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Coordinate systems

Learning Objectives:
- Gain familiarity with polar coordinates.
- Be able to graph basic polar curves.
-
- Gain familiarity with cylindrical coordinates.

In this lecture we will describe some new coordinate systems in R2 and R3.

Coordinates in the plane

Consider the plane R2 - this is a flat two-dimensional surface that is infinite in
all directions. The basic question is

Question: how can we describe points in the plane?

To the Greeks a point just was: we would care about describing points when they
appeared in a problem of geometry and were a (un)known distance from another
point.

Many centuries later, Descartes (and, independently, Fermat) came up with
the following revolutionary idea: fix a point in the plane (call it O), choose two
perpendicular fundamental directions (let’s call them i and j) and basic units of
length, describe points relative to these fundamental directions. This, of course,
leads to our usual Cartesian (or rectangular) description of the plane using (x, y)
coordinates.
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In linear algebra terms, the vectors i, j are linearly independent and therefore
provide a basis of R2. We could extend this idea by choosing any two linearly
independent vectors u, v to determine a coordinate system on R2:
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Polar coordinates: a useful coordinate system in the plane, called the polar co-
ordinate system, is defined as follows: fix an origin O. Any point P (distinct from
the origin O) lies on a unique circle of some radius r. To determine precisely where
the point P is on the circle, we fix a line through the origin (which we assume is
horizontal) and measure (counterclockwise) the angle θ subtended by P from this
line.

O
•

P
•

r

θ

The point P is represented by the pair (r, θ), the polar coordinates of P . To
remove ambiguity, always choose 0 ≤ θ < 2π.

Convention: Sometimes we will also allow r to take negative values, to be inter-
preted as follows: given polar coordinates (r, θ), with r < 0, consider the ray making
angle θ with the x-axis, and instead of moving |r| units away from the origin along
this ray, go |r| units in the opposite direction.

Interpreting (r, θ) with r < 0

(|r|, θ)•

(r, θ)•

Remark: Restricting 0 ≤ θ < 2π, r ≥ 0, ensures that any point in the plane, apart
from the origin O, has a unique set of polar coordinates.

Example:



1. The point P = (2, 2) (in Cartesian coordinates) lies on a circle of radius√
22 + 22 = 2

√
2, and we have tan θ = 1. Hence, since x, y > 0, we must

have θ = π
4
. Therefore, in polar coordinates the point P is represented by

(r, θ) = (2
√

2, θ).

2. Consider the point P which is represented by (5, π/6) in polar coordinates.
Then, P lies in the first quadrant on the arc of the circle, centred at O, of
radius 5. Recalling some basic trigonometry we have, in Cartesian coordinates,
P = (x, y), where x = r cos θ, y = r sin θ i.e. P = (5

√
3/2, 5/2).

3. The origin is weird: it is given, in polar coordinates, by (0, θ), for any θ.

Since a point P in the plane doesn’t care about how we represent it (it just is,
as the Greeks would say), we should be able to change between polar and Cartesian
coordinate representations for P (analogous to change-of-coordinate transformations
in linear algebra).

Cartesian ↔ polar coordinate transformation

Polar to Cartesian:
x = r cos θ

y = r sin θ
(1)

Cartesian to polar:
r2 = x2 + y2

tan θ = y
x

(2)

Caution: the Cartesian to polar change-of-coordinate formula in (2) do not specify
(r, θ) uniquely in terms of x, y. Read through p.64 of the textbook for discussion.

Polar equations: we can describe geometric objects in the plane using equations
in polar coordinates.

1. In polar coordinates (r, θ), a circle having radius c, centred at the origin, is
defined by the equation r = c.

2. The straight line through the origin with slope m is given by the equation
tan θ = m.

3. The vertical line through (0, 1) is given by r = sec θ: rearranging this equation
gives 1 = r cos θ = x.

4. The equation r = 2 cos θ describes a circle of radius 1 centred at (1, 0): multi-
plying both sides by r gives

r2 = 2r cos θ =⇒ x2 + y2 = 2x.

Completing the square gives

(x− 1)2 + y2 = 1.



Remark: determining the shapes described by a polar equation is tricky and takes
some getting used to. Can you see what shape is described by the polar equation
r = θ?

Coordinates in space
The Cartesian coordinates in the plane can be extended to space: we add in a

new z coordinate, where z measures units distance in the direction k
def
= i× j. As in

the R2 case, we could also describe points in space (once we’ve fixed an origin O) by
giving three linearly independent vectors u, v, w and determining a new coordinate
system with respect to the resulting basis.

Cylindrical coordinates: Polar coordinates provide us with a coordinate system
in the plane and we can extend this to a coordinate system in R3.

Given a point P in space, use polar coordinates to describe the projection of
P onto the xy-plane: denote this projection (r, θ). Then, P can be described by
the triple (r, θ, z). We say that (r, θ, z) obtained in this way are the cylindrical
coordinates of P .

The terminology is justified by considering the following diagram:
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Cartesian ↔ cylindrical coordinate transformation

Cylindrical to Cartesian:

x = r cos θ

y = r sin θ

z = z

(1)

Cartesian to cylindrical:

r2 = x2 + y2

tan θ = y
x

z = z

(2)



Remark:

1. As with polar coordinates, all points in R3 except for the z-axis have a unique
set of cylindrical coordinates. Any point (0, 0, c) on the z-axis has cylindrical
coordinates (0, θ, c), where θ can be any angle.

2. Cylindrical coordinates are useful when studying objects possessing rotational
symmetry (about the z-axis).

Example:

1. The surface in R3 described by r = c is the cylinder, centred at the origin,
parallel to the z-axis, and having radius c. In Cartesian coordinates, we see
that a cylinder (parallel to the z-axis) is therefore given by the equation√

x2 + y2 = c or, equivalently x2 + y2 = c2.

This example highlights an important point: if an equation does not contain
a coordinate, then the resulting object described by the equation extends in-
finitely in both directions parallel to the axis of the missing coordinate.

2. The surface in R3 described by the equation tan θ = m, is the plane containing
the z-axis and the line y = mx.

3. The surface in R3 described by the equation z2 +r2 = 400, r ∈ R, is a sphere of
radius 20 centred at the origin: in Cartesian coordinates the equation becomes

z2 + r2 = 400 =⇒ z2 + x2 + y2 = 202

If (x, y, z) lies on the surface described by this equation then it must be at
distance 20 from the origin. All points in space at a fixed distance from the
origin define a sphere centred at the origin.


