February 26 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §1.7

Coordinate systems

Learning Objectives:

- Gain familiarity with spherical coordinates.
- Be able to translate between Cartesian/cylindrical/spherical coordinate systems.
- Gain familiarity describing geometric objects in new coordinate systems.

KEYWORDS: cylindrical coordinates, spherical coordinates.

In this lecture we will describe some new coordinate systems in \mathbb{R}^{3}.

Coordinates in space

The Cartesian coordinates in the plane can be extended to space: we add in a new z coordinate, where z measures units distance in the direction $\underline{k} \stackrel{\text { def }}{=} \underline{i} \times \underline{j}$. As in the \mathbb{R}^{2} case, we could also describe points in space (once we've fixed an origin O) by giving three linearly independent vectors $\underline{u}, \underline{v}, \underline{w}$ and determining a new coordinate system with respect to the resulting basis.

Cylindrical coordinates: Polar coordinates provide us with a coordinate system in the plane and we can extend this to a coordinate system in \mathbb{R}^{3}.

Given a point P in space, use polar coordinates to describe the projection of P onto the $x y$-plane: denote this projection (r, θ). Then, P can be described by the triple (r, θ, z). We say that (r, θ, z) obtained in this way are the cylindrical coordinates of P.

The terminology is justified by considering the following diagram:

Cartesian \leftrightarrow cylindrical coordinate transformation

	$x=r \cos \theta$
Cylindrical to Cartesian:	$y=r \sin \theta$
	$z=z$
	$r^{2}=x^{2}+y^{2}$
Cartesian to cylindrical:	$\tan \theta=\frac{y}{x}$
	$z=z$

Remark:

1. As with polar coordinates, all points in \mathbb{R}^{3} except for the z-axis have a unique set of cylindrical coordinates. Any point $(0,0, c)$ on the z-axis has cylindrical coordinates $(0, \theta, c)$, where θ can be any angle.
2. Cylindrical coordinates are useful when studying objects possessing rotational symmetry (about the z-axis).

Example:

1. The surface in \mathbb{R}^{3} described by $r=c$ is the cylinder, centred at the origin, parallel to the z-axis, and having radius c. In Cartesian coordinates, we see that a cylinder (parallel to the z-axis) is therefore given by the equation

$$
\sqrt{x^{2}+y^{2}}=c \quad \text { or, equivalently } \quad x^{2}+y^{2}=c^{2}
$$

This example highlights an important point: if an equation does not contain a coordinate, then the resulting object described by the equation extends infinitely in both directions parallel to the axis of the missing coordinate.
2. The surface in \mathbb{R}^{3} described by the equation $\tan \theta=m$, is the plane containing the z-axis and the line $y=m x$.
3. The surface in \mathbb{R}^{3} described by the equation $z^{2}+r^{2}=400, r \in \mathbb{R}$, is a sphere of radius 20 centred at the origin: in Cartesian coordinates the equation becomes

$$
z^{2}+r^{2}=400 \quad \Longrightarrow \quad z^{2}+x^{2}+y^{2}=20^{2}
$$

If (x, y, z) lies on the surface described by this equation then it must be at distance 20 from the origin. All points in space at a fixed distance from the origin define a sphere centred at the origin.
4. The surface in described by the equation $z=r, r \in \mathbb{R}$, is a double-napped cone: points on the surface $r=z$ intersecting the $z=c$ plane lie above/below the circle having radius c centred at the origin. If we restrict r to be nonnegative then we obtain the top half (nappe) of the cone.
In particular, this allows us to determine an equation in Cartesian coordinates for the double-napped cone:

$$
z=r \quad \Longrightarrow \quad z^{2}=r^{2}=x^{2}+y^{2}
$$

Double-napped cone:

- $z^{2}=x^{2}+y^{2}$
(Cartesian)
- $z=r$
(Cylindrical)

5. [Important Example:] More generally, if $z=f(r)$ then the surface described by this equation is the surface of revolution obtained by rotating the graph $z=f(x)$ (in the $x z$-plane) about the z-axis. For example, the surface $z=r^{2}$ is a paraboloid about the z-axis:

Paraboloid:

- $z=x^{2}+y^{2}$
(Cartesian)
- $z=r^{2}$
(Cylindrical)

Spherical Coordinates: In analogy to polar coordinates, we can describe a point P in space by specifying the unique sphere of radius ρ (centred at the origin) that P lies on and determining latitudinal and longitudinal coordinates, (φ, θ).

So as to not confuse the radius of the sphere with the radius of a circle, we use the symbol ρ (pronounced rho). We call (ρ, φ, θ) the spherical coordinates of P.

We impose the following restrictions:

$$
\rho \geq 0, \quad 0 \leq \varphi \leq \pi, \quad 0 \leq \theta<2 \pi .
$$

With these restrictions, every point in space, except for points on the z-axis, have a uniquely determined set of spherical coordinates.

Coordinate transformations in space

	$r=\rho \sin \varphi$	$\rho^{2}=r^{2}+z^{2}$
Spherical/cylindrical:	$\theta=\theta$	$\theta=\theta$
	$z=\rho \cos \varphi$	$\tan \varphi=r / z$
	$x=\rho \sin \varphi \cos \theta$	$\rho^{2}=x^{2}+y^{2}+z^{2}$
Spherical/Cartesian:	$y=\rho \sin \varphi \sin \theta$	$\tan \theta=\frac{y}{x}$
	$z=\rho \cos \varphi$	$\tan \varphi=\frac{\sqrt{x^{2}+y^{2}}}{z}$

Example:

1. Using the above change-of-coordinate formula, we see that the point $P=$ $(0, \sqrt{3}, 1)$ (in Cartesian coordinates) has spherical coordinates $(\rho, \varphi, \theta)=(2, \pi / 3, \pi / 2)$.
2. The surface defined by the equation $\rho=c$ is a sphere of radius c centred at the origin.
3. The surface defined by the equation $\varphi=\pi / 4$ is a single-napped cone: using (4) above gives $z=\sqrt{x^{2}+y^{2}}$. Note: since $\tan \varphi=1>0$, we must choose $z>0$.
4. The surface defined by the equation $\rho=6 \cos \varphi$ defines a sphere of radius 3 centred at $(0,0,3)$: multiplying both sides of the equation by ρ gives

$$
\rho^{2}=6 \rho \cos \varphi \quad \Longrightarrow \quad x^{2}+y^{2}+z^{2}=6 z
$$

Rearranging and completing the square we find

$$
x^{2}+y^{2}+(z-3)^{2}=3^{2} .
$$

Remark: the equation of a sphere of radius a centred at $P=\left(x_{0}, y_{0}, z_{0}\right)$ is given by the equation

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=a^{2}
$$

Indeed, this sphere consists of all points $Q=(x, y, z)$ satisfying $|\overrightarrow{P Q}|=a$. Squaring both sides gives

$$
|\overrightarrow{P Q}|^{2}=a^{2} \quad \Longrightarrow \quad \overrightarrow{P Q} \cdot \overrightarrow{P Q}=a^{2} \quad \Longrightarrow \quad\left[\begin{array}{l}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right] \cdot\left[\begin{array}{l}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right]=a^{2}
$$

and the claim follows.

Sphere of radius a centred at $\left(x_{0}, y_{0}, z_{0}\right)$:

$$
a^{2}=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}
$$

