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COORDINATE SYSTEMS

LEARNING OBJECTIVES:

- Gain familiarity with spherical coordinates.

- Be able to translate between Cartesian/cylindrical/spherical coordinate systems.
- Gain familiarity describing geometric objects in new coordinate systems.

KEYWORDS: cylindrical coordinates, spherical coordinates.

In this lecture we will describe some new coordinate systems in R3.

Coordinates in space
The Cartesian coordinates in the plane can be extended to space: we add in a

new z coordinate, where z measures units distance in the direction £ = i X j. Asin
the R? case, we could also describe points in space (once we've fixed an origin O) by
giving three linearly independent vectors u, v, w and determining a new coordinate
system with respect to the resulting basis.

Cylindrical coordinates: Polar coordinates provide us with a coordinate system
in the plane and we can extend this to a coordinate system in R3.

Given a point P in space, use polar coordinates to describe the projection of
P onto the xy-plane: denote this projection (r,6). Then, P can be described by
the triple (r,0,z). We say that (r,0,z) obtained in this way are the cylindrical
coordinates of P.

The terminology is justified by considering the following diagram:




Cartesian <> cylindrical coordinate transformation

x =rcost
Cylindrical to Cartesian: y =rsinf (1)
2=z

Cartesian to cylindrical: tan 6 = ¥ (2)
2=z
Remark:
1. As with polar coordinates, all points in R? except for the z-axis have a unique

set of cylindrical coordinates. Any point (0,0, ¢) on the z-axis has cylindrical
coordinates (0,0, c), where # can be any angle.

. Cylindrical coordinates are useful when studying objects possessing rotational

symmetry (about the z-axis).

Example:

1.

The surface in R? described by r = ¢ is the cylinder, centred at the origin,
parallel to the z-axis, and having radius c¢. In Cartesian coordinates, we see
that a cylinder (parallel to the z-axis) is therefore given by the equation

Va2 4+y2=c or, equivalently 2%+ y* = 2.

This example highlights an important point: if an equation does not contain
a coordinate, then the resulting object described by the equation extends in-
finitely in both directions parallel to the axis of the missing coordinate.

. The surface in R? described by the equation tan§ = m, is the plane containing

the z-axis and the line y = mux.

. The surface in R? described by the equation 22 +72 = 400, r € R, is a sphere of

radius 20 centred at the origin: in Cartesian coordinates the equation becomes
24P =400 = 22427 +y? =20

If (x,y,2) lies on the surface described by this equation then it must be at
distance 20 from the origin. All points in space at a fixed distance from the
origin define a sphere centred at the origin.

. The surface in described by the equation z = r, r € R, is a double-napped cone:

points on the surface » = z intersecting the z = ¢ plane lie above/below the
circle having radius ¢ centred at the origin. If we restrict » to be nonnegative
then we obtain the top half (nappe) of the cone.

In particular, this allows us to determine an equation in Cartesian coordinates
for the double-napped cone:

Z2=r — z25=r ::v2+y



Double-napped cone:
o 22 =2? 4y (Cartesian)

oz=r (Cylindrical)

5. [Important Example:] More generally, if z = f(r) then the surface described
by this equation is the surface of revolution obtained by rotating the graph
z = f(x) (in the zz-plane) about the z-axis. For example, the surface z = r?
is a paraboloid about the z-axis:
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Paraboloid:

oz =1+’ (Cartesian)

o =12 (Cylindrical)




Spherical Coordinates: In analogy to polar coordinates, we can describe a
point P in space by specifying the unique sphere of radius p (centred at the origin)
that P lies on and determining latitudinal and longitudinal coordinates, (¢, ).

So as to not confuse the radius of the sphere with the radius of a circle, we use
the symbol p (pronounced rho). We call (p, ¢, ) the spherical coordinates of P.
We impose the following restrictions:

p>0, 0<p<m 0<6<2m.

With these restrictions, every point in space, except for points on the z-axis, have
a uniquely determined set of spherical coordinates.

Coordinate transformations in space

r = psinp p? =124 22
Spherical /cylindrical: 0=260 6=0 (3)
2= pcosp tangp =1r/z
x = psinycosf p*=a? 4+ y*+ 22
Spherical /Cartesian: y = psinpsinf tanf = ¥ (4)
Z = pPCcosy tanp = m?yZ

Example:

1. Using the above change-of-coordinate formula, we see that the point P =
(0,4/3,1) (in Cartesian coordinates) has spherical coordinates (p, ¢, 6) = (2, 7/3,7/2).

2. The surface defined by the equation p = c is a sphere of radius ¢ centred at the
origin.

3. The surface defined by the equation ¢ = /4 is a single-napped cone: using (4)
above gives z = y/x% + y2. Note: since tanp =1 > 0, we must choose z > 0.



4. The surface defined by the equation p = 6cos defines a sphere of radius 3
centred at (0,0, 3): multiplying both sides of the equation by p gives

2=6pcosp = 'y’ +2° =62
Rearranging and completing the square we find

224y 4 (2 —3)2 =32

Remark: the equation of a sphere of radius a centred at P = (¢, yo, 20) is given by
the equation
(x —20)* + (y —y0)* + (2 — 20)* = a®

Indeed, this sphere consists of all points @) = (z,y, z) satisfying |1@| = a. Squaring
both sides gives

r — X9 r — X
POP=a* = PG-PQ=a® = |y-w| |y—w|=0
Z— 20 Z— 20

and the claim follows.

Sphere of radius a centred at (o, yo, 20):

a? = (x —20)” + (y — y0)> + (2 — 20)*




