a tangent line to the image curve of \underline{x}.
(c) Suppose that part of the image curve can be realised as a graph $y=F(x)$, for some differentiable function F. Explain why, if $\frac{d x}{d t} \neq 0$ then

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

(d) Using implicit differentiation check that this formula holds for the parameterisation of the curve $y^{2}=x(x-1)^{2}$ given above.
(e) Explain why, if there are values $t=t_{0}$ such that $\frac{d x}{d t}\left(t_{0}\right.$, then the image curve of \underline{x} can't be realised as graph $y=f(x)$.

