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Coordinate systems

Learning Objectives:
- Gain familiarity with spherical coordinates.
- Be able to translate between Cartesian/cylindrical/spherical coordinate systems.
- Gain familiarity describing geometric objects in new coordinate systems.

Keywords: cylindrical coordinates, spherical coordinates.

In this lecture we will describe some new coordinate systems in R3.

Coordinates in space
The Cartesian coordinates in the plane can be extended to space: we add in a

new z coordinate, where z measures units distance in the direction k
def
= i× j. As in

the R2 case, we could also describe points in space (once we’ve fixed an origin O) by
giving three linearly independent vectors u, v, w and determining a new coordinate
system with respect to the resulting basis.

Cylindrical coordinates: Polar coordinates provide us with a coordinate system
in the plane and we can extend this to a coordinate system in R3.

Given a point P in space, use polar coordinates to describe the projection of
P onto the xy-plane: denote this projection (r, θ). Then, P can be described by
the triple (r, θ, z). We say that (r, θ, z) obtained in this way are the cylindrical
coordinates of P .

The terminology is justified by considering the following diagram:
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Cartesian ↔ cylindrical coordinate transformation

Cylindrical to Cartesian:

x = r cos θ

y = r sin θ

z = z

(1)

Cartesian to cylindrical:

r2 = x2 + y2

tan θ = y
x

z = z

(2)

Remark:

1. As with polar coordinates, all points in R3 except for the z-axis have a unique
set of cylindrical coordinates. Any point (0, 0, c) on the z-axis has cylindrical
coordinates (0, θ, c), where θ can be any angle.

2. Cylindrical coordinates are useful when studying objects possessing rotational
symmetry (about the z-axis).

Example:

1. The surface in R3 described by r = c is the cylinder, centred at the origin,
parallel to the z-axis, and having radius c. In Cartesian coordinates, we see
that a cylinder (parallel to the z-axis) is therefore given by the equation√

x2 + y2 = c or, equivalently x2 + y2 = c2.

This example highlights an important point: if an equation does not contain
a coordinate, then the resulting object described by the equation extends in-
finitely in both directions parallel to the axis of the missing coordinate.

2. The surface in R3 described by the equation tan θ = m, is the plane containing
the z-axis and the line y = mx.

3. The surface in R3 described by the equation z2 +r2 = 400, r ∈ R, is a sphere of
radius 20 centred at the origin: in Cartesian coordinates the equation becomes

z2 + r2 = 400 =⇒ z2 + x2 + y2 = 202

If (x, y, z) lies on the surface described by this equation then it must be at
distance 20 from the origin. All points in space at a fixed distance from the
origin define a sphere centred at the origin.

4. The surface in described by the equation z = r, r ∈ R, is a double-napped cone:
points on the surface r = z intersecting the z = c plane lie above/below the
circle having radius c centred at the origin. If we restrict r to be nonnegative
then we obtain the top half (nappe) of the cone.

In particular, this allows us to determine an equation in Cartesian coordinates
for the double-napped cone:

z = r =⇒ z2 = r2 = x2 + y2



Double-napped cone:

• z2 = x2 + y2 (Cartesian)

• z = r (Cylindrical)
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5. [Important Example:] More generally, if z = f(r) then the surface described
by this equation is the surface of revolution obtained by rotating the graph
z = f(x) (in the xz-plane) about the z-axis. For example, the surface z = r2

is a paraboloid about the z-axis:
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Paraboloid:

• z = x2 + y2 (Cartesian)

• z = r2 (Cylindrical)



Spherical Coordinates: In analogy to polar coordinates, we can describe a
point P in space by specifying the unique sphere of radius ρ (centred at the origin)
that P lies on and determining latitudinal and longitudinal coordinates, (ϕ, θ).
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So as to not confuse the radius of the sphere with the radius of a circle, we use
the symbol ρ (pronounced rho). We call (ρ, ϕ, θ) the spherical coordinates of P .

We impose the following restrictions:

ρ ≥ 0, 0 ≤ ϕ ≤ π, 0 ≤ θ < 2π.

With these restrictions, every point in space, except for points on the z-axis, have
a uniquely determined set of spherical coordinates.

Coordinate transformations in space

Spherical/cylindrical:

r = ρ sinϕ

θ = θ

z = ρ cosϕ

ρ2 = r2 + z2

θ = θ

tanϕ = r/z

(3)

Spherical/Cartesian:

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ

ρ2 = x2 + y2 + z2

tan θ = y
x

tanϕ =

√
x2+y2

z

(4)

Example:

1. Using the above change-of-coordinate formula, we see that the point P =
(0,
√

3, 1) (in Cartesian coordinates) has spherical coordinates (ρ, ϕ, θ) = (2, π/3, π/2).

2. The surface defined by the equation ρ = c is a sphere of radius c centred at the
origin.

3. The surface defined by the equation ϕ = π/4 is a single-napped cone: using (4)
above gives z =

√
x2 + y2. Note: since tanϕ = 1 > 0, we must choose z > 0.



4. The surface defined by the equation ρ = 6 cosϕ defines a sphere of radius 3
centred at (0, 0, 3): multiplying both sides of the equation by ρ gives

ρ2 = 6ρ cosϕ =⇒ x2 + y2 + z2 = 6z

Rearranging and completing the square we find

x2 + y2 + (z − 3)2 = 32.

Remark: the equation of a sphere of radius a centred at P = (x0, y0, z0) is given by
the equation

(x− x0)2 + (y − y0)2 + (z − z0)2 = a2

Indeed, this sphere consists of all points Q = (x, y, z) satisfying |
−→
PQ| = a. Squaring

both sides gives

|
−→
PQ|2 = a2 =⇒

−→
PQ ·

−→
PQ = a2 =⇒

x− x0y − y0
z − z0

 ·
x− x0y − y0
z − z0

 = a2

and the claim follows.

Sphere of radius a centred at (x0, y0, z0):

a2 = (x− x0)2 + (y − y0)2 + (z − z0)2


