February 19 Lecture

Textbook Reference:

- Vector Calculus, Colley, 4th Edition: §1.5

Affine Geometry: lines \& Planes

Learning Objectives:

- Understand how to determine a parametric description of a line.
- Understand how to determine the equation of a plane.
-Understand the difference between a parametric description and an equation description of a geometric object.

Parametric descriptions of lines: given a point P and direction vector \vec{u} we can give a parametric description of the line through P parallel to \vec{u} :

$$
\underline{r}(t)=\overrightarrow{O P}+t \vec{u}, \quad t \in \mathbb{R}
$$

1. Let $P=(1,1,1), Q=(2,0,1)$. Give the parametric description of the line L passing through P and Q.
2. Consider the line with parametric description

$$
\underline{r}(t)=\left[\begin{array}{c}
5 t \\
2-5 t \\
1
\end{array}\right], \quad t \in \mathbb{R}
$$

Explain why this line is equal to L. (Parametric descriptions are nonunique)
3. Does the point $R=(2,-1,2)$ lie on L ? How can you check?

Equations of planes: Let P be a point, \vec{n} a direction vector. There is a unique plane containing P and perpendicular to \vec{n} (a normal vector). It is defined by the equation

$$
\vec{n} \cdot \vec{x}=\vec{n} \cdot \overrightarrow{O P}, \quad \text { where } \vec{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

1. Determine the equation of the plane containing the points $P=(1,0,0), Q=$ $(0,1,0), R=(0,0,1)$.
2. What is the equation of the plane containing the point $(2,5,1)$ and perpendicular to the line L from the first set of problems above?
3. Determine whether the plane defined by the equation $2 x+5 z=10$ and the line $\vec{r}(t)=\left[\begin{array}{c}1 \\ 2+t \\ 2 t\end{array}\right], t \in \mathbb{R}$, are perpendicular, parallel, or neither. (How can you quantify these possibilities using a normal vector?)

Another distance formulae:

1. Let Π be the plane with normal vector \vec{n} passing through P. Let Q be any point. Explain why the distance from Q to Π is

$$
\frac{|\overrightarrow{P Q} \cdot \vec{n}|}{|\vec{n}|}
$$

(Hint: it will be useful to draw a diagram representing the problem)
2. Let Π be the plane with normal $\vec{n}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ passing through $P=(1,0,0)$. Let $Q=(-1,2,2)$.
(a) Explain why Q is not on the plane Π.
(b) Determine the point of intersection between Π and the line through Q in the direction \vec{n}

Misc:

1. Let Π and Π^{\prime} be non-parallel planes, and let $\vec{n}, \vec{n}^{\prime}$ be corresponding normal vectors. In your groups, give a geometric explanation for why the line of intersection $\Pi \cap \Pi^{\prime}$ is parallel to $\vec{n} \times \vec{n}^{\prime}$. If possible, use the space below to provide a diagram supporting your explanation.
