

FEBRUARY 19 LECTURE

TEXTBOOK REFERENCE:

- Vector Calculus, Colley, 4th Edition: §1.5

Affine Geometry: Lines & planes

LEARNING OBJECTIVES:

-Understand how to determine a parametric description of a line.

-Understand how to determine the equation of a plane.

-Understand the difference between a parametric description and an equation description of a geometric object.

Parametric descriptions of lines: given a point P and direction vector \vec{u} we can give a parametric description of the line through P parallel to \vec{u} :

$$\underline{r}(t) = \overrightarrow{OP} + t \, \overrightarrow{u}, \quad t \in \mathbb{R}.$$

1. Let P = (1, 1, 1), Q = (2, 0, 1). Give the parametric description of the line L passing through P and Q.

2. Consider the line with parametric description

$$\underline{r}(t) = \begin{bmatrix} 5t\\2-5t\\1 \end{bmatrix}, \quad t \in \mathbb{R}$$

Explain why this line is equal to L. (Parametric descriptions are non-unique)

3. Does the point R = (2, -1, 2) lie on L? How can you check?

Equations of planes: Let P be a point, \overrightarrow{n} a direction vector. There is a unique plane containing P and perpendicular to \overrightarrow{n} (a **normal vector**). It is defined by the equation

$$\overrightarrow{n} \cdot \overrightarrow{x} = \overrightarrow{n} \cdot \overrightarrow{OP}, \quad \text{where } \overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

1. Determine the equation of the plane containing the points P = (1, 0, 0), Q = (0, 1, 0), R = (0, 0, 1).

2. What is the equation of the plane containing the point (2, 5, 1) and perpendicular to the line L from the first set of problems above?

3. Determine whether the plane defined by the equation 2x + 5z = 10 and the line $\overrightarrow{r}(t) = \begin{bmatrix} 1 \\ 2+t \\ 2t \end{bmatrix}$, $t \in \mathbb{R}$, are perpendicular, parallel, or neither. (*How can you quantify these possibilities using a normal vector?*)

Another distance formulae:

1. Let Π be the plane with normal vector \overrightarrow{n} passing through P. Let Q be any point. Explain why the distance from Q to Π is

$$\frac{|\overrightarrow{PQ}\cdot\overrightarrow{n}|}{|\overrightarrow{n}|}$$

(*Hint:* it will be useful to draw a diagram representing the problem)

2. Let Π be the plane with normal $\overrightarrow{n} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$ passing through P = (1, 0, 0). Let Q = (-1, 2, 2).

- (a) Explain why Q is not on the plane Π .
- (b) Determine the point of intersection between Π and the line through Q in the direction \overrightarrow{n}

Misc:

1. Let Π and Π' be non-parallel planes, and let \overrightarrow{n} , $\overrightarrow{n'}$ be corresponding normal vectors. In your groups, give a geometric explanation for why the line of intersection $\Pi \cap \Pi'$ is parallel to $\overrightarrow{n} \times \overrightarrow{n'}$. If possible, use the space below to provide a diagram supporting your explanation.