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The Cross Product

Important note: Today we restrict our attention to R3 (i.e. 3-space).

Question: given two vectors in space, −→u ,−→v , how can we
construct a third vector −→w ?

There are many ways; for example, given −→u ,−→v we could associated the following
vectors

−→w = (−→u ,−→v )

−→w = −→u +−→v

−→w = −→u −−→v

−→w = −→u

−→w = 2−→u +−→v

There are many ways to answer the question; no rhyme nor reason to it.

Consider the following geometric construction: let −→u ,−→v be displacement vectors in
space. Assume these vectors have the same starting point P . to construct a new
arrow −→w we require

(A) magnitude,

(B) direction.

(A) Magnitude: we declare that we want

|−→w | = area of parallelogram spanned by −→u ,−→v = |−→u |︸︷︷︸
base

|−→v | sin θ︸ ︷︷ ︸
height

Here we measure θ so that 0 ≤ θ ≤ π.

θ

P

−→v

−→u

|−→v | sin θ



Remark:

1. Observe: if −→u ⊥ −→v and |−→u | = |−→v | = 1 then |−→w | = 1.

2. If −→u =
−→
0 , −→v =

−→
0 , or −→u ||−→v then

|−→w | = 0 =⇒ −→w =
−→
0 .

(B) Direction: By the Remark, we can assume that both −→u and −→v are nonzero
and non-parallel. Then, there is a unique line passing through P that’s perpendicular
to the plane spanned by −→u and −→v . We choose −→w to be parallel to this line (starting
at P ), and assign it’s direction using the right hand rule. Thus, −→u ,−→v ,−→w forms a
right-handed triad.

We define −→u ×−→v , the cross product of −→u and −→v , to be the vector just defined.

−→u

−→v

−→u ×−→v

In particular, by construction

|−→u ×−→v | = |−→u ||−→v | sin θ

It’s important to remember that we take the angle θ between −→u and −→v so that
0 ≤ θ ≤ π (why?).

Example:

1. Denote the standard basis vectors in R3 by i, j, k.

i

jk

Then,
i× j = k, j × i = −k
j × k = i, k × j = −i
k × i = j, i× k = −j.

2. Let P,Q, S be points in space.

P

Q

S

R

−→
PQ

−→
PS



Then,

area of PQS =
1

2
area of PQRS =

1

2
|
−→
PQ×

−→
PS|

3. Consider the parallelepiped V spanned by −→u ,−→v ,−→w

φ
−→v

−→u

−→w

−→u ×−→v

Then,
volume of V = base · height = |−→u ×−→v | cosφ

where φ is the angle between−→w and−→u×−→v . Using the dot product to determine
cosφ, we obtain

volume of V = −→w · (−→u ×−→v ) = (−→u ×−→v ) · −→w

Exercise: show that

(−→u ×−→v ) · −→w = (−→v ×−→w ) · −→u = (−→w ×−→u ) · −→v (∗)

(Hint: each of these quantities computes the volume of V )

We will now see how we can use these results to obtain some interesting properties
of the cross product. First, we recall the following fact (an exercise if you’ve never
seen it before):

Fact: Suppose x · y = 0, for every x ∈ R3. Then, y = 0 ∈ R3.

Now let −→u ,−→v ,−→w ,−→x be vectors in R3. Assume that they all have same starting
point (i.e. they are all position vectors relative to this common starting point). Then,

(−→u × (−→v +−→w )) · −→x (∗)
= −→x ×−→u · (−→v +−→w )

= (−→x ×−→u ) · −→v + (−→x ×−→u ) · −→w
(∗)
= (−→u ×−→v ) · −→x + (−→u ×−→w ) · −→x
= (−→u ×−→v +−→u ×−→w ) · −→x

Hence, bringing everything to one side, we obtain

(−→u × (−→v +−→w )−−→u ×−→v −−→u ×−→w ) · −→x =
−→
0

This is true for all −→x , so we must have

−→u × (−→v +−→w )−−→u ×−→v −−→u ×−→w =
−→
0

=⇒ −→u × (−→v +−→w ) = −→u ×−→v +−→u ×−→w
SImilarly, it can be shown that

(−→u +−→v )×−→w = −→u ×−→w +−→v ×−→w



Properties of the cross product
Let −→u ,−→v ,−→w be vectors in space.

1. −→u ×−→v = −−→v ×−→u (exercise! use the right hand rule)

2. −→u × (−→v +−→w ) = −→u ×−→v +−→u ×−→w

3. (−→u +−→v )×−→w = −→u ×−→w +−→v ×−→w

4. (λ−→u )×−→v = λ(−→u ×−→v ) = −→u × (λ−→v ), for any scalar λ.

What we have obtained allows us to determine a formula for the cross product
as follows: take two column vectors

x =

x1x2
x3

 y =

y1y2
y3


We identify these column vectors with the corresponding position vectors (i.e. the
displacement vectors from the the origin to the points defined by the column vector).

Hence,
x = x1i+ x2j + x3k

y = y1i+ y2j + y3k

Thus, using properties 2, 3, 4 above, and our determination of the cross product of
the standard basis vectors, we find (after substantial rearrangement)

x× y =
(
x1i+ x2j + x3k

)
×
(
y1i+ y2j + y3k

)
= (x2y3 − x3y2)i− (x1y3 − x3y1)j + (x1y2 − x2y1)k

See the textbook, §1.4, for further details.

Example:

1. Let x =

 2
1
−1

, y =

1
0
2

. Then,

x× y = (1.2− 0.(−1))i− (2.2− (−1).1)j + (2.0− 1.1)k =

 2
−5
−1


2. Let P = (1, 2, 0), Q = (2, 0, 0), R = (−1,−1,−1). The area of the triangle
PQR can be determine as follows. First, we find the displacement vectors

−→
PQ =

−→
OQ−

−→
OP =

2
0
0

−
1

2
0

 =

 1
−2
0


−→
PR =

−→
OR−

−→
OP =

−1
−1
−1

−
1

2
0

 =

−2
−3
−1





Then, the area of the triangle PQR is

1

2
|
−→
PQ×

−→
PR|

We compute

−→
PQ×

−→
PR = ((−2).(−1)−0.(−3))i−(1.(−1)−0.(−2))j+(1.(−3)−(−2).(−2))k =

 2
1
−7


We compute the magnitude

|
−→
PQ×

−→
PR| =

√
(
−→
PQ×

−→
PR) · (

−→
PQ×

−→
PR) =

√
22 + 12 + (−7)2 =

√
54 = 3

√
6

Hence, the area of the triangle PQR is 3
√
6

2
.

A useful way to visualise how to compute the cross product without remembering
the nasty formula is as follows:

i j k i j

x1 x2 x3 x1 x2

y1 y2 y3 y1 y2

+ + + − − −

We multiply across diagonals: for the red diagonals we add the terms, for the
blue diagonals we subtract terms. For example, for the cross product computation
just performed to compute the area of the triangle we have:

i j k i j

1 −2 0 1 −2

−2 −3 −1 −2 −3

+ + + − − −

= (−2)(−1)i+ 0.(−2)j + 1.(−3)k−(−2)(−2)k − 0.(−3)i− 1.(−1)j

= 2i+ j − 7k =

 2
1
−7




